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Note on report organization and statistics 

 

Statistical parameters were calculated using a combination of Excel (Microsfoft 365, Version 

2410) and R software.  Generalized Additive Modeling was completed using R software, version 

R-4.4.2.   For this report, a statistically significant result implies a p value <0.05.    For the 

correlation coefficient (R) we use the Pearson correlation coefficient.  This provides a measure 

of association between two variables.  Positive values of R represent a direct correlation, whereas 

negative values of R are inversely correlated.  Note that the R2 can be interpreted as to the degree 

to which the x variable explains the variance in the y variable.   While there is no universal 

definition of “strong” or “weak” correlation,  I consider correlations with an absolute value of R 

<0.5 to be “weak.”   Finally, it should be noted that even weak correlations can still be 

statistically significant, if there are a sufficient number of observations. 

The report is organized into sections by tasks.   Within each section I include the methodology as 

well as the results for that specific task.    In any case where results are separated for the 

Western, Central and Eastern U.S., I use these definitions for each continental U.S. region: 

Western US (> 102° W); Central US (82–102° W); Eastern US (< 82° W).    Alaska and Hawaii 

are not included in these regions but are reported separately.     
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Executive Summary 

The primary goals of this project were to develop a method to routinely identify smoke 

influence on PM2.5 and O3 concentrations at all regulatory air quality sites in the U.S.  The 

analysis includes 802 O3 monitors with 763,482 individual daily data records for the period 

April-October 2019-2023.   To identify surface smoke, I used the NOAA Hazard Mapping 

System-Fire and Smoke Product (hereafter simply HMS) combined with surface PM2.5.  For each 

site, I define a “PM2.5 criteria” that must be met to be considered a smoke influenced day.     

From this, I identified 17% of all days between April-October 2019-2023 that have some degree 

of smoke influence.   This distribution of smoke days is highly variable in space and time, with 

sites in the Western U.S. most strongly impacted in 2020 and 2021 and sites in the Central and 

Eastern U.S. most strongly impacted in 2023. 

From this dataset, I used the non-smoke data as “training data” for Generalized Additive 

Models (GAMs).  GAMs were run individually for each site to predict the Maximum Daily 

Average 8-hour (MDA8) O3 concentration from the observed meteorological parameters, 

satellite observations and other predictors.  Each model was initiated with the same predictors 

and GAM equation, but a different number of predictors were statistically significant at each site.   

The model is very good at predicting the MDA8, with an overall R2 of 0.84, for all data together, 

and a mean R2 of 0.77 from the GAMs at all sites.  I examined the model results using 10-fold 

cross validation to ensure good performance.  The residual, defined as the observed MDA8 

minus the model predicted MDA8, has a mean value of 0 and a standard deviation of 4.8 ppb for 

the training data.  For each site, the same model is then used to predict the MDA8 for the smoke 

days.  We can interpret the residual for the smoke days as the change in the MDA8 due to the 

presence of smoke.  The overall mean and standard deviation of the residual on the smoke days 

at all sites is 3.8 ± 8.0 ppb, which indicates the average contribution of smoke to the MDA8.  

Overall, I found that out of 13,536 O3 exceedance days, 6200 (45.8%) had smoke influence.   Of 

these 6200 days, 4503 days (72.6%) had residuals that exceeded the 97.5th percentile of non-

smoke days.   This metric is one that has been recommended by the U.S. EPA (U.S. EPA. 2016).   

Thus we find that smoke made a significant contribution to O3 exceedance days in 2019-2023.  

Finally, as part of this project, we developed an R-Shiny app that can be used to plot and 

display these results and run your own GAM/machine learning models.   We believe this app 

will be useful to state and other agencies for both understanding smoke chemistry and in 

developing exceptional event demonstration packages.    
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Introduction and project goals 

Surface ozone (O3) is a criteria air pollutant that is formed from reactions of nitrogen oxides 

(NOx = NO+NO2) and volatile organic compounds (VOCs) in the presence of sunlight. O3 has 

serious health impacts up to and including premature mortality.  In the U.S., reductions in the 

precursor emissions, NOx and VOCs, over the past several decades have reduced peak O3 

concentrations considerably (Simon et al., 2015), but at present, there are still more than 40 

regions in the U.S. that exceed the current 8-hour O3 standard, so more than 130 million 

Americans live in areas that do not meet the U.S. National Ambient Air Quality Standards 

(NAAQS).   The current standard is met when the O3 design value (ODV), defined as the annual 

fourth highest maximum daily 8-hour average (MDA8) averaged over 3 years, is 0.070 ppm or 

less.   This standard has become stricter several times over the last few decades. 

In addition to urban photochemistry, O3 can also form due to wildfire emissions.  Due to the 

increase in wildfires in California and other parts of the western U.S., many areas of the U.S. 

have experienced increases in PM2.5 (McClure and Jaffe 2018a; Abatzoglou et al 2019; Williams 

et al 2019; Wilmot et al 2022) and O3 (McClure and Jaffe 2018b; Jaffe et al 2020; Lee and Jaffe 

2024).  A number of studies have identified significant health impacts associated with this 

increasing smoke (e.g. O’Dell et al 2021; Childs et al 2022; Doubleday et al 2023; Burke et al 

2023; Heft-Neal et al 2023; Wei et al 2023; Connolly et al 2024; Elser et al 2024).  

In addition to the health impacts there are also regulatory challenges.   Regions that would 

otherwise have met the NAAQS, except for the influence of wildfire smoke, may request 

exclusion of the influenced days under the CAA’s Exceptional Event provision (U.S. EPA 2024).  

But the process is complex and some states have requested greater flexibility in the process 

(Governors Hobbs, Cox, Polis, & Gordon 2024).    

There are two key challenges for both the health studies and regulatory requirements:  

1) Lack of agreement on how to identify and define a “smoke influenced day” and 

2) The slow timeline of current analyses that attempt to determine where and when there 

is smoke influence. 

Particularly for regulatory consideration, states need rapid tools that can provide estimates of 

both the PM2.5 and O3 contributions due to smoke.  In this work, our primary goal is to develop a 
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set of tools that can routinely assess smoke impacts on PM2.5 and O3 for every air quality site in 

the U.S.   Specific tasks are as follows: 

Task 1: Develop Generalized Additive Models for the MDA8 for all US air quality sites 

measuring O3 for April-October 2019-2023.  

1a. Use the HMS satellite product with surface PM2.5 to identify smoke influenced days at 

each site.  

1b. Develop individual Generalized Additive Models for the MDA8 O3 for each site.  

Task 2:  Use the GAM results to estimate the daily Smoke O3 (SMO) contribution at each site.  

Task 3: Examine the SMO values as a function of various factors to improve our understanding 

of what controls O3 at air quality sites.   

Task 4:  Examine the hourly O3 data to understand the SMO contributions for selected sites with 

heavy smoke influence.  

Task 5:  Develop an online GAM and visualization tool for use by state and other agencies. 

 

This project builds on my team’s past work to identify smoke influence on PM2.5 and O3 using 

the GAM approach (Gong et al 2017; 2018; McClure and Jaffe 2018b; Jaffe 2020; 2021; Jaffe et 

al 2020; Flynn et al 2021; Hu et al 2021; Lee and Jaffe 2024).   

 

Data sources 

I integrated data from a wide variety of sources.  This includes surface pollution data from the 

U.S. Environmental Protection Agency’s Air Quality System (AQS), backward airmass 

trajectories using the NOAA HYSPLIT model with NAM12 meteorology at 12 km resolution.  I 

used the NOAA Hazard Mapping System Fire and Smoke Product (hereafter simply HMS; 

Rolph et al., 2009; Ruminski et al., 2011).  I also used several products from NASA, including 

the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) 

global assimilation model.  I also integrated NO2 tropospheric column density and CH2O total 

column density from the Tropospheric Ozone Monitoring Instrument (TropOMI) onboard the 

Sentinel-5 satellite.  
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For EPA data, these were mainly downloaded from the EPA’s pre-generated data files 

(https://aqs.epa.gov/aqsweb/airdata/download_files.html) with subsequent updates and fill-ins 

using the AQS API (https://aqs.epa.gov/aqsweb/documents/data_api.html).    It should be noted 

that data can change even after submission into AQS.   Thus it is important to know that data are 

only current on the date when they were downloaded.   For MDA8 values, we use the values 

calculated in accord with the 2015 O3 standard, which differs slightly from the calculations for 

the 2008 O3 standard.  If a site had multiple valid observations (i.e. different POC values), we 

averaged these for each day.   Table 1 shows a summary of all data sources used in this analysis. 

https://aqs.epa.gov/aqsweb/airdata/download_files.html
https://aqs.epa.gov/aqsweb/documents/data_api.html
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Table 1.  Data used in this analysis. 

Source Parameter Unit Description 

EPA 

MDA8 O
3
 ppb Daily maximum 8-hour average ozone concentrations 

PM
2.5

 μg m -3 Daily mean PM2.5 concentrations 

Calc. DOY - Day of Year 

TROPOMI 

(NASA) 

NO2VCD molec. cm -2 
Daily NO2 tropospheric vertical column density (VCD) for a movin

g average based on the center of a 15-day window 

HCHOVCD molec. cm -2 
Daily HCHO tropospheric vertical column density (VCD) for a        

moving average based on the center of a 15-day window 

MERRA-2 

(NASA) 

SRAD W m -2 Daily mean surface incoming shortwave flux 

T2MAX K Daily maximum surface temperature 

QV2M kg kg-1 Daily mean relative humidity 

U10M m s-1 Daily mean 10-meter eastward wind 

V10M m s-1 Daily mean 10-meter northward wind 

U500 m s-1 Daily eastward wind at 500 hPa 

V500 m s-1 Daily northward wind at 500 hPa 

*HYSPLIT 

w/NAM12 

(NOAA) 

TrajH2O g kg-1 
Daily water vapor mix ratio averaged over 12 hours along the back   

trajectory 

TrajDepth M 
Daily water mixing depth averaged over 12 hours along the back       

trajectory 

TrajDist km Daily point-to-point distance for a 12-hour backward trajectory 

TrajDir deg Daily point-to-point direction for a 12-hour backward trajectory 

NOAA-HMS-

FSP 
HMS 

Heavy/Med.

/Light 
Daily smoke polygons over each monitoring station 

*Daily back-trajectories were initialized at 1 pm local standard time at 500 m above ground level for each   site. 

. 
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Task 1: Develop Individual Generalized Additive Models for the MDA8 for all US air 

quality sites measuring O3 April-October, 2019-2023. 

a. Use the HMS satellite product with surface PM2.5 to identify smoke influenced days 

at each site. 

The NOAA HMS product is based on multiple satellite indicators to identify smoke influenced.  

But as it is based only on satellite data, it cannot indicate whether smoke is at the surface or not.  

For each site, we develop a surface “PM2.5 criteria” to define smoke influenced days.    We first 

use the HMS data to identify a set of days that are possibly smoke influenced.  Any day with an 

overhead HMS smoke identification is termed HMS=1.   For the PM2.5 smoke criteria, 

previously we used the mean + 1 standard deviation of the non-HMS days (HMS=0) (Jaffe 2020; 

2021).  However, at some sites I found a strong log-normal distribution of PM2.5 data, which 

means that the PM2.5 criteria would be very high and we would miss many smoke influenced 

days.   I have chosen to switch to a method based on the median plus the median absolute 

deviation (MAD) of the HMS=0 days to define the PM2.5 smoke criteria.   This method is 

preferred for non-normal distributions (Leys et al 2021).   Because of the seasonality in the PM2.5 

concentrations, I chose to calculate the median and MAD for each month independently.   So for 

our 5-year analysis, our PM2.5 criteria is based on all days within each month with HMS=0.    It’s 

important to use multiple years of data since in some months there was near continuous overhead 

smoke.  For example, in June 2023, most sites in the Central and Eastern U.S. had overhead 

(HMS=1) smoke on more than 90% of days.  Combing the HMS identification plus the surface 

PM2.5 criteria, I identified 17% of all days in April-October 2019-2023 as having surface smoke 

influence, averaged across all sites.    

Over the past five years there has been significant variability in surface smoke influence.   Figure 

1 shows a plot of the fractional smoke influence for the April-October time period by state for 

each year.   
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Figure 1.  Fraction of smoke days (HMS+enhanced PM2.5) for April-October 2019-2023. 
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b. Development of individual Generalized Additive Models for the MDA8 O3 for each 

site. 

GAMs are a type of model where the form of the relationship between the predictor and 

predictands are not predetermined (Wood 2017).  Instead this relationship is determined by a 

training dataset.  The general form of the GAM relationship is:  

𝑴𝑫𝑨𝟖 𝑶𝟑 = 𝒇(𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒐𝒓𝟏) + 𝒇(𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒐𝒓𝟐) + ⋯ + 𝒇(𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒐𝒓 𝒙 𝒃𝒚 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒐𝒓 𝒚) +  𝜷      (Eq.1) 

Where predictor1, 2, etc are the individual MDA8 predictor variables and β is a constant.   The 

form for each predictor is determined from the pattern of the training dataset.   In some cases, we 

find that variables “interact”, meaning that a variable will have a different relationship to the 

main predictand depending on the value of the second variable.   Consistent with our previous 

work, we used a wide array of meteorological and other variables as predictors for the MDA8.   

In total, I considered 18 different variables plus interaction terms between variables.   But a 

predictor was only retained in the model if it was deemed to be statistically significant.   Table 1 

shows a list of all predictor variables considered, along with the interaction terms.    

I used the mcgv package in R software for these calculations.   In the mcgv package, we can 

choose the smoothing parameter for each predictor variable.   The “s” function is a spline fit.   

The smoother function “te” is used for interaction terms and includes the main (one dimensional) 

effect.  The smoother function “ti” is used for an interaction term alone.  Table 1 below shows a 

list of all predictors and interactions terms considered.   

 
Table 2.   List of main predictors and interactions used in this work. 
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The model is trained and optimized at each air quality site independently using the non-smoke 

day dataset and the predictors for that site (met, satellite observations, etc).   For each individual 

site/GAM, I use a stepwise backward process to remove non-significant predictors based on their 

F-statistic, which is an indicator of variable importance. This process continues until all 

remaining predictors are statistically significant.  This results in a different number of optimized 

predictors for the GAM at each individual site.   From this process we can calculate a number of 

key metrics including the overall R2 and standard deviation of the residual (observed MDA8 – 

predicted MDA8).   The mean residual must be zero, or else this indicates a problem with the 

calculation.   

Once the best model is identified, I used 10-fold cross validation (CV) as a quality control check 

on each GAM.   In this step, the model is recomputed with 90% of the training dataset and then 

evaluated with the remaining 10% of the dataset that was not used to train the model.   This is 

repeated 10 times so that all of the training dataset is eventually used as CV data.    The mean 

performance (R2) of the 10 CV runs is then a measure of the models ability to predict the MDA8 

for data that was never used to train the model.  The difference between R2 values for the full 

training dataset and the CV results can indicate if the model is “over-fitting”; i.e. has too many 

predictor variables.   

Once the optimum model for each site is developed, the same model is applied to the smoke 

dataset.  In this way, we can compute the expected MDA8 given the meteorological conditions, 

seasonality, etc. for each smoke day.   Calculating the same metrics as above (R2,  mean and 

standard deviation of the residual), provide different information than with the training dataset.  

In general, we find that the R2 using the smoke dataset is lower and the standard deviations are 

higher, compared to the training dataset.  This reflects the greater variability that smoke 

introduces.   For nearly all sites, the mean residual for the smoke days is positive due to 

additional O3 from wildfire emissions.  Figure 2 shows a schematic diagram of the overall 

process used to develop the GAMs. 
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Figure 2.   Overall process used to create the GAMs at each site. 

c. GAM results 

 

A summary of the GAM results is shown in Table 3.  Figure 3 shows a comparison of all GAM 
results for the training dataset.  The overall R2 is 0.84 using the training dataset and 0.74 using 
the CV results.   The GAMs at individual sites show a mean R2 value of 0.77 and a mean of 0.62 

using the CV results.    
 
Table 3. Summary of GAM results. 

 Training CV Smoke 

N 633760 633760 129722 

R2 (alldat) 0.84 0.74 0.59 

R2 (mean all sites) 0.77 ± 0.05 0.62 ± 0.07 0.45 ± 0.14 

Residual Mean+SD 0.00 ± 4.78 -0.01 ± 6.16 3.80 ± 7.99 

Residual RMSE 4.78 6.16 8.85 
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Figure 3. Observed vs predicted MDA8 for all training data. 

 

Task 2:  Estimates of the daily Smoke O3 (SMO) contribution at each site.  

 

In using the GAM results to estimate the smoke contribution to the MDA8 it is essential to 

consider the distribution of the residuals.  Figure 4 shows the GAM residuals for both training 

and smoke day datasets.  As noted previously, the mean residual for training data is 0, whereas 

the mean residual for the smoke day data is 3.8 ppb.   While the mean residual from smoke 

provides information on the overall mean smoke contribution to the MDA8, for individual days, 

we must consider variations in both distributions.   Based on published guidance from the U.S. 

EPA (U.S. EPA. 2016), I apply a statistical metric on the residual to determine if it sufficiently 

different from the training dataset.  In this case, the residual must be greater than the 97.5 th 

percentile of the non-smoke residuals. If it is, then we can consider that MDA8 to have been 

enhanced by smoke.  The 97.5th percentile of the non-smoke residuals is calculated individually 

at each site.    The overall mean 97.5th percentile at all sites is 9.6 ppb, with a range of 5.2-16.0 



19 
 

 

ppb.  In general, sites that have a better model performance (higher R2) have a lower 97.5th 

percentile, although the relationship is not strong.  So in summary, when the GAM residual 

exceeds the 97.5th percentile, this is a strong indicator that smoke significantly enhanced the 

MDA8. 

 

Figure 4. Distribution of residuals from the training and smoke day datasets. 

Using this metric, I find that 2.5% of the non-smoke residuals are greater than the 97.5th 

percentile (by definition), but 21.3% of the smoke residuals are greater than this metric.   This 

demonstrates a signficant enhancement in the MDA8 due to smoke on more than 27,000 days 

over this 5-year time period.  Of the O3 exceedance days that we determined to be smoke 

influenced, 73% had residuals that exceeded the 97.5th percentile.   I define the Smoke O3 (SMO) 

contribution to be equal to the residual on days with smoke.    

Figure 5 shows examples of especially strong smoke influence on the MDA8 for 8/21/2020 and 

6/2/2023 and Figure 6 shows the SMO for these same dates.  On 8/21/20, large fires in California 

led to significant PM2.5 and O3 enhancements in a large region of the western U.S. from 

California to Colorado.   On this day, 83 monitors exceeded an 8-hour average of 70 ppb.   Of 

these 83 monitors, 77 had smoke and 67 had residuals that exceeded the 97.5th percentile.  The 

average smoke contribution to the MDA8 on this day was 25.9 ppb.   On 6/2/23, large fires in 

Canada led to significant PM2.5 and O3 enhancements in a large region of the Central and Eastern 

U.S.  On this day, there were 115 monitors that exceeded an 8-hour average of 70 ppb, 107 of 
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which had smoke.  Of these 107 monitors, 65 had residuals that exceeded the 97.5th percentile 

with an average smoke contribution to the MDA8 of 18.5 ppb.   While smoke from the 2021 

California fires resulted in greater PM2.5 and O3 enhancements (at least in the U.S.) compared to 

the Canadian smoke events in 2023, the 2023 smoke events impacted a larger fraction of the U.S. 

population. 

 

 
Figure 5.  Examples of strong smoke influence on the MDA8 for 8/21/2020 (top) and 6/2/2023 

(bottom).    Maps generated using AirNowTech.org 
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Figure 6.  Calculated SMO contributions to the MDA8 for 8/21/2020 (top) and 6/2/2023 (bottom).    

Maps generated using authors’ R-Shiny app (more details presented under Task 5).  
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Table 4 shows the results by state.  This includes number of exceedance days, number of 

exceedance days with smoke and number of exceedance days with smoke with residuals greater 

than the 97.5th percentile summed for all 5 years (2019-2023).    In the appendix (Tables A1-A5), 

I show the same information by year.   Overall, I find that 33% of exceedance days in the U.S. 

likely have a significant smoke contribution (smoke days with residuals greater than 97.5 th 

percentile).  States in the Western U.S., such as California, have their highest number of 

exceedance days and exceedance days with smoke in 2020 and 2021.   In the East and Central 

U.S. the highest numbers are in 2023.  Dates that have smoke and residuals greater than the 

97.5th percentile are, from a scientific and statistical perspective, demonstrate the strongest cases 

for a smoke influence on the MDA8.   That said, the U.S. EPA uses a “weight of evidence” 

approach to designate exception events and no one piece of evidence can be considered 

conclusive.    

 
Table 4.  Total of exceedance days, exceedance days with smoke and exceedance days with smoke that 
exceed the 97.5th percentile by state for 2019-2023.   Tables with the same information for each year 

are shown in the appendix. 

 Sum of all 
exceedance days 

Sum of all 
exceedance 

days with 
smoke 

Sum of all 
exceedance days 
with smoke that 

exceed 97.5th 
percentile 

Fraction of all exceedance 
days that have smoke and 

exceed the 97.5th 
percentile  

Alabama 39 29 23 0.59 
Alaska 0 0 0 NA 
Arizona 720 195 119 0.17 

Arkansas 21 12 9 0.43 
California 6837 2123 1369 0.20 
Colorado 494 314 230 0.47 

Connecticut 260 153 120 0.46 
Delaware 26 17 12 0.46 

D.C. 26 18 14 0.54 
Florida 27 14 11 0.41 

Georgia 80 60 51 0.64 
Hawaii 0 0 0 NA 
Idaho 29 27 24 0.83 

Illinois 471 326 201 0.43 
Indiana 201 157 123 0.61 

Iowa 65 62 53 0.82 
Kansas 49 37 24 0.49 
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Kentucky 89 64 53 0.60 
Louisiana 76 54 45 0.59 

Maine 13 7 7 0.54 
Maryland 133 78 60 0.45 

Massachusetts 44 33 31 0.70 
Michigan 170 111 80 0.47 

Minnesota 76 66 64 0.84 
Mississippi 22 18 18 0.82 

Missouri 123 88 66 0.54 
Montana 9 8 8 0.89 
Nebraska 15 14 9 0.60 

Nevada 361 194 180 0.50 
New Hampshire 9 8 8 0.89 

New Jersey 97 64 50 0.52 
New Mexico 171 67 57 0.33 

New York 128 86 77 0.60 
North Carolina 37 28 22 0.59 
North Dakota 41 41 41 1.00 

Ohio 184 113 83 0.45 
Oklahoma 136 102 85 0.63 

Oregon 24 21 19 0.79 
Pennsylvania 174 120 93 0.53 
Rhode Island 36 22 22 0.61 

South Carolina 13 8 8 0.62 
South Dakota 58 44 36 0.62 

Tennessee 57 46 38 0.67 
Texas 1005 510 318 0.32 
Utah 466 289 258 0.55 

Vermont 2 2 2 1.00 
Virginia 14 13 13 0.93 

Washington 12 9 9 0.75 
West Virginia 0 0 0 NA 

Wisconsin 364 296 229 0.63 
Wyoming 32 32 31 0.97 

Grand Total 13536 6200 4503 0.33 
 

Figure 7 shows the impacts of smoke on exceedance days by year and region.   Days in red were 

identified as smoke influenced and have residuals greater than the 97.5th percentile.   In the 

Western U.S. the largest impacts from smoke were seen in 2020 and 2021, whereas in the 

Eastern and Central U.S. the largest impacts were seen in 2023.  

 



24 
 

 

 

 

 
Figure 7.   Number of exceedance days by year and region.   The bars in red count days that were 

identified as smoke influenced and have residuals greater than the 97.5 th percentile.   

 

Task 3: Examine the SMO values as a function of various factors to improve our 

understanding of what controls O3 at air quality sites.  

As noted in the sections above, the GAM residuals for smoke days show a significant positive 

mean bias compared to the non-smoke days.   While the difference between smoke and non-

smokes is statistically significant, there remains a large degree of variability.  So here, I examine 

how the smoke day residuals vary as a function of surface PM2.5, satellite NO2 and HMS smoke 

patterns.   Figure 8 shows the GAM residual vs daily mean PM2.5.   This plot includes all smoke 

days, so despite a very low R2
, this is a statistically significant relationship.   Nonetheless, it is 

clear that PM2.5 can explain only a very small fraction of the total variance in the GAM residuals 

(ca 3%).  There are a number of complicating factors with this approach.    First, the amount of 

PM2.5 does not tell us anything about the quantify of O3 precursors (especially NOx and VOCs) 

which can vary considerably from fire to fire and depending not only on the amount of biomass 

burned, but also combustion conditions and fuel.  Second, PM2.5 may act to reduce photolysis 

rates, and consequently O3 production.       
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Figure 9 looks at how NOx may impact smoke O3.  It shows a plot of the satellite NO2 vertical 

column density (log scale).  We might expect this relationship to show a significant correlation if 

local NOx were a driver of smoke induced O3 production (see discussion in Jaffe et al 2020).   In 

this case we see an even worse relationship.    Again, there are a number of complicating factors 

for this analysis.   First, the satellite data is from the OMI satellite and is fairly low resolution (1o 

x 1o), with frequent missing data.  To be useful in this analysis, I had to do 15 day averaging.   A 

second complication is that while NOx is needed for O3 production, at higher NOx levels, we 

know that it will suppress O3 formation.     

Finally, I look at whether the HMS satellite product gives any useful information on the 

smoke O3 production.  Table 1 shows PM2.5 and the GAM residuals sorted by HMS classification 

(light, medium or heavy smoke).    There is a statistically significant increase in the PM2.5 

concentrations and the GAM residuals with heavier smoke.   But the variability remains large. 

I would not say this part of the analysis has led to any new insights.   The variability is too 

large and none of the variables that I have used provide strong correlations.    The only 

conclusion is that PM2.5 and the HMS smoke category do tend to predict higher O3 GAM 

residuals, but there remains a large amount of variability.   Future work on this analysis could 

include:  

i. Use of higher resolution satellite retrievals (such as the recently launched TEMPO 

instrument).  

ii.  More information on the smoke source (e.g. fire characteristics) and transport (for 

example time of transport, meteorology during transport, etc). 
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Figure 8.   Plot of GAM residuals vs observed daily mean PM2.5.  This plot contains 120,788 smoke 

data points. 

 
Figure 9.  Plot of GAM residuals vs the log of OMI satellite NO2 column density.  This plot contains 

120,788 smoke data points. 

 
Table 5.   Statistics on PM2.5 and GAM O3 residuals by HMS smoke classification.   This table 

includes 129,722 smoke day data points. 

HMS Smoke category: Light Medium Heavy 

Count  79047 34979 15696 

Average PM2.5 (ug m-3) 12.21 15.65 32.05 

S.D. of PM2.5 (ug m-3) 5.40 10.66 33.95 

Average of GAM residuals (ppb) 3.08 4.53 5.78 

S.D. of GAM residuals (ppb) 7.38 8.00 10.14 
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Task 4:  Examine the hourly O3 data to understand the SMO contributions for selected 

sites with heavy smoke influence.  

We can gain insight into whether smoke O3 at each air quality site is locally produced or 

produced in the smoke plume prior to arrival at the monitoring location by looking at the hourly 

O3 data.  In the first instance, we would expect to see an enhanced rate of O3 production (dO3/dt) 

on days with smoke and in the second case we would expect to see more uniform O3 

enhancements across the day.   Both types of O3 enhancements are possible and both have been 

demonstrated in the literature (Buysse et al 2010, Rickly 2023).   To start the analysis, I want to 

focus on states and years with high fire influence on O3 exceedance days.    Tables A1-A5 shows 

the number of all exceedances days by state for the years 2019-2023 and also the number of 

exceedance days with smoke.  From this, I find that California in 2020 had the highest number of 

smoke influenced exceedance days for all states over this time period (1012).   Of these, 312 

smoke influenced exceedance days occurred in August, 392 in September and 296 in October.  

In 2023, sites in the Midwest had a large number of exceedance days with smoke, including 

Texas (291) and Illinois (251).    For Texas, the highest month was September and for Illinois, it 

was June.  So I will examine the hourly data for these states and times.  

For this task, I downloaded hourly data files for each calendar year from the EPA’s Air 

Data website.   These files are very large, containing more than 9 million rows of data.  To make 

the files more manageable, I split these by state and reconfigure the data format to a more useful 

form.   Finally, I calculate the MDA8 from the hourly data and ensure my calculated MDA8 

matches the regulatory value.  Next, I add a smoke or no smoke day classification for each site 

for each day.    

Figures 10 shows the mean diurnal cycle of O3 across all California sites for August, 

September and October 2020, respectively for smoke and non-smoke days.  This period had 

extensive fires in California and a huge number of PM2.5 and O3 exceedance days.   A similar 

procedure was used to evaluate impacts from the large Canadian fires in 2023 on MDA8 O3 in 

Illinois and Texas.   Figures 11 shows the mean diurnal cycle of O3 across the Illinois and Texas 

sites in June and September 2023, respectively for smoke and non-smoke days.   The diurnal O3 

profiles (Figures 10-11) strongly suggest that most of the enhanced O3 on these smoke days was 

due to enhanced local photochemical production.  This conclusion comes from the fact that: 
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i. morning O3 was nearly identical on the smoke and non-smoke days; 

ii. the rate of increase (dO3/dt) was much higher on smoke influenced days. 

Table 6 and 7 quantifies these results for each month by calculating mean statistics for a number 

of key parameters by smoke and non-smoke day.   Table 6 and 7 also gives some additional 

information on the number of exceedance days, which demonstrates the extent of smoke impacts 

in 2020 (in California) and 2023 (Illinois and Texas).   

To estimate the contribution to the higher afternoon O3 due to baseline enhancement, I use: 

% 𝒄𝒐𝒏𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 =   
𝒎𝒆𝒂𝒏 𝒎𝒐𝒓𝒏𝒊𝒏𝒈 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆

𝒎𝒆𝒂𝒏 𝒂𝒇𝒕𝒆𝒓𝒏𝒐𝒐𝒏 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆
 𝒙 𝟏𝟎𝟎 

Note that this is usually positive, but if the average baseline O3 is lower on smoke days, then this 

can yield a negative value.  To estimate the contribution from photochemistry, we can do this 

two ways, first using:  

% 𝒄𝒐𝒏𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝒑𝒉𝒐𝒕𝒐𝒄𝒉𝒆𝒎𝒊𝒔𝒕𝒓𝒚 =   
𝒎𝒆𝒂𝒏 𝒔𝒍𝒐𝒑𝒆 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆 (𝒑𝒆𝒓 𝒉𝒓)𝒙 𝟖 𝒉𝒓𝒔

𝒎𝒆𝒂𝒏 𝒂𝒇𝒕𝒆𝒓𝒏𝒐𝒐𝒏 𝒅𝒊𝒇𝒇𝒆𝒓𝒆𝒏𝒄𝒆
 𝒙 𝟏𝟎𝟎 

This can also be calculated by simple subtraction: 

% 𝒄𝒐𝒏𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝒑𝒉𝒐𝒕𝒐𝒄𝒉𝒆𝒎𝒊𝒔𝒕𝒓𝒚 =  𝟏𝟎𝟎 − % 𝒄𝒐𝒏𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏 𝒇𝒓𝒐𝒎 𝒃𝒂𝒔𝒆𝒍𝒊𝒏𝒆 

In all of these periods across these three states, the % contribution from photochemistry far 

outweighs the contributions from baseline enhancements.   So these calculations support the idea 

that local photochemical O3 production from enhanced smoke precursors was mainly responsible 

for the enhanced MDA8 values seen for these months.  This is supported by the lack of 

significant enhancement in morning O3 for each month.    It is likely that in each case, the 

wildfire emissions contributed, mainly, reactive VOCs, while the local anthropogenic emissions 

were the source or NOx. Once these precursors mixed and in the presence of solar radiation, O3 

production was strongly enhanced on a smoke day, compared to a non-smoke day.  
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Figure 10. Hourly O3 for all California sites in August (top), September (middle) and October 2020 

with and without smoke. 

 

 



30 
 

 

 

 
Figure 11. Hourly O3 for all Texas sites in September 2023 (top) and Illinois sites in June 2023 

(bottom) with and without smoke. 
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Table 6. Estimated contribution to enhanced afternoon (2pm) O3 from local photochemistry vs 

enhanced baseline for California sites in August-October, 2020. 

California August 2020   

Mean morning difference (6 am smoke day - non smoke day) 0.1 ppb 

Mean afternoon difference (2 pm smoke day - non smoke day) 12.2 ppb 

Mean slope difference (6 am to 2pm slope smoke day - non smoke day) 1.5 ppb/hr 

Contribution from morning (baseline) 0.8 % 

Contribution from enhanced photochemistry (from slope) 99.4 % 

Contribution from enhanced photochemistry (by subtraction) 99.2 % 

Percent of all days that are smoke days 39.2 % 

Percent exceedance days 12.9 % 

Percent exceedance days that are smoke days 69.8 % 

   

California September 2020   

Mean morning difference (6 am smoke day - non smoke day) 0.1 ppb 

Mean afternoon difference (2 pm smoke day - non smoke day) 5.8 ppb 

Mean slope difference (6 am to 2pm slope smoke day - non smoke day) 0.7 ppb/hr 

Contribution from morning (baseline) 2.2 % 

Contribution from enhanced photochemistry (from slope) 91.6 % 

Contribution from enhanced photochemistry (by subtraction) 97.8 % 

Percent of all days that are smoke days 72.4 % 

Percent exceedance days 14.6 % 

Percent exceedance days that are smoke days 79.2 % 

   

California October 2020   

Mean morning difference (6 am smoke day - non smoke day) -0.6 ppb 

Mean afternoon difference (2 pm smoke day - non smoke day) 14.4 ppb 

Mean slope difference (6 am to 2pm slope smoke day - non smoke day) 1.9 ppb/hr 

Contribution from morning (baseline) -4.5 % 

Contribution from enhanced photochemistry (from slope) 104.4 % 

Contribution from enhanced photochemistry (by subtraction) 104.5 % 

Percent of all days that are smoke days 53.1 % 

Percent exceedance days 9.8 % 

Percent exceedance days that are smoke days 88.5 % 
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Table 7.  Estimated contribution to enhanced afternoon (2pm) O3 from local photochemistry vs 

enhanced baseline for Illinois (June) and Texas (September) in 2023. 

Illinois June 2023   

Mean morning difference (6 am smoke day - non smoke day) 4.1 ppb 

Mean afternoon difference (2 pm smoke day - non smoke day) 17.8 ppb 

Mean slope difference (6 am to 2pm slope smoke day - non smoke day) 1.7 ppb/hr 

Contribution from morning (baseline) 23.2 % 

Contribution from enhanced photochemistry (from slope) 74.4 % 

Contribution from enhanced photochemistry (by subtraction) 76.8 % 

Percent of all days that are smoke days 88.4 % 

Percent exceedance days 32.7 % 

Percent exceedance days that are smoke days 96.8 % 

   

Texas September 2023   

Mean morning difference (6 am smoke day - non smoke day) 2.7 ppb 

Mean afternoon difference (2 pm smoke day - non smoke day) 13.1 ppb 

Mean slope difference (6 am to 2pm slope smoke day - non smoke day) 1.3 ppb/hr 

Contribution from morning (baseline) 20.2 % 

Contribution from enhanced photochemistry (from slope) 79.8 % 

Contribution from enhanced photochemistry (by subtraction) 79.8 % 

Percent of all days that are smoke days 35.1 % 

Percent exceedance days 9.6 % 

Percent exceedance days that are smoke days 76.3 % 
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Task 5:  Develop an online GAM and visualization tool for use by state and other agencies. 

 

As part of this project, we developed an R-Shiny web app to allow state and other agencies the 

ability to run their own GAM and to visualize our existing results.    The app can be found at: 

https://smoke.shinyapps.io/rsGAM/ 

At the initial start page, we first request an email from all users and , optionally, their name and 

affiliation.  This is so we can track users and let them know about updates to the app.   Once the 

user enters the app main page, there is an introduction page, similar to the page below. 

 

 
Figure 12.  Opening screen of R-Shiny app. 

 

Here the user makes a choice of downloading air quality and meteorological data and running 

their own GAM (“GAM manual”) or plotting and downloading results from one of our existing 

GAM runs (“GAM previous”). 

https://smoke.shinyapps.io/rsGAM/
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If the user chooses “GAM manual” from the main menu, they will get to a page that looks like 

this.  Here the user can identify the O3, PM2.5 and meteorological sites that they want to use.  

 
Figure 13.  Screenshot showing “GAM manual” page in R-Shiny app. 

 
 

There are some things to consider in running your own GAM: 

1. The application can identify, download and merge large amounts of O3, PM2.5 and 

meteorological data in real time fairly efficiently.  There is an interface that allows a user 

to easily select the time frame and sites.  

2. The application can then identify smoke days using one of several statistical approaches 

that we recommend.  

3. From the merged dataset, the user can then setup a GAM and run it, including doing CV 

runs on their dataset.  

4. The current configuration has a limitation on the type of met data that is automatically 

downloaded.  As the trajectory data require a more complex calculation for incorporation 

into the GAMs, at present trajectory data can not be included into the GAMs 

automatically.  This means for most sites, our previous GAM runs, which include 

trajectory data, will probably have a better R2 than those a user can do on this app.   It is 

possible for a user to upload any type of dataset, including analyzed trajectory data, and 

these could then be incorporated into the GAM.    
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5. Running the GAMs requires some advanced statistical knowledge.  Thus, most users will 

want to stick with results from one of our previous GAM runs.  

If the user chooses “GAM previous” from the main menu, they will get to a page that looks like 

this.  The points shown in green are AQS sites that were included in our previous GAM run.     

 

Figure 14.  Screenshot showing “GAM previous” page in R-Shiny app. 

Clicking on one of these sites gives information on the GAM results for that site.   Below, I show 

results from the South DeKalb site in Georgia.   On the right side of the screen are the summary 

GAM results from this site.

 

Figure 15.  Choosing specific sites on “GAM previous” page in R-Shiny app. 
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On the top right side of this screen, there are various choices to display the South DeKalb GAM 

results.   For example, there is a time series of the results.   This shows the daily MDA8 values, 

whether we identified this day as a smoke day or not, the GAM predicted MDA8 values and the 

smoke contribution to the MDA8. 

 

Figure 16.  Example plots from “GAM previous” page in R-Shiny app. 

 

Another useful set of plots is found in the “Layer map” tab.    Here one can plot results for 

individual days, or summarize results by state, etc.  An example of this was shown earlier in this 

report in Figure 6. 

 

Figure 17.  Map of SMO values from “GAM previous” page in R-Shiny app. 
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But a particularly useful feature is to toggle on/off the check box for SMO>97.5th (circled in 

red).   This allows a user to identify those SMO values that exceeded the 97.5th percentile.   

 

Figure 18.  Map of SMO values with check box to indicate SMO values greater than 97.5 th percentile 

from “GAM previous” page in R-Shiny app.   

 

We believe that showing the spatial pattern in the smoke influence, the GAM residual and the 

residuals greater than the 97.5th percentile will significant add to our confidence that smoke did 

indeed influence a specific monitoring location.   

 

There are a number of other features in the app.   We encourage any readers to explore the app.  

As it is a new application and a work in progress, please let me know about any issues and/or 

suggested improvements.  

 

Summary and suggestions for future research. 

The primary goals of this project were to develop a method to routinely identify smoke influence  

on PM2.5 and O3 concentrations at all regulatory air quality sites in the U.S.   To start, I generated 

a dataset of daily O3, PM2.5, satellite and meteorological parameters for 802 Air Quality Sites in 

all 50 states, plus the District of Columbia for every day in 2019-2023, resulting in 763,482 

individual daily data records.   To identify days with a significant contribution from smoke I 
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used the NOAA Hazard Mapping System-Fire and Smoke Product (hereafter simply HMS) 

combined with surface PM2.5.  

The HMS product is based on multiple satellite indicators to identify smoke influence.  But as it 

is based only on satellite data, it cannot indicate whether smoke is at the surface or not.  For each 

site, we develop a surface “PM2.5 criteria” to define smoke influenced days.    We first use the 

HMS data to define a set of days that are possibly smoke influenced.  Any day with an overhead 

HMS smoke identification is termed HMS =0.   For the PM2.5 smoke criteria, previously we used 

the mean + 1 standard deviation of the non-HMS days (HMS=0) (Jaffe 2020; 2021).  However, 

at some sites I found a strong log-normal distribution of PM2.5 data, which means that the PM2.5 

criteria would be very high and we would miss many smoke influenced days.   I chose to switch 

to a method based on the median plus the median absolute deviation (MAD) of the HMS=0 days 

to define the PM2.5 smoke criteria.   This method is preferred for non-normal distributions (Leys 

et al 2021).   Using this approach, I identified 17% of all days in April-October 2019-2023 as 

having surface smoke influence.  This compares with 14% of all days for May-September 2019-

2023, using the mean + 1 standard deviation as the PM2.5 criteria.     

The distribution of smoke days is highly variable in space and time.    Sites in the Central U.S. 

had the highest frequency of smoke impacted days, 20.3% of days for April-October 2019-2023.  

But this increased to 39.6% of April-October days in 2023 due to the massive Canadian wildfires 

that burned in that year.  This also more than doubled the number of O3 exceedance days in the 

Central U.S.  In general, we find a strong relationship between the number of O3 exceedance 

days and smoke frequency in all areas of the country. 

I used the non-smoke data as “training data” for the GAMs.   For each site, GAMs were run 

individually to predict the Maximum Daily Average 8-hour (MDA8) O3 concentration from the 

observed meteorological parameters, satellite observations and other predictors.  Each model was 

initiated with the same predictors and GAM equation, but a different number of predictors were 

statistically significant at each site.   The model is very good at predicting the MDA8, with an 

overall R2 of 0.84, for all data together, and a mean R2 of 0.77 using the GAMs from all sites.  I 

examined the model results using 10-fold cross validation and other metrics.  The residual for the 

training dataset, defined as the observed MDA8 minus the model predicted MDA8, has a mean 

value of 0 and a standard deviation of 4.8 ppb.  For each site, the same model is used to predict 
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the MDA8 for the smoke days.  Since smoke, nor PM2.5, are included in the model we can 

interpret the residual for the smoke days as the change in the MDA8 due to the presence of 

smoke.  The overall mean and standard deviation of the residual on the smoke days at all sites is 

3.8 ± 8.0 ppb.   Overall, I found that out of 13,536 exceedance days, 6200 (45.8%) had smoke 

influence.    

While the residual on individual smoke days is a measure of the enhancement of the MDA8 due 

to the smoke, we must consider the large variability in these residuals.   Based on published 

guidance from the U.S. EPA (U.S. EPA. 2016), I apply a statistical metric on the residual to 

determine if it sufficiently different from the training dataset.  In this case, the residual must be 

greater than the 97.5th percentile of the non-smoke residuals. If it is, then we can consider that 

MDA8 to have been enhanced by smoke.  Using this metric, I find that 2.5% of the non-smoke 

residuals are greater than the 97.5th percentile (by definition), but 21% of the smoke residuals are 

greater than this metric.   This demonstrates a signficant enhancement in the MDA8 due to 

smoke on more than 27,000 days over this 5-year time period.  Of the O3 exceedance days that 

we determined to be smoke influenced, 73% had residuals that exceeded the 97.5th percentile.   

Knowing that smoke enhances the MDA8, but with a large degree of variability, we would like 

to better understand the factors that control this variability.  I examined several factors that might 

be expected to have some influence on the urban O3 production in the presence of smoke, 

including: PM2.5, NO2 tropospheric column density, and HMS smoke type (heavy, medium, 

light).  Unfortunately none of these parameters showed a strong relationship with the GAM 

residual.  Only the HMS smoke classification (heavy, medium or light) showed any relationship 

with the residual, but it was rather weak.  This tells us that smoke chemistry and O3 production in 

urban areas can not be explained by a  simple one-factor prediction approach.   It seems likely 

that multiple factors are needed to explain the urban O3 enhancements we see in smoke.   

Next we used hourly O3 data on smoke days to examine whether the enhanced O3 we see is most 

likely associated with enhanced local O3 production or transport of O3 formed elsewhere into the 

region.    Enhanced O3 production would be indicated by an enhanced rate of O3 production 

(dO3/dT) during the daytime hours, whereas transport would not show any particular diurnal 

pattern.   Examining data from several time periods with strong smoke influence shows that local 

photochemical production is the most important mechanism. This is likely from the combination 
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of smoke VOCs and urban/industrial NOx.    This finding has implications for O3 control, since 

local production of O3 still depends on local NOx emissions.   

Finally, as part of this project, we developed an R-Shiny app that can be used to plot and display 

these results and run your own GAM/machine learning models.   The app includes the ability to 

visualize and extract results from our existing GAM runs.  In addition, expert users can use this 

app to download and merge large amounts of air quality and meteorological data and run a GAM 

for smoke conditions in future years.   We believe this app will be useful to state and other 

agencies for both understanding smoke chemistry and in developing exceptional event 

demonstration packages.    

Several aspects of smoke chemistry remain rather murky.   In particular, understanding what 

controls O3 production in urban areas during smoke events remains unclear.  Given the results in 

Task 4 using the hourly O3 data, it is reasonable to conclude that most O3 production occurs 

locally from a combination of smoke VOCs and anthropogenic NOx.    Future work could 

combine and/or compare statistical modeling approaches with detailed photochemical modeling.  

Another aspect that is ripe for future work is comparing these results to different approaches.  At 

present, there are few examples of national analyses to calculate the contribution of smoke to 

surface PM2.5 and O3, but this is likely to change in the future.  When other approaches become 

available, it will be very useful to compare the results from different methodologies. 

 

There are a number of uncertainties to consider in this analysis: 

1) Smoke days determined by HMS and PM2.5-criteria may be incorrectly identified.   

For all sites, the values for the PM2.5 smoke criteria ranged from 4.8 to 22.5 µg m–3, with the 

highest value observed for the Pomona site in California.  At this site, although 20% of days 

had an overhead HMS signal (i.e., HMS = 1), only 9% of the days experienced daily PM2.5 

exceeding the PM2.5-criteria, resulting in a smoke day frequency of only 4%. In other words, 

the higher PM2.5-criteria, results in a reduced ability to detect moderate smoke levels 

2) Uncertainty arises from the data merging process.   

In instances where O3 data were available but PM2.5 data were not, we combined the O3 data 

with PM2.5 data from the closest station within a 25 km radius.  In this study, only 55% have 

identical coordinates (i.e. co-location) for both O3 and PM2.5 monitoring stations.  Increasing 

the co-location of PM2.5 and O3 monitoring sites in the future would reduce this uncertainty 
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Appendix 

 
Tables A1-A5.  Total of exceedance days, exceedance days with smoke and exceedance days with 

smoke that exceed the 97.5th percentile by state for each year (2019-2023).    

2019 
Sum all 

exceedance 
days 

Sum all 
exceedance days 

with smoke 

Sum all exceedance 
days with smoke that 

exceed 97.5th 
percentile 

Fraction of all 
exceedance days that 

have smoke and 
exceed the 97.5th 

percentile  
Alabama 20 10 6 0.30 

Alaska 0 0 0 NA 
Arizona 57 1 0 0.00 

Arkansas 1 1 1 1.00 
California 1086 11 4 0.00 
Colorado 27 2 1 0.04 

Connecticut 58 25 18 0.31 
Delaware 4 0 0 0.00 

D.C. 6 1 1 0.17 
Florida 7 1 1 0.14 

Georgia 28 18 14 0.50 
Hawaii 0 0 0 NA 
Idaho 0 0 0 NA 

Illinois 22 12 12 0.55 
Indiana 11 4 4 0.36 

Iowa 1 0 0 0.00 
Kansas 1 1 1 1.00 

Kentucky 6 0 0 0.00 
Louisiana 7 1 1 0.14 

Maine 1 1 1 1.00 
Maryland 38 6 6 0.16 

Massachusetts 1 1 1 1.00 
Michigan 5 2 1 0.20 

Minnesota 3 2 2 0.67 
Mississippi 2 2 2 1.00 

Missouri 9 3 3 0.33 
Montana 0 0 0 NA 
Nebraska 0 0 0 NA 

Nevada 7 0 0 0.00 
New Hampshire 0 0 0 NA 

New Jersey 16 2 2 0.13 
New Mexico 33 0 0 0.00 

New York 19 6 5 0.26 
North Carolina 13 5 4 0.31 
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North Dakota 0 0 0 NA 
Ohio 28 11 11 0.39 

Oklahoma 4 2 2 0.50 
Oregon 2 1 1 0.50 

Pennsylvania 20 2 2 0.10 
Rhode Island 2 1 1 0.50 

South Carolina 4 0 0 0.00 
South Dakota 4 1 1 0.25 

Tennessee 4 1 1 0.25 
Texas 116 15 11 0.09 
Utah 28 0 0 0.00 

Vermont 0 0 0 NA 
Virginia 2 1 1 0.50 

Washington 0 0 0 NA 
West Virginia 0 0 0 NA 

Wisconsin 15 11 11 0.73 
Wyoming 0 0 0 NA 
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2020 Sum all 
exceedance days 

Sum all 
exceedance 

days with 
smoke 

Sum all 
exceedance days 
with smoke that 

exceed 97.5th 
percentile 

Fraction of all 
exceedance days that 

have smoke and 
exceed the 97.5th 

percentile  
Alabama 1 1 1 1.00 

Alaska 0 0 0 NA 
Arizona 127 84 53 0.42 

Arkansas 3 0 0 0.00 
California 1959 1012 729 0.37 
Colorado 93 83 65 0.70 

Connecticut 28 0 0 0.00 
Delaware 2 0 0 0.00 

D.C. 0 0 0 NA 
Florida 3 0 0 0.00 

Georgia 1 0 0 0.00 
Hawaii 0 0 0 NA 
Idaho 3 3 3 1.00 

Illinois 75 25 13 0.17 
Indiana 25 17 12 0.48 

Iowa 0 0 0 NA 
Kansas 3 1 1 0.33 

Kentucky 9 0 0 0.00 
Louisiana 10 2 1 0.10 

Maine 1 0 0 0.00 
Maryland 5 0 0 0.00 

Massachusetts 4 0 0 0.00 
Michigan 39 21 14 0.36 

Minnesota 2 1 1 0.50 
Mississippi 1 0 0 0.00 

Missouri 6 1 0 0.00 
Montana 0 0 0 NA 
Nebraska 0 0 0 NA 

Nevada 75 47 46 0.61 
New Hampshire 0 0 0 NA 

New Jersey 6 0 0 0.00 
New Mexico 27 19 18 0.67 

New York 11 0 0 0.00 
North Carolina 0 0 0 NA 
North Dakota 0 0 0 NA 

Ohio 32 5 1 0.03 
Oklahoma 3 0 0 0.00 
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Oregon 5 4 3 0.60 
Pennsylvania 14 0 0 0.00 
Rhode Island 7 0 0 0.00 

South Carolina 1 0 0 0.00 
South Dakota 2 1 1 0.50 

Tennessee 0 0 0 NA 
Texas 110 43 33 0.30 
Utah 74 45 41 0.55 

Vermont 0 0 0 NA 
Virginia 0 0 0 NA 

Washington 0 0 0 NA 
West Virginia 0 0 0 NA 

Wisconsin 56 25 20 0.36 
Wyoming 9 9 9 1.00 
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2021 Sum all 
exceedance days 

Sum all 
exceedance 

days with 
smoke 

Sum all exceedance 
days with smoke 

that exceed 97.5th 
percentile 

Fraction of all 
exceedance days that 

have smoke and exceed 
the 97.5th percentile  

Alabama 2 2 2 1.00 
Alaska 0 0 0 NA 
Arizona 201 62 35 0.17 

Arkansas 7 6 3 0.43 
California 1611 752 494 0.31 
Colorado 244 201 144 0.59 

Connecticut 52 36 29 0.56 
Delaware 5 2 1 0.20 

D.C. 9 6 6 0.67 
Florida 3 0 0 0.00 

Georgia 7 2 2 0.29 
Hawaii 0 0 0 NA 
Idaho 21 21 18 0.86 

Illinois 48 27 21 0.44 
Indiana 12 7 7 0.58 

Iowa 0 0 0 NA 
Kansas 4 2 2 0.50 

Kentucky 10 9 9 0.90 
Louisiana 12 10 10 0.83 

Maine 7 5 5 0.71 
Maryland 31 20 18 0.58 

Massachusetts 10 3 3 0.30 
Michigan 31 10 10 0.32 

Minnesota 4 3 2 0.50 
Mississippi 1 1 1 1.00 

Missouri 14 10 10 0.71 
Montana 9 8 8 0.89 
Nebraska 1 1 1 1.00 

Nevada 190 141 129 0.68 
New Hampshire 2 1 1 0.50 

New Jersey 24 16 14 0.58 
New Mexico 50 34 30 0.60 

New York 38 25 22 0.58 
North Carolina 2 2 2 1.00 
North Dakota 5 5 5 1.00 

Ohio 17 8 8 0.47 
Oklahoma 15 10 9 0.60 
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Oregon 6 6 6 1.00 
Pennsylvania 40 24 14 0.35 
Rhode Island 7 2 2 0.29 

South Carolina 1 1 1 1.00 
South Dakota 12 10 9 0.75 

Tennessee 8 4 4 0.50 
Texas 181 79 55 0.30 
Utah 257 208 186 0.72 

Vermont 0 0 0 NA 
Virginia 3 3 3 1.00 

Washington 8 7 7 0.88 
West Virginia 0 0 0 NA 

Wisconsin 43 30 24 0.56 
Wyoming 23 23 22 0.96 
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2022 Sum all 
exceedance days 

Sum all 
exceedance 

days with 
smoke 

Sum all exceedance 
days with smoke 

that exceed 97.5th 
percentile 

Fraction of all 
exceedance days that 

have smoke and exceed 
the 97.5th percentile  

Alabama 1 1 0 0.00 
Alaska 0 0 0 NA 
Arizona 149 18 11 0.07 

Arkansas 5 2 2 0.40 
California 1165 166 68 0.06 
Colorado 87 16 11 0.13 

Connecticut 59 32 17 0.29 
Delaware 0 0 0 NA 

D.C. 3 3 1 0.33 
Florida 3 2 2 0.67 

Georgia 9 7 5 0.56 
Hawaii 0 0 0 NA 
Idaho 4 2 2 0.50 

Illinois 45 11 2 0.04 
Indiana 33 13 9 0.27 

Iowa 0 0 0 NA 
Kansas 7 4 3 0.43 

Kentucky 14 5 3 0.21 
Louisiana 6 4 3 0.50 

Maine 4 1 1 0.25 
Maryland 4 2 1 0.25 

Massachusetts 8 8 7 0.88 
Michigan 25 10 7 0.28 

Minnesota 0 0 0 NA 
Mississippi 5 5 5 1.00 

Missouri 10 5 3 0.30 
Montana 0 0 0 NA 
Nebraska 1 1 1 1.00 

Nevada 41 4 4 0.10 
New Hampshire 3 3 3 1.00 

New Jersey 9 4 4 0.44 
New Mexico 49 11 7 0.14 

New York 14 11 7 0.50 
North Carolina 6 6 2 0.33 
North Dakota 0 0 0 NA 

Ohio 34 21 20 0.59 
Oklahoma 41 33 27 0.66 
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Oregon 7 6 5 0.71 
Pennsylvania 17 11 8 0.47 
Rhode Island 6 5 5 0.83 

South Carolina 1 1 1 1.00 
South Dakota 2 1 1 0.50 

Tennessee 14 11 9 0.64 
Texas 172 82 52 0.30 
Utah 59 23 18 0.31 

Vermont 0 0 0 NA 
Virginia 1 1 1 1.00 

Washington 1 0 0 0.00 
West Virginia 0 0 0 NA 

Wisconsin 36 21 16 0.44 
Wyoming 0 0 0 NA 
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2023 Sum all 
exceedance days 

Sum all 
exceedance 

days with 
smoke 

Sum all exceedance 
days with smoke 

that exceed 97.5th 
percentile 

Fraction of all 
exceedance days that 

have smoke and exceed 
the 97.5th percentile  

Alabama 15 15 14 0.93 
Alaska 0 0 0 NA 
Arizona 186 30 20 0.11 

Arkansas 5 3 3 0.60 
California 1016 182 74 0.07 
Colorado 43 12 9 0.21 

Connecticut 63 60 56 0.89 
Delaware 15 15 11 0.73 

D.C. 8 8 6 0.75 
Florida 11 11 8 0.73 

Georgia 35 33 30 0.86 
Hawaii 0 0 0 NA 
Idaho 1 1 1 1.00 

Illinois 281 251 153 0.54 
Indiana 120 116 91 0.76 

Iowa 64 62 53 0.83 
Kansas 34 29 17 0.50 

Kentucky 50 50 41 0.82 
Louisiana 41 37 30 0.73 

Maine 0 0 0 NA 
Maryland 55 50 35 0.64 

Massachusetts 21 21 20 0.95 
Michigan 70 68 48 0.69 

Minnesota 67 60 59 0.88 
Mississippi 13 10 10 0.77 

Missouri 84 69 50 0.60 
Montana 0 0 0 NA 
Nebraska 13 12 7 0.54 

Nevada 48 2 1 0.02 
New Hampshire 4 4 4 1.00 

New Jersey 42 42 30 0.71 
New Mexico 12 3 2 0.17 

New York 46 44 43 0.93 
North Carolina 16 15 14 0.88 
North Dakota 36 36 36 1.00 

Ohio 73 68 43 0.59 
Oklahoma 73 57 47 0.64 
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Oregon 4 4 4 1.00 
Pennsylvania 83 83 69 0.83 
Rhode Island 14 14 14 1.00 

South Carolina 6 6 6 1.00 
South Dakota 38 31 24 0.63 

Tennessee 31 30 24 0.77 
Texas 426 291 167 0.39 
Utah 48 13 13 0.27 

Vermont 2 2 2 1.00 
Virginia 8 8 8 1.00 

Washington 3 2 2 0.67 
West Virginia 0 0 0 NA 

Wisconsin 214 209 158 0.74 
Wyoming 0 0 0 NA 
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