CRC Report No. AVFL-45

IMPACT OF THERMAL CONDITIONING ON BATTERY PACK EFFICIENCY AND ASSOCIATED LIFETIME RANGE AND FULLY BURDENED GHG REDUCTION: LITERATURE REVIEW

Final Report

December 2023

COORDINATING RESEARCH COUNCIL, INC.

5755 NORTH POINT PARKWAY * SUITE 265 * ALPHARETTA, GA 30022

The Coordinating Research Council, Inc. (CRC) is a non-profit corporation supported by the petroleum and automotive equipment industries. CRC operates through the committees made up of technical experts from industry and government who voluntarily participate. The four main areas of research within CRC are: air pollution (atmospheric and engineering studies); aviation fuels, lubricants, and equipment performance; heavy-duty vehicle fuels, lubricants, and equipment performance (e.g., diesel trucks); and light-duty vehicle fuels, lubricants, and equipment performance (e.g., passenger cars). CRC's function is to provide the mechanism for joint research conducted by the two industries that will help in determining the optimum combination of petroleum products and automotive equipment. CRC's work is limited to research that is mutually beneficial to the two industries involved. The final results of the research conducted by, or under the auspices of, CRC are available to the public.

LEGAL NOTICE

This report was prepared by University of Michigan as an account of work sponsored by the Coordinating Research Council (CRC). Neither the CRC, members of the CRC, University of Michigan, nor any person acting on their behalf: (1) makes any warranty, express or implied, with respect to the use of any information, apparatus, method, or process disclosed in this report, or (2) assumes any liabilities with respect to use of, inability to use, or damages resulting from the use or inability to use, any information, apparatus, method, or process disclosed in this report. In formulating and approving reports, the appropriate committee of the Coordinating Research Council, Inc. has not investigated or considered patents which may apply to the subject matter. Prospective users of the report are responsible for protecting themselves against liability for infringement of patents.

Impact of Thermal Conditioning on Battery Pack Efficiency and associated Lifetime Range and fully-burdened GHG Reduction

by

Anna G. Stefanopoulou (UM-Ann Arbor), Youngki Kim (UM-Dearborn) and Jingchen Ma (UM-Ann Arbor)

Executive Summary

Electric vehicle (EV) batteries still face significant challenges, such as a) aging at high temperatures that can be avoided by active battery cooling even when parked and b) performance degradation such as limited power availability and charge acceptance in cold temperatures that can be avoided with battery heating. These issues pose a particular hurdle in EV applications, impacting vehicle start-up, shutdown, and the maintenance of thermal conditions even while parked and not actively charging, especially in subzero temperatures.

The cold weather impact on battery performance can be minimized with battery thermal conditioning by a) trickle-heating batteries, or b) by preheating from low temperatures to a pre-specified temperature before vehicle operation. Most methods assume the energy for the preconditioning comes from the grid while the vehicle is plugged in, and a few articles consider draining the stored battery energy to pre-heat if grid energy is not accessible.

The literature presents various preheating methods that have been developed, including convective and conductive heating of individual battery cells or packs, resistance-based heating using thermal jackets, and self-heating through the cell's internal resistance and associated joule heating during the current draw. Since different preheating methods have their pros and cons, it is essential to understand what constitutes effective preheating strategy and quantify the range retention from onboard EV battery thermal conditioning systems or grid systems. The literature focuses on technology development with goals associated with customer satisfaction such as fast warm-up, seamless integration, low-cost implementation, and high-efficiency operation. The efficiency of the various methods is directly affecting the operational cost such as grid-charges or lost range, and is rarely connected with lifetime EV GHG.

Contents 1. Introduction	6
2. Preheating methods (Literature review of Journals and Conferences)	6
2.1 External preheating	7
2.1.1 Air preheating	7
2.1.2 Liquid preheating	
2.1.3 Heat pump preheating	10
2.1.4 PCM preheating	10
2.1.5 Heat pipe preheating	11
2.1.6 Resistance preheating	11
2.1.7 Electrothermal film preheating	
2.1.8 Peltier effect preheating	
2.2 Internal preheating	
2.2.1 Self-heating lithium-ion battery	
2.2.2 Constant Current / Constant Voltage (CC/CV) discharge	14
2.2.3 Direct Current (DC) preheating	15
2.2.4 Alternating Current (AC) preheating	
2.2.5 Pulse preheating	17
2.3 Combination of external and internal preheating	17
3 Industry applications of preheating including Patents and Websites	
4. Review of opinions expressed in publicly accessible blog	20
4.1 Comparison of 13 popular EV models on winter range loss [96][97]	20
4.2 Charging test 2022 in winter conditions by NAF[98]	
4.3 User experience discussion on battery preheating in some EV brand forums	
4.3.1 Chevy Bolt EV Forum [99]	
4.3.2 Tesla Motor Club[100]	
4.3.3 Kia EV Forum[101]	
4.3.4 BMW i4 Forum [103]	
4.4 Observation of energy consumption of preheating in Tesla	
4.4.1 Tesla Model 3 charging losses in Tom Moloughney's blog[105]	
4.4.2 Heating the battery until 55 °C before and during the DC charging in Tesla Motors Club[106]	
5 Summary table of all preheating methods	
6 Comparisons and Conclusions	29
6.1 Comparison methodology for bar chart	
6.2 Comparison methodology for radar map	
6.3 Conclusion	

7 Future work: Methodology for Assessing Lifetime GHG Impact of Thermal Preconditioning	32
Reference	33
Appendix	38

1. Introduction

Lithium-ion batteries have become the epitome of rechargeable technology, benefiting from remarkable advancements in material science over the last decade. These advancements have resulted in increased energy and power density, high efficiency, and relatively long cycle life. Despite the accelerating adoption of EVs, the cold weather performance and the hot-weather battery aging are still under intense research.

The goal of this literature review is to provide comprehensive information about battery thermal conditioning, with a focus on four main aspects: hardware, software, user patterns, and sensitivities to environmental factors. In this study, a comprehensive literature search was conducted using various sources including journals, conference papers, patents, news articles, and blogs to collect relevant publications on the topic of preheating methods and preconditioning for electric vehicles (EVs). Key search terms such as "preheating methods," "preconditioning," and "EV" were utilized to retrieve relevant papers from reputable databases such as Google Scholar, IEEE Explore digital library, Elsevier, and China National Knowledge Infrastructure. Additionally, to gather examples of practical implementation of preheating processes in the industry, sources such as the United States Patent and Trademark Office and the official websites of electric vehicle brands were consulted. These sources provided valuable insights into real-world industrial applications of preheating methods in EVs.

The literature search yielded a total of 110 papers, patents, articles, and blogs that met the inclusion criteria and addressed the topic of interest. Furthermore, through the examination of various EV brand websites, it was found that at least 11 brands have incorporated preheating processes in their electric vehicles. These brands serve as practical examples of the implementation of preheating techniques in the EV industry. These papers, articles and patents were thoroughly reviewed and analyzed to extract relevant information regarding preheating methods, their benefits, limitations, and potential industrial applications. Blogs also serve as a valuable augmentation to our comprehension of preheating technology from an alternate perspective. By tapping into the viewpoints of vehicle owners and electric vehicle enthusiasts, these platforms offer insights into the transformative impact that preheating technology engenders in daily routines. These narratives show the tangible alterations that preheating technology can be improved to better suit users' needs, thus fostering usability and overall user satisfaction.

The remainder of this report is organized as follows: Section 2 elaborates on the preheating methods relevant to automotive applications that are currently being used and explored. It provides details not only about their performance, such as heating rate, but also about the considered battery type, chemistry, geometry, and energy consumption. Section 3 provides a summary of the typical use of preheating methods in the industry based on the information from patents and websites with schematics. Section 4 provides the various views from blogs. Section 5 summarizes the impact of the preheating methods on performance, durability, and environmental effects, facilitating easy comparison. Lastly, Section 6 presents the comparison of those preheating methods and future research trends, concluding with remarks.

2. Preheating methods (Literature review of Journals and Conferences)

Numerous studies have contributed to the development and refinement of preheating techniques in the context of electric vehicles. These techniques can be broadly classified into two categories based on the source of heat: external preheating and internal preheating. The former involves utilizing heat from an external source, while the latter focuses on utilizing heat generated within the battery. Moreover, researchers have explored the possibility of combining external and internal preheating methods to leverage the unique benefits offered by each approach. This hybrid approach aims to optimize the preheating process by harnessing the advantages of both external and internal heat sources. The following diagram visually

represents the detailed categorization of these techniques to provide a comprehensive overview of the classification of preheating methods.

Figure 1 Categorization of preheating methods

2.1 External preheating

External preheating refers to heating the battery from the outside. Many factors affect the external heating performance; in addition to the different forms and structures of the heating method itself, the material, geometry, and materials of the battery will also affect the result of preheating.

2.1.1 Air preheating

In the context of air preheating, the heater used to warm the air can be powered either by an external power source or by the battery itself, as illustrated in Fig. 2. Upon entering the heater chamber, the air undergoes a warming process facilitated by the heater. Subsequently, a fan is employed to blow the warmed air towards the battery chamber, which raises the temperature of the battery through the heat transfer from the warmed air.

The research works presented in [1]-[6] discuss the structure of air preheating, the rate of air preheating, energy consumption, and the impact on the battery's performance and degradation. In [1], the authors constructed a completed model, including a battery system and an air heater as well as and powertrain. They designed the experiment that tested the vehicle in 4 cases to compare performance after preheating. They preheated the battery from -20°C to 25°C at a rate of 0.9°C/min and observed greater mileage induced by preheating. The authors in [2] applied an electrochemical-thermal (ECT) coupled model and powered the heater by the battery itself. After preheating the battery from -20°C to 20°C in 85 seconds with 0.4 Ω heater resistance, the battery capacity loss was about 7%. However, the authors pointed out that this preheating method is not suitable for large-size cells because of the large temperature gradient across the depth of batteries caused by long distances for heat conduction inside cells. In [5], the authors used a PHEV powertrain model where a convective heating function was used to raise the battery temperature from -20°C to 13°C in 714 seconds. With the preheating process, the battery degradation was reduced from 1.647×10^{-4} to 0.336×10^{-4} in which the battery capacity was normalized to 1. Table A.1 provides a summary of papers that have been found using air-preheated batteries. Careful analysis and optimization of this

approach are crucial for enhancing the effectiveness of the air preheating system in the context of battery heating applications.

Figure 2 Schematic of air preheating method [7]

Air preheating represents a cost-effective and straightforward solution that can be readily implemented in the electric vehicle (EV) industry. However, this approach may lead to increased noise levels due to fan operation, and it can pose challenges in maintaining consistent temperatures for larger battery cells. Notably, esteemed automotive manufacturers such as Honda and Toyota have successfully incorporated air preheating technology into their vehicles [8][9].

2.1.2 Liquid preheating

Liquid preheating methods can be categorized into two main types: non-contact liquid preheating and immersion liquid preheating. In non-contact liquid preheating, heat is transferred to the battery without direct physical contact between the heating medium and the battery. On the other hand, immersion liquid preheating involves the immersion of the battery in an electrically insulating working fluid to facilitate heat transfer. Figures 3 and 4 illustrate the typical structures of the two types of methods.

Table A.2 summarizes the research work in [10]-[22] where liquid-preheating is used for batteries. In [10], a liquid immersing preheating system was designed using COMSOL. The authors reported a heating rate of 4.18°C/min, and the temperature difference among cells in the pack was under 4°C. On the other hand, the authors in [12] used a double-direction liquid preheating system and reported a higher heating rate of 6.7°C/min and a worse temperature difference of 8.8°C. The authors in [13] conducted a different category of liquid cooling. Three sides and an extra cooling plate were added in the middle of the battery pack to perform the preheating function. They used COMSOL to design their battery heat transfer model and structure model, which was verified by a battery charging experiment, acquiring preheating battery from -

20°C to 15°C in 1740 s and less than 5°C of temperature difference of battery pack when the flow rate of liquid was greater than 0.8 m/s. The research work in [14] reported battery fade ratios with and without preheating: 0.015% and 0.023% in real vehicle testing, respectively.

Some factors could influence the performance of liquid preheating. The choice of heat transfer fluid and its characteristics play a critical role in determining the efficiency of the preheating process. Additionally, the number of batteries being heated simultaneously also affects the rate of preheating [10]. Therefore, the selection of an appropriate heat transfer fluid and careful consideration of the number of batteries are crucial parameters that significantly impact the rate of preheating. In summary, the thermal conductivity, heat capacity, and flow rate of the heat transfer fluid, along with the number and arrangement of the batteries, need to be optimized to ensure efficient and uniform preheating.

Figure 3 Structure of immersion liquid preheating[10]

Figure 4 Structure of non-contact liquid preheating [11]

Compared to air preheating, liquid preheating offers a higher temperature rising rate. However, this method requires additional equipment, which can introduce complexity and increase costs. One of the potential drawbacks of liquid preheating is the risk of liquid leakage. Therefore, proper design and implementation measures must be taken to ensure the safety and reliability of the system. Nonetheless, major players in the

EV industry, such as Tesla[23] and Volt[24], have integrated liquid preheating technologies into their products. Xpeng has reported exceptional results in Xpeng G9, achieving a range of up to 702km [25].

2.1.3 Heat pump preheating

The exceptional efficiency of heat pumps can be attributed to their ability to extract heat from the surrounding environment, even at lower temperatures, and transfer it to the desired location. This thermodynamic process enables heat pumps to achieve higher energy efficiency ratios than traditional heating methods. Table A.3 provides a summary of papers that have been found using heat pump preheating methods.

Heat pump preheating can be up to about three or four times more efficient than other forms of heating [26]. The versatility of heat pump technology allows for its application in both cabin and battery heating. However, it is important to note that heat pump preheating may have comparatively slower heating rates, which was 0.3° C/min [27]. Hence, it is predominantly employed for cabin heating purposes rather than rapidly heating a battery pack. Notably, the authors in [28] calculated the emission of CO₂, which was 6g/km, using Audi Q7 as an example. However, this calculation was based on the extending driving range due to the application of a heat pump for cabin heating.

Notably, the heat pump system exhibits remarkable thermal energy generation efficiency, capable of producing 3kW of heat per 1 kW of work. This high efficiency indicates its potential to enhance overall energy utilization and increase driving range in EVs [28][29]. Several automakers, including Tesla, BYD, Hyundai-Kia, and Audi, have included a heat pump system as a part of their battery thermal management systems [30][31][32][33].

2.1.4 PCM preheating

Phase Change Materials (PCMs) are a class of materials known for their capacity to store and release thermal energy through the process of phase change. By leveraging the heat storage capabilities of PCMs, it is feasible to transfer heat to a battery, thereby facilitating its heating. In practice, the battery is integrated and attached to the PCM. This configuration enables efficient heat transfer between the PCM and the battery.

The performance of PCM in preheating applications is influenced by several factors, including cooling, the latent heat capacity of PCM, and thermal conductivity [34]. Table A.4 summarizes the heating rate and differences in battery found from the research works in [35][36] where a PCM preheating method was used. In [35], a device designed for triggering the solidification of the subcooled PCM to release heat to the battery introduced a higher heating rate of 7.5°C/min from 5°C to 20°C compared with 37 mins for the same temperature range with PCM without subcooling. The PCM with subcooling also increased discharge capacity and power up to 9.87% and 7.56%, respectively. The authors in [36] combined the heat sheet with PCM to preheat the batteries. The heat sheet was powered by an external power source and energy consumption was 2000-2500 J/°C. The heating rate was 0.5-1°C/min when the temperature range of the heat sheet was 40°C to 60°C. At the same time, the heat sheet helped to ensure the low temperature difference among cells in the battery model, which was only 2.82°C.

Despite its low cost, simplicity, the absence of the need for additional energy input and the potential to extend battery life [37][38], PCM preheating is currently limited to laboratory experimentation due to several challenges. These challenges include concerns such as increased vehicle weight and low thermal conductivity. Further research and development efforts are required to address these limitations and advance PCM preheating technology beyond its current laboratory stage.

2.1.5 Heat pipe preheating

Heat pipe preheating utilizes the fundamental principles of evaporation and condensation of an internal fluid to facilitate efficient heat transfer. Figure 5 illustrates the structure of heat pipe preheating, providing a visual understanding of its configuration.

Figure 5 Heat pipe preheating demonstration[39]

Table A.5 summarizes the research works in [39]-[46] where heat pipe preheating is used. The authors in [39] used the external Direct Current (DC) source to power an L-shape heat pipe which was inserted in the cell gap, which realized to heat a battery from -15°C to 0°C in 1200 s with 20°C hot fluid and 300 s with 40°C hot fluid. Notably, the authors in [46] experimented with preheating based on a U-shape Micro heat pipe array (MHPA) and Polyimide (PI) electric heating film on the upper surface of each layer of batteries. Their work showed that the heat pipe may induce higher temperature differences in both battery and module levels. In the battery level, the temperature differences were 1.06°C and 0.97°C with/without a heat pipe, respectively. It was similar in the module level that the temperature differences were 2.35°C and 1.97°C with/without a heat pipe, respectively.

Heat pipe preheating has the potential to integrate both cooling and heating functions, despite their inherent contradictory nature [43][46]. However, during the preheating process, certain prerequisites must be met to initiate the necessary start conditions, ensuring that the coolant temperature reaches a specific predetermined value [40]. It is noted that temperature differences exist along the heat conduction direction of the heat pipe due to its unique structural configuration. These temperature variations may introduce localized thermal inconsistencies that need to be carefully considered and managed in the design and implementation of heat pipe preheating systems [7].

2.1.6 Resistance preheating

Resistance preheating typically utilizes either Positive Temperature Coefficient (PTC) elements or metal resistance elements to generate heat. The energy required for this process can be supplied from an external power source or the battery itself. Figure 6 shows a design of the resistance preheating method, where the PTC resistance band is embedded in the slotted aluminum plates placed between the sides of cells. The heat produced by the PTC elements can be rapidly transferred to the battery, facilitating preheating.

Figure 6 Schematic diagram of a battery-powered resistance heating system [47]

The authors in [48] experimented with PTC resistance preheating in two power cases: external power source and battery as supplying power. The heating rate was $0.504 \, ^{\circ}C/min$. The temperature difference among cells in the pack was $3.506^{\circ}C$ in the heating range of $-20^{\circ}C$ to $0^{\circ}C$. The preheating process consumed about 13% of total pack energy when resistance was powered by batteries. Zhang et al.[49] also reported a temperature difference which was $5.2^{\circ}C$ in the situation of the grid as a power source when the PTC was in the bottom of the pack. More details can be found in the summary of the literature [48][49][50] in Table A.6.

Resistance preheating offers advantages over air and liquid preheating, including a shorter heat transfer path and reduced heat loss. While resistance preheating offers a straightforward and cost-effective approach to warming the battery, it is important to note that this method may not be optimal for low initial State-of-Charge (SOC) conditions, when relying solely on battery power. Moreover, the limitations of resistance preheating include its potential negative impact on battery health and its compatibility with certain battery formats.

2.1.7 Electrothermal film preheating

Electrothermal film is an electric heating element that directly converts electrical energy into thermal energy. It can be directly applied onto the surface of each battery cell, facilitating effective heat transfer. As illustrated in Fig. 7, electrothermal films can be connected in parallel inside each battery module.

Figure 7 Sketch of a battery module with the cells and Electrothermal film in parallel connection[51]

Table A.7 summarizes the research works in [52]-[55] where electrothermal film was used for preheating. In [52], authors compared a symmetric polyimide (PI) electric heating film and a spiral PI film attached on

both sides of the battery with experiments and simulation using an electro-thermal model. Results show that a symmetric PI film has more potential to ensure the uniformity of temperature distribution. However, higher power of heating film can cause increased power consumption and worse temperature differences. In [55], a heating rate of 2.67°C/min was achieved when the wide-line metal film was powered by the battery itself. After preheating, the voltage and power performance of the battery pack was improved at the 1 C rate. The discharging capacity was restored to almost its total room-temperature level and the charging capacity was restored to half its room-temperature level.

Electrothermal film preheating is simple and cost-effective, but the use of electrothermal film may introduce temperature gradients within the battery. The temperature difference between the surface of the battery cell in contact with the film and the internal core of the cell is a noteworthy consideration. These temperature gradients can potentially impact the overall thermal performance and uniformity. Nissan has successfully incorporated electrothermal film preheating into their vehicles [56].

2.1.8 Peltier effect preheating

The Peltier effect is a phenomenon observed when a current flows across the junction of two metals. When the current flows in one direction, heat is absorbed at the junction, and when the current is reversed, heat is liberated. The transition between hot and cold terminals is determined by the direction of the currents applied, and the intensity of the effect is influenced by the amplitude of the current.

In [57], when applying the Peltier effect preheating method on a real vehicle, the heating rate was 1° C/min for the frontal battery box. However, for the rear battery compartment, the heating rate was 0.6° C/min. Due to heat lost to ambient at the hose systems, the temperature difference of 8° C in these two parts was observed. More information can be found in Table A.8.

Peltier-effect preheating offers a simple and cost-effective solution. However, it is important to acknowledge the temperature differences between the region adjacent to the Peltier-effect device and the distant part [57].

2.2 Internal preheating

Internal preheating methods also have demonstrated promising performance in the context of electric vehicle preheating. Several notable approaches have been proposed and investigated, including self-heating lithium-ion batteries, CC/CV discharging, DC preheating, AC preheating, and pulse preheating.

2.2.1 Self-heating lithium-ion battery

This method involves a structural modification of a battery, wherein the battery is securely inserted into a configuration comprising nickel foils with two attached tabs. These nickel foils serve a dual purpose: they generate heat for the battery and act as internal temperature sensors to monitor thermal conditions. Figure 8 illustrates a schematic representation of the newly proposed Self-Heating Lithium-Ion Battery (SHLB) structure.

Figure 8 Working principle of rapid self-heating Li-ion battery[58]

Zhang and Wang et al. contributed a lot to self-heating lithium-ion batteries. They inserted two nickel foil sheets in parallel within the 2-sheet cell and preheated the battery from -20°C to 0°C in 12.5s with a capacity consumption of 2.9% [58] compared to one nickel foil sheet in 19.5s with a capacity consumption of 3.8% [59]. They tested the durability of this kind of battery and found that the cell capacity fade was less than 7.2% after preheating at 1 C rate CC-CV charging. A summary of the papers [58]-[64]about preheating methods using self-heating is provided in Table A.9.

The heating efficiency of the self-heating lithium-ion battery is close to 100%. However, temperature gradients are observed across the thickness of a battery cell, which can be addressed by incorporating additional nickel foils within the cell structure. Including nickel foils proves to be an effective solution for mitigating temperature variations. However, determining the optimal number of nickel foils to achieve the desired results remains critical. It is important to note that inserting nickel foils requires modifying the battery structure, which can be costly and risky. Therefore, this approach is currently limited to laboratory testing and cannot be readily applied to existing commercial batteries.

2.2.2 Constant Current / Constant Voltage (CC/CV) discharge

The heat generated in the CC/CV preheating method comes from the internal and polarization resistance. Figure 9 illustrates the voltage, current and temperature evolution during CC/CV discharge.

Figure 9 Working principle of rapid self-heating Li-ion battery [2]

CC/CV discharging preheating method does not require an external power supply. However, this method is typically suitable for high SOC situations where the battery has a relatively high energy level. Table A.10 summarizes the heating rate and differences in batteries found in [2][66][67][68] about preheating using CC/CV discharging.

2.2.3 Direct Current (DC) preheating

DC preheating is a method employed to warm the battery using direct current (DC) electrical energy. This direct transfer of electrical energy into heat enables efficient conversion and utilization of the energy input, resulting in a high temperature rising rate. Figure 10 illustrates the temperature evolution, heating power, current and voltage of the battery, and capacity loss when applying DC preheating.

As summarized in Table A.11, compared to other preheating methods, DC preheating offers notable advantages, including a high rate of temperature rise which is 18.67°C/min from -30°C to 2.1°C[69] and ease of implementation[70]. However, one of the potential drawbacks associated with this method is the risk of lithium precipitation [70], which can result in reduced battery capacity and safety concerns. The authors in [70] showed that the state of health (SOH) dropped to 0.7 at 81st preheating cycle due to cracks in the electrode material caused by lower discharge voltage and higher polarization in DC preheating. Consequently, heating the electrolyte with DC currents is considered impractical and excessive gassing may occur before significant heating is achieved.

Figure 10 Heating results of DC preheating[69]

2.2.4 Alternating Current (AC) preheating

AC preheating involves using alternating current (AC) electrical energy to heat a battery. Fig.11 provides the AC curve profile and battery temperature evolution. A summary of the research works in [71]-[83] that have been found using AC preheating is provided in Table A.12. The heating rate dropped in the range of 1-13.33°C and the temperature difference among cells in the pack dropped in the range of 0.3-2.9°C.

Figure 11 Heating simulation results with constant frequency and variable amplitude of sinusoidal AC (SAC)[75]

AC preheating presents advantages over DC preheating in terms of battery health and voltage protection. The research works in [74]- [77] showed that irreversible damage to a battery and obvious an detrimental effect on the battery health was not observed when applying AC, even in the low frequency range. By imposing limitations on the amplitude and frequency of the AC signal, it is possible to ensure that the voltage remains within safe operating conditions. Furthermore, the heating circuit required for AC preheating is simple, although it often necessitates external power sources. The development of onboard devices that enable AC preheating without the need for external power supplies would enhance the

practicality and autonomy of AC preheating systems, facilitating their widespread implementation in battery heating applications.

2.2.5 Pulse preheating

Pulse preheating is a method employed to warm a battery by applying short pulses of electrical energy to warm a battery, as shown in Fig. 12.

Figure 12 Heating results with pulse currents [70]

Pulse preheating offers the advantage of causing low damage to the battery during the heating process. The authors in [84] showed that the battery only had a capacity loss of 0.035% after 30 heating cycles from - 20°C to 5°C. In [85], it was reported that after 10 preheating cycles, the initial capacity of the cell was changed by only 0.4%. However, implementing pulse preheating can also introduce challenges related to complex equipment and cost. Table A.13 summarizes the research works in [84]-[89] where pulse preheating is used.

2.3 Combination of external and internal preheating

The combination of internal preheating and external preheating represents a promising approach in the field of battery heating. This method leverages the benefits of both internal and external heat sources to achieve a more effective and efficient battery heating process. Furthermore, this method can lead to higher temperature rising rates with a range of 0.352°C/min to 16°C/min and more uniform temperature distributions. Table A.14 summarizes the heating rate and differences in battery found from [47][90][91][92] about the method combining external and internal preheating methods.

3 Industry applications of preheating including Patents and Websites

Electric vehicles (EVs) experience a drop in range and longer charging times during winter conditions [93]. Preheating plays a significant role in enhancing the winter driving range of EVs, and its implementation has been successfully achieved in the automotive industry. Investigating the specific requirements, challenges, and outcomes of preheating in industrial applications and exploring the utilization of preheating methods in the industry offer valuable insights that can contribute to the improvement of preheating techniques tailored for real-world EV applications, thereby enhancing the overall performance of EVs. The following are typical applications of preheating methods utilized in EVs.

Table 1 Summary of specific applications of preheating methods in electric vehicles

Heating method in	Source (patents, blog, website)	Schematics
industry application		
Air preheating in Honda Clarity BEV and Toyota: PTC heater for air preheating	[8] <u>https://carswithplugs.com/2018/03/17/electric-car-heaters-honda-clarity/</u> [9] Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing. In Seventeenth Annual Battery Conference on Applications and Advances,2002. https://doi.org/10.1109/BCAA.2002.986408	Hardware needed for heat pump 16 15 16 10 10 22 21 21 22 22 21 22 22
Liquid Preheating Honda Clarity PHEV: The heater will heat the coolant and flow it through the heater core in the cabin	[8] <u>https://carswithplugs.com/2018/03/17/elec</u> <u>tric-car-heaters-honda-clarity/</u>	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Liquid Preheating in Tesla and GM: The preheating system is based on a ribbon shaped	[23] <u>Tesla or GM: Who Has The Best Battery</u> <u>Thermal Management? (insideevs.com)</u>	

cooling tube that		Patent application number: 20110212356
snakes through the battery pack		
Liquid Preheating in Volt: Containing a fluid heater to keep the battery temperature above the outside temperature s in cold climates	[24]The Voltec System—Energy Storage and Electric Propulsion. In Lithium-Ion Batteries,2014 <u>https://doi.org/10.1016/B978-0-444-59513-</u> <u>3.00008-X</u>	Cooling fin enables effective heat exchange Cooling fin enables effective heat exchange
Heat pump preheating in Tesla, BYD, Hyundai and Audi	[30]Optimal source electric vehicle heat pump with extreme temperature heating capability and efficient thermal preconditioning. U.S. Patent, 2021 <u>https://insideevs.com/news/452464/tesla-</u> <u>model-y-heat-pump-system-details/</u> <u>https://teslaownersonline.com/attachments/tes</u> <u>la-heat-pump-patent-pdf.34276/</u> [31] <u>https://pushevs.com/2021/09/20/introduci</u> <u>ng-the-latest-byd-e-platform-3-0/</u> [32] <u>https://www.evspecifications.com/en/ne</u> <u>ws/fcd02e7</u> [33] <u>https://www.audi-</u> <u>mediacenter.com/en/emotive-design-and-</u> <u>revolutionary-technologythe-audi-e-tron-gt-</u> <u>13655/battery-and-thermal-management-</u> <u>13784</u>	RADIATOR RADIATOR DRIVE UNIT PCS
Resistance Preheating in Nissan LEAF and Mitsubishi i-MiEV The main cabin heater systems employed electrical resistive	[56]Winter happens: The effect of ambient temperature on the travel range of electric vehicles. IEEE Transactions on Vehicular Technology, 2016 https://doi.org/10.1109/TVT.2016.2544178	N/A

Electrother	[94]The state of the art on preheating lithium-	Electrothermal jacket
mal jackets	ion batteries in cold weather. Journal of	
in Chery	Energy Storage, 2020	
Auto:	https://doi.org/10.1016/j.est.2019.101059	
A resistive		
heater		
wraps		
around each		Battery
battery cell:		
restore the		
battery to		
the normal		
working		
temperature		
range in		
about ten		
minutes		
with		
uniform		
temperature		
distribution		
distribution.		
Pulse	[95]https://fuelcellsworks.com/news/chinas-	N/A
preheating	first-mass-produced-hydrogen-electric-	
in Changan	vehicle-comes-from-changan-dark-blue/	
Auto		
High-		
frequency		
pulse		
heating		
technology		
with		
alternating		
current		

4. Review of opinions expressed in publicly accessible blog

For a comprehensive review of the electric vehicle preheating process, we have not only reviewed academic papers, official websites, and patents but also extensively gathered insights from blogs and forums. By incorporating information from these blogs and forums, we aim to capture diverse opinions and experiences related to preheating methods for electric vehicles. These sources provide valuable insights into real-world scenarios, user feedback, and practical challenges encountered during preheating implementation, complementing the findings from academic and industrial research.

4.1 Comparison of 13 popular EV models on winter range loss [96][97]

Recurrent conducted a comprehensive data collection encompassing 7000 vehicles, representing 13 distinct EV models. This work aimed to comprehensively examine the performance of EVs under winter conditions. The factors influencing winter range include all real-world variables, such as uneven terrain, variable driving speeds and patterns, and calendar aging in vehicle batteries. However, a comparative analysis of range reduction still offers insights into the diverse strategies employed by distinct EV models to confront cold weather conditions.

Figure 13 Winter range for 13 popular EV models

Presented in Fig. 13, *Recurrent*'s findings outline the winter driving mileage of the 13 EV models. Among these models, the Audi e-tron serves as a notable example, showcasing a mere 8% reduction in driving mileage. This performance can be attributed to the e-tron's innovative heat pump system, a mechanism for interior cabin heating without undue depletion of the high-voltage battery. Additionally, this system harnesses the capacity to recover and channel up to 3 kW of waste heat generated by the vehicle's motor. Similarly, Jaguar I-pace has demonstrated a 3% estimated loss owing to its heat pump system. Tesla has also integrated a heat pump system into their preconditioning technologies. With a more sophisticated heat pump system to help control battery temperature, Tesla Model X and Y only experienced a 15% reduction in verified range during freezing temperatures. In contrast, the Tesla Model 3, which utilizes waste heat from its motor to warm the battery, exhibited a relatively higher range loss of 17%. Volkswagen ID.4, despite featuring remote preconditioning in conjunction with a resistive cabin heater in Volkswagen ID.4 resulted in a discernible drain from battery power.

This comparison of *Recurrent* underscores the significance of effective thermal management systems, especially heat pumps, in guaranteeing optimal electric vehicle performance during winter conditions. The varying outcomes across different models emphasize the importance of selecting and designing appropriate preconditioning technologies to enhance overall performance in cold climates.

4.2 Charging test 2022 in winter conditions by NAF[98]

In 2022, the *Norwegian Automobile Federation* (NAF) conducted a comprehensive test, presenting an overview of the charging characteristics, maximum power, and charging speed of 31 EVs during winter

conditions. Moreover, NAF provided calculations of the driving range for each vehicle after 25 minutes of charging in winter conditions. Notably, this year's test revealed that several electric cars now offer the option of preheating the battery before fast charging, a technology previously limited to Tesla and Porsche models. Other EV brands, such as the Audi e-tron GT, BMW i4 M50, Mercedes Benz EQS, Polestar 2 LR Single Motor, and Volvo C40 Recharge, have also integrated this smart function into their vehicles.

The test results demonstrated the substantial advantages of preheating the battery prior to fast charging, particularly in low temperatures, in ensuring rapid charging. The Porsche Taycan 4 Cross Turimos and the Audi e-tron GT emerged as the top performers in terms of the fastest charging under winter conditions. These vehicles managed to charge from 4% to 80% capacity in approximately 20 minutes, as shown in Fig.14.

Charging test: Audi e-tron GT

20 min charging time measured in summer 2021 (3-80%)
19 min charging time measured in winter 2022 (9-80%)

Charging test: Porsche Taycan 4 Cross Turismo ☆ 18 min charging time measured in summer 2022 (6-80%) 20 min charging time measured in winter 2022 (4-80%)

Figure 14 Test results of Porsche Taycan 4 and Audi e-tron GT

This test also calculated the driving distance achievable after charging for 25 minutes. The Tesla Model 3 Long Range yielded a result of 368 kilometers from a 25-minute charging session, securing the top position. In second place came the Mercedes Benz EQS, with a range of 343 kilometers, which can be seen in Fig. 15.

Charging Test: Tesla Model 3 Long Range (2022)

33 min charging time measured in winter 2022 (5-80%)

* 368 km range after 25 minutes of charging.

Test of charging: Mercedes-Benz EQS 580 4MATIC

: 32 min charging time measured in summer 2022 (6-80%)

32 min charging time measured in winter 2022 (5-79%)

* 343 km range after 25 minutes of charging.

Figure 15 Test results of Tesla Model 3 and Mercedes-Benz EQS

As the EV market continues to evolve, the integration of preheating technology into more vehicle models is expected to further advance charging capabilities and bolster the overall performance and user experience of electric vehicles during the winter season.

4.3 User experience discussion on battery preheating in some EV brand forums

In addition to the test results, discussions among EV owners in the forum on battery preconditioning are worth paying attention to. These discussions are mainly about the necessity and practical benefits, as well as the energy expenditure and sources of thermal preconditioning.

4.3.1 Chevy Bolt EV Forum [99]

The Chevy owner community engaged in a discussion regarding the necessity of battery preheating, highlighting considerations of this function's energy efficiency and practical impact. Owner *PLP* posited that preheating batteries is wasting energy and is inconsequential, primarily due to the argument that the battery's temperature would inevitably return to ambient conditions once the vehicle is exposed to its surroundings. However, owner *Arob* had an alternative viewpoint. *Arob* extensively used battery preconditioning on cold mornings to drive comfortably. Other owners also emphasized that warming up the battery before driving off would contribute to an extended driving range, although disregarding the expense of additional energy consumption.

4.3.2 Tesla Motor Club[100]

Tesla owners shared their insights on the value of preconditioning before fast charging. They reached a consensus that preconditioning plays a pivotal role in the supercharging processes, despite its significance being contingent upon temperature conditions. Member *avs007* introduced the concept of "cold gating", which can impede fast charging in cold conditions. Following the implementation of preconditioning and the temperature of the battery rising above 35 °C, Tesla Model 3 exhibited the highest charging speeds during Bjorn's testing. However, some individuals also pointed out that if monetary considerations outweigh time concerns, it is a judicious choice to avoid thermal preconditioning before charging due to the energy consumption associated with the preconditioning to prevent detrimental effects on battery lifespan. Their perspective underlined the potential formation of dendrites and other undesirable anomalies if batteries undergo rapid charging at low temperatures.

4.3.3 Kia EV Forum[101]

Certain Kia EV models have been equipped with battery preconditioning functionality. To understand the working principles and the influence of preconditioning, and to substantiate a conjecture that battery preconditioning works more effectively without cabin preconditioning, *Alexw* conducted a road trip test. Following the requirements of preconditioning to start outlined in Kia's document[102], the battery preconditioning function is selectively engaged when the battery's temperature hovers beneath 21 °C, and the State of Charge (SOC) of batteries surpasses 24%. Therefore, *Alexw* chose the mild temperature conditioning. The outcomes revealed that it took approximately 25 minutes to preheat the battery from 14 °C to 23 °C, irrespective of cabin preconditioning activation. However, a divergence happened in energy consumption. The scenario involving cabin preconditioning recorded a higher energy consumption of 2.4 kWh, compared to the 1.6 kWh consumed in its absence. This difference stemmed from the operation of the heat pump system, which would consume the energy of batteries.

4.3.4 BMW i4 Forum [103]

BMW i4 community engaged in a discussion concerning the energy source for battery preconditioning. *Mikeyf79* thought preconditioning is designed to draw power from an external power source, such as a wall socket, especially when the SOC of high voltage batteries is low. According to the information found in BMW USA News[104], BMWi4 has been equipped with a heat pump system that is assisted by a pair of

powerful continuous-flow heaters, each capable of delivering 9 kW of heating power. A query arose within the owner community regarding the adequacy of power sourced from level 2 charging stations to effectively meet the energy requirements for preconditioning, suggesting that under specific circumstances, the high voltage batteries might indeed participate in the preconditioning process. However, the associated capacity consumption of the battery would be negligible, which was proved by the experience of certain owners.

4.4 Observation of energy consumption of preheating in Tesla

Addressing the energy consumption associated with battery heating becomes critical for automakers and charging infrastructure providers. This is also why we have included information about the energy consumption of various preheating methods from the reviewed papers. By adopting more energy-efficient heating methods and optimizing heating processes, the industry can mitigate the financial burden on users and improve the overall charging experience.

4.4.1 Tesla Model 3 charging losses in Tom Moloughney's blog[105]

Tom's observation regarding the discrepancy in the amount of electricity charged between the in-car screen and the charging station screen during the charging process of his 2021 Tesla Model 3 in New Jersey raises pertinent concerns regarding charging efficiency and potential charging losses. Subsequent analysis by Tom indicates that the thermal management system, designed to optimize battery performance during DC fast charging through preheating or cooling, appears to be a primary contributor to charging losses, whereby a portion of the energy intended for charging the battery is diverted for heating or cooling purposes.

4.4.2 Heating the battery until 55 °C before and during the DC charging in Tesla Motors Club[106]

The blogger's analysis highlights a critical observation regarding the energy consumption attributed to battery heating, amounting to 4 kW. This persistent heating practice leads to an additional 10% tax on the energy bill for users, indicating a potential financial burden for EV owners. Notably, the continuous battery heating appears to contribute to the discrepancy observed between supercharger billing and in-car billing, as previously discussed by Tom Moloughney.

5 Summary table of all preheating methods

A comprehensive analysis of various preheating methods from the extensive collection of papers, articles, patents and blogs has been conducted, identifying their respective advantages and disadvantages. Furthermore, the impact of preheating methods on battery performance, including factors such as efficiency, charging time, and overall battery health, has been meticulously examined. In parallel, the environmental implications of preheating methods have been considered, with a focus on their potential effects on greenhouse gas emissions and overall sustainability. Finally, the practical application of preheating methods in the industrial sector has been included.

Based on the comprehensive analysis and review of the collected papers, it is evident that the preheating process holds significant potential to enhance the driving range of vehicles operating in cold climates while simultaneously reducing charging time. Through the meticulous adjustment of preheating parameters and optimization of the preheating method's structure, coupled with the exploration of advanced control algorithms, a rational preheating process can be achieved, resulting in improved battery performance and reduced degradation rates.

However, it is worth noting that the existing degradation models predominantly employed in the analyzed papers are primarily empirical in nature. These models lack a comprehensive understanding of the underlying physical processes such as lithium plating and solid electrolyte interphase (SEI) growth. The

incorporation of these physical phenomena into degradation models is an area that warrants further research and development.

Furthermore, the current literature provides limited insight into the environmental benefits of preheating processes in terms of greenhouse gas emissions. While the advantages of preheating methods for driving distance and charging time have been extensively explored, the potential positive impact on reducing greenhouse gas emissions has not been extensively addressed in the reviewed papers. Therefore, future studies should consider evaluating the environmental implications and quantifying the potential reduction in greenhouse gas emissions associated with the implementation of preheating processes.

In conclusion, the findings from the collected papers emphasize the potential of the preheating process in enhancing driving range and reducing charging time. However, further research is required to develop physically based degradation models and comprehensively assess the environmental benefits of preheating methods in terms of greenhouse gas emissions. This will contribute to the advancement and optimization of preheating techniques, ensuring improved battery performance, reduced degradation rates, and a more sustainable approach to electric vehicle operation.

		1.4						
Heating me	thod	Advantages	Drawbacks			Application (EVs		
				Performance (Charging time, range, discharge power, regen, efficiency)	Durability (Cap/Power fade rate)	Environment (Scope 1,2,3 and GHG emissions)	patents)	
	Air preheating	1. Cost effective 2. Simple	1. Noise 2. Temp inconsistent (Large cells)	1. Greater mileage [1]	 Air Higher velocity of air →bigger temp gradients, harmful to battery life [3] 	N/A	1.Honda Clarity BEV (PTC heater for air preheating) 2.Toyota	
External Preheating	Liquid preheating	1.Higher rate compared with air preheating	1.More complex 2.Higher cost 3.Risk of liquid leakage	1.Xpeng G9 has achieved a range of up to 702 km[25]	2.The battery fade ratio is 0.015% in experiment.[14]	N/A	1. Honda Clarity PHEV (coolant-based heater) 2. Tesla (based on a ribbon shaped metallic cooling tube) 3. Volt (fluid heater) 4.GM (2 KW heater will heat coolant and the rate is 0.5 °C/min) 5. Xpeng (the waste heat of the motor and the PTC heater are used to heat the antifreeze)	
	Heat Pump preheating	1.Efficient	1.Add cost and complexity. 2.Cause noise. 3.Slow	1. Heat pump can recover 20% of cold-weather range loss. 2. power consumed on	N/A	1.For the Audi Q7 e- tron with a heat pump system for cabin	1.Tesla 2.BYD 3.Hyundai 4. Audi	

Table 2 Summary of advantages and drawbacks and impact of battery in all preheating methods

		4.Tesla's design: depletion of refrigerant.	heat pump preheating <38.4% than the PTC[27]. 4.For the Audi Q7 e-tron using an integrated heat pump results in an average increase in electric driving range of more than 10% [28].		heating, the CO2 is 6g/km.[28]	
PCM preheating	1. Low cost and less complex 2.No additional energy	1.Low thermal conductivity 2.Increase in mass of the vehicle	1. The maximum increase in discharge capacity and power up to 9.87% and 7.56% in the PCM with subcooling used increased local pressure[35]	N/A	N/A	1.In the laboratory stage 2.A patent of ZEVX reports plant-based PCM
Heat pipe preheating	1.Low cost 2.Light 3.Good heat transfer performance 4.Realization of integrating the cooling and heating functions.[46] (but have a negative impact on each other)	1.Limited application due to the shape of battery. 2.Temperature difference exists along the heat conduction direction of the heat pipe. 3. Coolant temperature should go to some certain value, which means that it has necessary start condition [40]	1.After heating at the ambient temperature at - 10, -20 and - 30°C, discharge voltage increased to 3.06V, 3.01V and 2.99V, while the discharge capacity increased by 3.9%,11.6% and 24.4% respectively.[42]	N/A	N/A	N/A
Resistance preheating	1.Shorter heat transfer path and less heat loss compared with air and liquid	1.Bad for low SOC initial states 2.Limitation in format of battery	1.After heating, discharge capacity at 0.3C from 21.9 Ah increases to 24.11 Ah.[50]	N/A	N/A	1.Nissan LEAF 2.Mitsubishi i- MiEV
Electrothermal film preheating	1.Simple and low cost	1.Restricted application scenario 2.Temp gradient (surface to internal sore)	1. The voltage and power performance of the battery pack were improved (1C), and the discharging and charging capacity were restored almost to total and half	N/A	N/A	1.Cherry Auto

				its room- temperature level			
	D 1/: 00 /		1.7	[55].		NT/A	
	Peltier-effect preheating	I.Simple and low cost	1. Tempeature difference between the part near Peltier-effect device and the part not near it	N/A	N/A	N/A	N/A
Internal preheating	Self-heating Lithium-ion battery	1.Heating efficiency close to 100%.	1. Temperature gradients in the thickness of the cell (add more nickel foils to solve it)[58]. 2. Requiring modification of battery structure. which is costly and risky. 3. Only tested in the lab and cannot be applied to existing commercial batteries.	1. The self-heated all climate battery cell yields a discharge/ regeneration power of 1061/1425 w/kg at 50% SOC in the ambient temp of -30 °C[59].	1.After 500 preheating at CCCV (1C), the cell capacity fade is less than 7.2%[59]. 2.SHLB can achieve 500 cycles in 3C fast charging at -30 °C, while the conventional cells would lose 20% capacity after 12 cycles[60].	N/A	N/A
	CC discharge/ CV discharge	1.No need external power supply 2.Low cost	1.Only for high SOC 2.low heat transfer efficiency	1.Charging capacity can reach 85.32% to 1.169 Ah at - 10°C and the charging time is decreased with multistage CC- CV strategy.[66]	1.multi-objective optimization self- heating method can decrease the capacity fade by 5.65% and the power consumption by 3.04% compared with CC discharging.[67]	N/A	N/A
	DC preheating	1.High rate 2.Simple	1.Lithium precipitation 2.decaying capacity 3.Damage to safety	1.The heated battery can offer 8.7/32.7 times the discharge/charge power and 62.46 times the discharge energy of the unheated battery.[69] 2.The heating efficiency is 15.3%[70]	1. The capacity loss is only 1.4% after 500 repeatedly heating.[69] 2. The SOH in DC heating drops to 0.8 at the 81st cycle. The lower discharge voltage and higher polarization in DC heating easily cause cracks in the electrode material[70]	N/A	N/A
	AC preheating	1. Heating circuit is simple	1.Need external power sources	1. AC can increase the resistance from 1.36 Ohm in - 30°C to 0.205 Ohm in 25°C, which makes battery deliver more power. [71]	1. Capacity loss is not seen after repeated preheating experiments [74] 2. After heating 30 times, IC peak are almost the same, which means there is no obvious detrimental effect	N/A	N/A

				2.At both -20 °C and -30 °C, 10- 20 kHz AC currents at 60-80 Arms can restore the battery resistance to values close to that at 25 °C[72].	on the SOH of LIBs[75]. 3.After 20 and 40 times heating (rectangular pulse- 1Hz-10A), 3.7% and 6.6% capacity fading are observed, and DC resistance increases by 1.2% and 2.2% respectively. When the frequency exceeds 10 Hz, the capacity and impedance would barely experience any attenuation[76]. 4. The AC preheating does not cause irreversible damage to the battery even in the low frequency range (0.5 Hz) under normal voltage protection limitations for the battery [77]. 5. After heating 40 times, there is no obvious capacity deterioration[78]. 5. The AC frequency should be as high as possible without detrimental effect[81].		
	Pulse preheating	1.low damage to battery 2.Decrease capacity loss, compared with AC and DC preheating methods.	1.Add more complex equipment. 2.Add cost	N/A	1. The SOH in pulse heating drops to 0.8 at 180 th cycle[70]. 2. The battery only had a capacity loss of 0.035% after 30 heating cycles[84]. 3. After 10 preheating cycles, the initial capacity of the cell is changed by only 0.4% [85]	N/A	1.Changan Auto (high-frequency pulse heating technology with alternating currents and heating speed is 4 °C/min)
Combination of external and internal preheating method	1.Discharge heating + PTC 2.Air preheating + Internal preheating (CV- CC-rest phase) 3.Electrothermal film preheating + AC	 Temperature uniformity High temperature rising rate 	1. Add complexity and cost	N/A	1.After preheated to 0.5 °C, battery pack can discharge for 10s at 3C pulse current, but not at the 3.5C[47].	N/A	N/A

6 Comparisons and Conclusions

The preheating methods are evaluated and compared across five key dimensions, including heating rate, temperature difference (temperature uniformity), (less)capacity consumption, degradation rate (battery health) and less cost, employing a radar map and a bar chart to illustrate the results.

6.1 Comparison methodology for bar chart

We represent the maximum and minimum values of each preheating method for each indicator in a bar chart based on the papers in the collection. This bar chart helps to visually depict the properties of each preheating method. In the process of evaluating preheating methods using the bar chart, we have normalized the data for each index. After normalizing the values, the maximum and minimum values for each preheating method in a particular index from all the reviewed papers can be properly compared. However, it is important to acknowledge that limitations in data availability may impact the completeness of the bar chart. In some cases, they may be missing or unavailable information for a specific preheating method under a particular indicator. For example, the case of air preheating lacks information about temperature differences. We have made efforts to collect comprehensive and reliable data for all indicators and preheating methods to ensure the accuracy and completeness of the evaluation. The evaluation results are reflected in Fig. 16. It is worth noting that for the lack of information on cost, we have used the data in [7][107]. It is also important to understand that a preheating method may not achieve the maximum or minimum value simultaneously for any two indicators. The results of this analysis are shown in Fig. 16.

Figure 16 Comparisons of preheating methods under 5 metrics using maximum and minimum value by bar chart

6.2 Comparison methodology for radar map

Based on the results shown in the bar chart, we have also created a radar chart to provide a more intuitive comparison of the performance of each preheating method. However, instead of using actual data from the papers we collected, we have developed a rating scale based on the results obtained from the bar chart. This rating scale qualitatively displays the score of each warm-up method under each indicator, in the form of a radar map. The methodology for creating the radar map is as follows:

1. Define indicators demonstrating positive results: Keep the 'heating rate' and 'less cost' and change the other three to: 'Temperature uniformity', 'Less Capacity Consumption' and 'Battery health'.

2. In accordance with the collected data in the bar chart, which provides a visual depiction of the relative performance of each preheating method under each indicator, we have evaluated and ranked each preheating method according to specific indicators. Subsequently, we have assigned corresponding score values to reflect their performance.

3. The scoring system ranges from 1 to 5, with higher scores indicating superior performance within a given indicator. For instance, a score of 5 in the "Heating Rate" indicator signifies the highest heating rate. Notably, a score of 5 in the "Temperature uniformity" indicator denotes optimal temperature uniformity, indicating the method's ability to maintain a consistent temperature across the battery.

It is important to emphasize that these rankings and scores presented in our report are based on the analysis of specific data pertaining to each preheating method from the papers we collected. The outcomes and rankings are derived from this data and should be interpreted within that context. The results are shown in Fig. 17, which visually represents the rankings and scores for easy reference and interpretation.

Figure 17 Comparisons of 5 metrics of preheating methods by radar map

6.3 Conclusion

Based on the results obtained from the radar map analysis, certain conclusions can be made for different preheating methods. For the external preheating methods, both liquid preheating and heat pipe preheating demonstrate satisfactory heating rates. On the other hand, PCM preheating shows the potential to ensure temperature uniformity, which helps to mitigate temperature gradients and promote optimal battery performance. In the case of internal preheating methods, these preheating methods can achieve more uniform temperature distribution by harnessing internal heat. The self-heating lithium battery has the highest heating rate but also comes with a high cost. Besides, a long way exists for this method to be used in EVs. Pulse preheating and AC preheating methods show good performance in terms of temperature uniformity, which positively impacts battery health. These methods also show satisfactory heating rates.

In summary, each preheating approach presents unique advantages within the context of the five evaluation indicators. Future research should focus on identifying the optimal approach based on these indicators to enhance the implementation of preheating methods. This can be achieved by optimizing heat transfer paths, refining design parameters, and enhancing heat transfer coefficients. Furthermore, developing controloriented models with improved computational capacity and accuracy is crucial. These models should accurately capture battery health, thermal behavior, and other pertinent factors. By incorporating such models, the preheating process can be executed with maximum performance and efficiency.

Despite the progress made thus far, it is clear that further improvements are necessary to facilitate a more efficient warm-up process and enhance the performance of electric vehicles in cold weather conditions. Continued research and advancements in this domain are imperative to optimize preheating methods and improve electric vehicle performance during winter operations.

7 Future work: Methodology for Assessing Lifetime GHG Impact of Thermal Preconditioning

Use a battery electrothermal model with degradation mechanisms to calculate the impact of preconditioning or lack of preconditioning in battery degradation.

Objectives:

- Choose realistic efficiency of preconditioning methods following the literature review
- Investigate a range of preconditioning settings while plugged-in for
- Battery cooling in hot climate that will maintain SEI growth within state of health specs.
- Battery heating in cold environments for maintaining range and avoiding Li-plating for specific charging specs
- The reduction of battery life w/o preconditioning will then be compared and contrasted with the energy used for the pre-conditioning to establish a basis for lifetime efficiency.
- The local grid CO2 content and its projections will be considered for a geographically diverse GHG impact of thermal preconditioning.

Goals/ Deliverables:

- A coupled electrical-thermal battery degradation model and a preconditioning approach for battery life
- A quantification of the trade-off between energy consumption from preconditioning method (heating and cooling) and battery life
- An analysis and a model on GHG emissions from preconditioning

Reference

- [1] Song, H.S., Jeong, J.B., Lee, B.H., Shin, D.H., Kim, B.H., Kim, T.H. and Heo, H., 2012, October. Experimental study on the effects of pre-heating a battery in a low-temperature environment. In 2012 IEEE Vehicle Power and Propulsion Conference (pp. 1198-1201). IEEE.
- [2] Ji, Y. and Wang, C.Y., 2013. Heating strategies for Li-ion batteries operated from subzero temperatures. *Electrochimica Acta*, 107, pp.664-674.
- [3] Li, M., Wang, F. and Wang, D., 2011. Preheating Simulation of Power Battery. In *Proceedings of the International Conference on Human-centric Computing 2011 and Embedded and Multimedia Computing 2011: HumanCom & EMC 2011* (pp. 617-625). Springer Netherlands.
- [4] Wang, F.C., Zhang, J.Z. and Wang, L.F., 2013. Design of electric air-heated box for batteries in electric vehicles. *Chin. J. Power Sources*, *37*, pp.1184-1187. (in Chinese).
- [5] Wang, T., Wu, X., Xu, S., Hofmann, H., Du, J., Li, J., Ouyang, M. and Song, Z., 2018. Performance of plug-in hybrid electric vehicle under low temperature conditions and economy analysis of battery preheating. *Journal of Power Sources*, 401, pp.245-254.
- [6] Chen, P., Lu, Z., Ji, L. and Li, Y., 2013, October. Design of the control scheme of power battery low temperature charging heating based on the real vehicle applications. In 2013 IEEE vehicle power and propulsion conference (VPPC) (pp. 1-6). IEEE.
- [7] Hu, X., Zheng, Y., Howey, D.A., Perez, H., Foley, A. and Pecht, M., 2020. Battery warm-up methodologies at subzero temperatures for automotive applications: Recent advances and perspectives. *Progress in Energy* and Combustion Science, 77, p.100806.
- [8] Cars With Plugs (2018) 'Electric Car Heaters: Honda Clarity', Cars With Plugs, Available at: https://carswithplugs.com/2018/03/17/electric-car-heaters-honda-clarity/ (Accessed: 30 June 2023).
- [9] Kelly, K.J., Mihalic, M. and Zolot, M., 2002, January. Battery usage and thermal performance of the Toyota Prius and Honda Insight during chassis dynamometer testing. In Seventeenth Annual Battery Conference on Applications and Advances. Proceedings of Conference (Cat. No. 02TH8576) (pp. 247-252). IEEE.
- [10] Wang, Y., Rao, Z., Liu, S., Li, X., Li, H. and Xiong, R., 2021. Evaluating the performance of liquid immersing preheating system for Lithium-ion battery pack. *Applied Thermal Engineering*, *190*, p.116811.
- [11] Tang, Z., Wang, S., Liu, Z. and Cheng, J., 2020. Numerical analysis of temperature uniformity of a liquid cooling battery module composed of heat-conducting blocks with gradient contact surface angles. *Applied Thermal Engineering*, 178, p.115509.
- [12] Chen, S., Zhang, G., Wu, C., Huang, W., Xu, C., Jin, C., Wu, Y., Jiang, Z., Dai, H., Feng, X. and Wei, X., 2022. Multi-objective optimization design for a double-direction liquid heating system-based Cell-to-Chassis battery module. *International Journal of Heat and Mass Transfer*, 183, p.122184.
- [13] Wu, X., Wei, Z., Sun, Y., Sun, J. and Du, J., 2022. Integrated All-Climate Heating/Cooling System Design and Preheating Strategy for Lithium-Ion Battery Pack. *Batteries*, 8(10), p.179.
- [14] Zhu, T., Min, H., Yu, Y., Zhao, Z., Xu, T., Chen, Y., Li, X. and Zhang, C., 2017. An optimized energy management strategy for preheating vehicle-mounted li-ion batteries at subzero temperatures. *Energies*, 10(2), p.243.
- [15] Lu, N., Wang, H.M., Wang, C.W., Hu, X.B., Improvement of thermal characteristics and discharge parameters of NCM811 power battery preheated by oil immersion. Chemical progress, 42(3), pp. 1299-1307. (In Chinese)
- [16] Wang, B., Sun, C.C., Wang, Y.L., Chen, X.Y., Zhou, Q.P., Thermal insulation and preheating Performance of Lithium Battery based on PCM [J]. Chemical Engineering,2022,50(06):23-28. (In Chinese)
- [17] Luo, Y., Lang, C. and Luo, B., 2016. Investigation into heating system of lithium-ion battery pack in low-temperature environment. J. South China Univ. Technol. (Nat. Sci.), 44, pp.100-106.
- [18] Chen, S.Q., Wei, X.Z., Zhang, G.X., et al. Modeling and Thermal Analysis of Low-temperature hybrid preheating system for Cluster Screening of Lithium ion Battery Packs [J]. Journal of Tongji University (Natural Science),2021,49(S1):268-275.
- [19] Li, G., Huang, X.D., Fu, X.F., 2017. Design research on battery heating and preservation system based on liquid cooling mode. *Journal of Hunan University*, 44(2), pp.26-33.

- [20] Zhou, S., Zhao, Y. and Gao, S., 2021. Analysis of Heat Dissipation and Preheating Module for Vehicle Lithium Iron Phosphate Battery. *Energies*, 14(19), p.6196.
- [21] Gharehghani, A., Gholami, J., Shamsizadeh, P. and Mehranfar, S., 2022. Effect analysis on performance improvement of battery thermal management in cold weather. *Journal of Energy Storage*, 45, p.103728.
- [22] Zhu, L., Xiong, F., Chen, H., Wei, D., Li, G. and Ouyang, C., 2020. Thermal analysis and optimization of an EV battery pack for real applications. *International Journal of Heat and Mass Transfer*, *163*, p.120384.
- [23] Bower, G. (2015) 'Tesla or GM: Who Has The Best Battery Thermal Management?', InsideEVs, Available at: https://insideevs.com/news/tesla-gm-best-battery-thermal-management/ (Accessed: 30 June 2023).
- [24] Matthé, R. and Eberle, U., 2014. The Voltec System—Energy Storage and Electric Propulsion. In *Lithium-Ion Batteries* (pp. 151-176). Elsevier.
- [25] Xpeng (n.d.) Xpeng G9: An electric SUV with a range of up to 702km [Online]. Xpeng. Available at: https://www.xiaopeng.com/news/company_news/4463.html (Accessed: 15th September 2022).
- [26] Osaka, S. (2023) 'Electric Vehicles: Climate Solutions', The Washington Post, Available at: https://www.washingtonpost.com/climate-solutions/2023/01/07/electric-v (Accessed: 30 June 2023).
- [27] Lee, S., Chung, Y., Lee, Y.I., Jeong, Y. and Kim, M.S., 2023. Battery thermal management strategy utilizing a secondary heat pump in electric vehicle under cold-start conditions. *Energy*, 269, p.126827.
- [28] Menken, J.C., Strasser, K., Anzenberger, T. and Rebinger, C., 2018. Evaluation of the energy consumption of a thermal management system of a plug-in hybrid electric vehicle using the example of the Audi Q7 etron. SAE International Journal of Passenger Cars-Mechanical Systems, 11(3), pp.203-212.
- [29] Basma, H., Beys, Y. and Rodríguez, F., 2021. Battery electric tractor-trailers in the European Union: A vehicle technology analysis. *Retrieved from the International Council on Clean Transportation*.
- [30] Mancini, N., Mardall, J.S.M., Kopitz, J., O'donnell, C.R., Hanks, D.F. and Li, H., Tesla Inc, 2021. Optimal source electric vehicle heat pump with extreme temperature heating capability and efficient thermal preconditioning. U.S. Patent 10,967,702.
- [31] Lima, P. (2021) 'Introducing the Latest BYD e-platform 3.0', Pushevs, Available at: https://pushevs.com/2021/09/20/introducing-the-latest-byd-e-platform-3-0/ (Accessed: 30 June 2023).
- [32] EV Specifications (2020) 'Title of the webpage or article', EV Specifications, Available at: https://www.evspecifications.com/en/news/fcd02e7 (Accessed: 30 June 2023).
- [33] Audi Media Center (2021) 'Battery and Thermal Management', Audi Media Center, Available at: https://www.audi-mediacenter.com/en/emotive-design-and-revolutionary-technologythe-audi-e-tron-gtquattro-and-the-audi-rs-e-tron-gt-13655/battery-and-thermal-management-13784 (Accessed: 30 June 2023).
- [34] Luo, J., Zou, D., Wang, Y., Wang, S. and Huang, L., 2022. Battery thermal management systems (BTMs) based on phase change material (PCM): A comprehensive review. *Chemical Engineering Journal*, 430, p.132741.
- [35] Ling, Z., Luo, M., Song, J., Zhang, W., Zhang, Z. and Fang, X., 2021. A fast-heat battery system using the heat released from detonated supercooled phase change materials. *Energy*, 219, p.119496.
- [36] He, F., Li, X., Zhang, G., Zhong, G. and He, J., 2018. Experimental investigation of thermal management system for lithium ion batteries module with coupling effect by heat sheets and phase change materials. *International Journal of Energy Research*, 42(10), pp.3279-3288.
- [37] Huo, Y. and Rao, Z., 2017. Investigation of phase change material based battery thermal management at cold temperature using lattice Boltzmann method. *Energy Conversion and Management*, 133, pp.204-215.
- [38] Ling, Z., Wen, X., Zhang, Z., Fang, X. and Xu, T., 2016. Warming-up effects of phase change materials on lithium-ion batteries operated at low temperatures. *Energy Technology*, 4(9), pp.1071-1076.
- [39] Wang, Q., Jiang, B., Xue, Q.F., Sun, H.L., Li, B., Zou, H.M. and Yan, Y.Y., 2015. Experimental investigation on EV battery cooling and heating by heat pipes. *Applied Thermal Engineering*, 88, pp.54-60.
- [40] Zou, H., Wang, W., Zhang, G., Qin, F., Tian, C. and Yan, Y., 2016. Experimental investigation on an integrated thermal management system with heat pipe heat exchanger for electric vehicle. *Energy conversion and management*, 118, pp.88-95.

- [41] Liang, L., Zhao, Y., Diao, Y., Ren, R., Zhu, T. and Li, Y., 2023. Experimental investigation of preheating performance of lithium-ion battery modules in electric vehicles enhanced by bending flat micro heat pipe array. *Applied Energy*, 337, p.120896.
- [42] Chen, M. and Li, J., 2021. Experimental study on heating performance of pure electric vehicle power battery under low temperature environment. *International Journal of Heat and Mass Transfer*, *172*, p.121191.
- [43] Wang, L., Zhao, Y., Quan, Z. and Liang, J., 2021. Investigation of thermal management of lithium-ion battery based on micro heat pipe array. *Journal of Energy Storage*, 39, p.102624.
- [44] Liang, L., Zhao, Y., Diao, Y., Ren, R. and Jing, H., 2021. Inclined U-shaped flat microheat pipe array configuration for cooling and heating lithium-ion battery modules in electric vehicles. *Energy*, 235, p.121433.
- [45] Liu, F.F., Lan, F.C., Chen, J.Q. and Li, Y.G., 2018. Experimental investigation on cooling/heating characteristics of ultra-thin micro heat pipe for electric vehicle battery thermal management. *Chinese Journal of Mechanical Engineering*, 31, pp.1-10.
- [46] Ren, R., Zhao, Y., Diao, Y. and Liang, L., 2022. Experimental study on preheating thermal management system for lithium-ion battery based on U-shaped micro heat pipe array. *Energy*, 253, p.124178.
- [47] Jin, X., Li, J.Q., Zhang, C.N. and Wu, P.E., 2016. Researches on modeling and experiment of Li-ion battery PTC self-heating in electric vehicles. *Energy Procedia*, 104, pp.62-67.
- [48] Zhang, C., Jin, X. and Li, J., 2017. PTC self-heating experiments and thermal modeling of lithium-ion battery pack in electric vehicles. *Energies*, 10(4), p.572.
- [49] Zhang, J., Sun, F. and Wang, Z., 2017. Heating character of a LiMn2O4 battery pack at low temperature based on PTC and metallic resistance material. *Energy Procedia*, 105, pp.2131-2138.
- [50] Li, J., Wu, P. and Tian, H., 2014, August. Researches on heating low-temperature lithium-ion power battery in electric vehicles. In 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific) (pp. 1-6). IEEE.
- [51] Zhang, S., Li, T. and Chen, L., 2023. Fuzzy Logic Control of External Heating System for Electric Vehicle Batteries at Low Temperature. *World Electric Vehicle Journal*, 14(4), p.99.
- [52] Yang, W., Zhou, F., Liu, Y. and Chen, X., 2022. Preheating performance by heating film for the safe application of cylindrical lithium-ion battery at low temperature. *Fire Technology*, pp.1-21.
- [53] Sun, J., Li, X., Wei, G., Lu, R., Song, L., Zhu, C. and Hu, C., 2015, October. Low current rate discharge with external heating at low temperature. In 2015 IEEE Vehicle Power and Propulsion Conference (VPPC) (pp. 1-5). IEEE.
- [54] Li Jun, Liao Yu, Liu Junyu, Zeng Jianbang. Low-temperature Heating Experiment of Power Battery Module for Electric Vehicle [J]. Batteries, 2021, 51(06):572-576. DOI:10.19535/J.1001-1579.2021.06.007.
- [55] Lei, Z., Zhang, C., Li, J., Fan, G. and Lin, Z., 2015. Preheating method of lithium-ion batteries in an electric vehicle. *Journal of Modern Power Systems and Clean Energy*, 3(2), pp.289-296.
- [56] Reyes, J.R.M.D., Parsons, R.V. and Hoemsen, R., 2016. Winter happens: The effect of ambient temperature on the travel range of electric vehicles. *IEEE Transactions on Vehicular Technology*, 65(6), pp.4016-4022.
- [57] Alaoui, C. and Salameh, Z.M., 2005. A novel thermal management for electric and hybrid vehicles. *IEEE transactions on vehicular technology*, *54*(2), pp.468-476.
- [58] Zhang, G., Ge, S., Xu, T., Yang, X.G., Tian, H. and Wang, C.Y., 2016. Rapid self-heating and internal temperature sensing of lithium-ion batteries at low temperatures. *Electrochimica Acta*, 218, pp.149-155.
- [59] Wang, C.Y., Zhang, G., Ge, S., Xu, T., Ji, Y., Yang, X.G. and Leng, Y., 2016. Lithium-ion battery structure that self-heats at low temperatures. *Nature*, 529(7587), pp.515-518.
- [60] Wang, C.Y., Xu, T., Ge, S., Zhang, G., Yang, X.G. and Ji, Y., 2016. A fast rechargeable lithium-ion battery at subfreezing temperatures. *Journal of The Electrochemical Society*, *163*(9), p.A1944.
- [61] Zhang, G., Ge, S., Yang, X.G., Leng, Y., Marple, D. and Wang, C.Y., 2017. Rapid restoration of electric vehicle battery performance while driving at cold temperatures. *Journal of Power Sources*, 371, pp.35-40.
- [62] Yang, X.G., Zhang, G. and Wang, C.Y., 2016. Computational design and refinement of self-heating lithium ion batteries. *Journal of Power Sources*, *328*, pp.203-211.

- [63] Yang, X.G., Liu, T. and Wang, C.Y., 2017. Innovative heating of large-size automotive Li-ion cells. *Journal of power sources*, *342*, pp.598-604.
- [64] Lei, Z., Zhang, Y. and Lei, X., 2018. Improving temperature uniformity of a lithium-ion battery by intermittent heating method in cold climate. *International Journal of Heat and Mass Transfer*, *121*, pp.275-281.
- [65] Wu, X., Chen, Z. and Wang, Z., 2017. Analysis of low temperature preheating effect based on battery temperature-rise model. *Energies*, *10*(8), p.1121.
- [66] Wu, X., Hu, C., Du, J. and Sun, J., 2015. Multistage CC-CV charge method for Li-ion battery. *Mathematical Problems in Engineering*, 2015.
- [67] Du, J., Chen, Z. and Li, F., 2018. Multi-objective optimization discharge method for heating lithium-ion battery at low temperatures. *IEEE Access*, *6*, pp.44036-44049.
- [68] Mohan, S. and Stefanopoulou, A.G., 2017, December. Comparing optimal battery warm-up strategies based on self-heating. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC) (pp. 3884-3889). IEEE.
- [69] Ruan, H., Jiang, J., Sun, B., Su, X., He, X. and Zhao, K., 2019. An optimal internal-heating strategy for lithium-ion batteries at low temperature considering both heating time and lifetime reduction. *Applied Energy*, 256, p.113797.
- [70] Qu, Z.G., Jiang, Z.Y. and Wang, Q., 2019. Experimental study on pulse self-heating of lithium-ion battery at low temperature. *International Journal of Heat and Mass Transfer*, *135*, pp.696-705.
- [71] Pesaran, A., Vlahinos, A. and Stuart, T., 2003, March. Cooling and preheating of batteries in hybrid electric vehicles. In *6th ASME-JSME Thermal Engineering Joint Conference* (pp. 1-7). Citeseer.
- [72] Stuart, T.A. and Hande, A., 2004. HEV battery heating using AC currents. Journal of Power Sources, 129(2), pp.368-378.
- [73] Ge, H., Huang, J., Zhang, J. and Li, Z., 2015. Temperature-adaptive alternating current preheating of lithium-ion batteries with lithium deposition prevention. *Journal of The Electrochemical Society*, 163(2), p.A290.
- [74] Zhang, J., Ge, H., Li, Z. and Ding, Z., 2015. Internal heating of lithium-ion batteries using alternating current based on the heat generation model in frequency domain. *Journal of Power Sources*, 273, pp.1030-1037.
- [75] Ruan, H., Jiang, J., Sun, B., Zhang, W., Gao, W. and Ma, Z., 2016. A rapid low-temperature internal heating strategy with optimal frequency based on constant polarization voltage for lithium-ion batteries. *Applied Energy*, 177, pp.771-782.
- [76] Zhu, J., Sun, Z., Wei, X. and Dai, H., 2016. An alternating current heating method for lithium-ion batteries from subzero temperatures. *International Journal of Energy Research*, 40(13), pp.1869-1883.
- [77] Zhu, J., Sun, Z., Wei, X., Dai, H. and Gu, W., 2017. Experimental investigations of an AC pulse heating method for vehicular high power lithium-ion batteries at subzero temperatures. *Journal of Power Sources*, 367, pp.145-157.
- [78] Guo, S., Xiong, R., Wang, K. and Sun, F., 2018. A novel echelon internal heating strategy of cold batteries for all-climate electric vehicles application. *Applied Energy*, 219, pp.256-263.
- [79] Shang, Y., Xia, B., Cui, N., Zhang, C. and Mi, C.C., 2017. An automotive onboard AC heater without external power supplies for lithium-ion batteries at low temperatures. *IEEE Transactions on Power Electronics*, 33(9), pp.7759-7769.
- [80] Shang, Y., Liu, K., Cui, N., Zhang, Q. and Zhang, C., 2019. A sine-wave heating circuit for automotive battery self-heating at subzero temperatures. *IEEE Transactions on Industrial Informatics*, 16(5), pp.3355-3365.
- [81] Shang, Y., Zhu, C., Lu, G., Zhang, Q., Cui, N. and Zhang, C., 2020. Modeling and analysis of high-frequency alternating-current heating for lithium-ion batteries under low-temperature operations. *Journal of Power Sources*, 450, p.227435.

- [82] Hu, Z., Liu, F., Chen, P., Xie, C., Huang, M., Hu, S. and Lu, S., 2022. Experimental study on the mechanism of frequency-dependent heat in AC preheating of lithium-ion battery at low temperature. *Applied Thermal Engineering*, 214, p.118860.
- [83] Xiong, R., Zhang, K., Qu, S., Tian, J. and Shen, W., 2023. A fast pre-heating method for lithium-ion batteries by wireless energy transfer at low temperatures. *eTransportation*, p.100227.
- [84] Wu, X., Cui, Z., Chen, E. and Du, J., 2020. Capacity degradation minimization oriented optimization for the pulse preheating of lithium-ion batteries under low temperature. *Journal of Energy Storage*, 31, p.101746.
- [85] Wu, X., Li, L. and Du, J., 2020. Preheating strategy of variable-frequency pulse for lithium battery in cold weather. *International Journal of Energy Research*, 44(13), pp.10724-10738.
- [86] Wu, X.G., Li, L.R., Gao, X.J., Du, J.Y. and Shchurov, N.I., 2021. Preheating the lithium-ion battery with realtime optimized pulse frequency under low temperature. *Electric Machines and Control*, 25(11), pp.56-65.
- [87] Qin, Y., Du, J., Lu, L., Gao, M., Haase, F., Li, J. and Ouyang, M., 2020. A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life. *Applied Energy*, 280, p.115957.
- [88] Mohany, S., Kim, Y., Stefanopoulou, A.G. and Ding, Y., 2014, June. On the warmup of Li-ion cells from sub-zero temperatures. In 2014 American Control Conference (pp. 1547-1552). IEEE.
- [89] Mohan, S., Kim, Y. and Stefanopoulou, A.G., 2016. Energy-conscious warm-up of li-ion cells from subzero temperatures. *IEEE Transactions on Industrial Electronics*, 63(5), pp.2954-2964.
- [90] Mohan, S., Siegel, J., Stefanopoulou, A.G., Castanier, M. and Ding, Y., 2016, December. Synthesis of an energy-optimal self-heating strategy for Li-ion batteries. In 2016 IEEE 55th Conference on Decision and Control (CDC) (pp. 1589-1594). IEEE.
- [91] Mohan, S., Siegel, J.B., Stefanopoulou, A.G. and Vasudevan, R., 2018. An energy-optimal warm-up strategy for Li-ion batteries and its approximations. *IEEE Transactions on Control Systems Technology*, 27(3), pp.1165-1180.
- [92] Xiong, R., Wang, K., Guo, S.S., Low Temperature Composite Heating Method for Lithium-ion Power Battery [J]. Chinese Journal of Mechanical Engineering, 2019, 55(14):53-59.
- [93] Iora, P. and Tribioli, L., 2019. Effect of ambient temperature on electric vehicles' energy consumption and range: Model definition and sensitivity analysis based on nissan leaf data. *World Electric Vehicle Journal*, 10(1), p.2.
- [94] Wu, S., Xiong, R., Li, H., Nian, V. and Ma, S., 2020. The state of the art on preheating lithium-ion batteries in cold weather. *Journal of Energy Storage*, *27*, p.101059.
- [95] Fuel Cells Works (2022) 'China's First Mass-Produced Hydrogen Electric Vehicle Comes from Changan-Dark Blue', Fuel Cells Works, Available at: https://fuelcellsworks.com/news/chinas-first-mass-producedhydrogen-electric-vehicle-comes-from-changan-dark-blue/ (Accessed: 30 June 2023).
- [96] Doll, S. (2022) 'Worried about winter range loss? See how over a dozen EVs compare', Electrek, Available at: https://electrek.co/2022/12/13/worried-about-winter-range-loss-see-how-over-a-dozen-evs-compare/ (Accessed: 14 August 2023).
- [97] Recurrent (2022) 'Winter & Cold Weather EV Range Loss in 7,000 Cars', Recurrent, Available at: https://www.recurrentauto.com/research/winter-ev-range-loss (Accessed: 14 August 2023).
- [98] Berve, A. (2022) 'Newcomer suffered cold shock in NAF's charging test', NAF, Available at: https://nye.naf.no/elbil/lading/ladetest-vinter-2022 (Accessed: 9 August 2023).
- [99] CHEVYBOLT.ORG (2022) 'To warm up the battery or not?', Chevy Bolt Forum, Available at: https://www.chevybolt.org/threads/to-warm-up-the-battery-or-not.47525/ (Accessed: 14 August 2023).
- [100] Tesla Motors Club (2020) 'Preconditioning for fast charging worth it?', Tesla Motors Club, Available at: https://teslamotorsclub.com/tmc/threads/preconditioning-for-fast-charging-worth-it.262102/ (Accessed: 16 August 2023).

- [101] KIAEVFORUMS (2023) 'Battery Preconditioning & Thermal Performance', Kia EV Forums, Available at: https://www.kiaevforums.com/threads/battery-preconditioning-thermal-performance.7710/ (Accessed: 14 August 2023).
- [102] EV Odessey (2022) 'Electric Vehicle Battery Thermal Management', YouTube, Available at: https://www.youtube.com/watch?v=oP-mTemWQWY&t=1s (Accessed: 14 August 2023).
- [103] I4 Talk (2023) 'Precondition Battery While Plugged In', i4Talk, Available at: https://www.i4talk.com/threads/precondition-battery-while-plugged-in.6845/ (Accessed: 17 August 2023).
- [104] BMW USA News (2022) 'The New 2022 BMW i4 eDrive40 and i40 M50', BMW USA News, Available at: https://www.bmwusanews.com/newsrelease.do?id=3731 (Accessed: 17 August 2023).
- [105] Moloughney, T. (2021) 'Tesla Model 3 Charging Losses Explained', InsideEVs, Available at: https://insideevs.com/features/555906/tesla-charging-losses-explained/ (Accessed: 9 August 2023).
- [106] Tesla Fan(2016) 'Did you know the 3 heats the battery actively & constantly while DC charging, at any speed or temp? ', Tesla Motors Club, Available at: https://teslamotorsclub.com/tmc/threads/did-you-knowthe-3-heats-the-battery-actively-constantly-while-dc-charging-at-any-speed-or-temp.175027/ (Accessed: 9 August 2023).
- [107] Wang, Y., Zhang, X. and Chen, Z., 2022. Low temperature preheating techniques for Lithium-ion batteries: Recent advances and future challenges. *Applied Energy*, *313*, p.118832.

Appendix

Table A.1 Summary of heating rate and differences in battery in reviewed air preheating method

Metho	Experime	Model	Ambie	Ce	Cell	Cell	Cell	Powe	Heati	Tem	Energy/	I	mpact
a	nt		nt - final	II Ch	Cap	Geo	Mas	r	ng	p. Diff	Capacit	Daufaumanaa	Durchility
			Tomm	Cn	(Ah	m.	s (a)	Sour	Kale		y Coman	Performance	Durability
			$(^{\circ}C)$	em	(An		(g)	ce		$\Delta 1$	motion		
			(\mathbf{C})	•)						mption		
Air	[1] Experim	ental study on	the effects	ofpre	-heatin	ι σ a hatt	erv in a	low-tem	nerature	environr	nent In 201	2 IEEE Vehicle P	ower and
prehea	Propulsion (Conference	the effects	or pro	neutin	5 u outi	ery m a	iow tem	perature	CHVHOM	ilent: 111 201		
ting	https://doi.o	rg/10.1109/VP	PC.2012.6	642250	<u>)9</u>								
	Tested in	Battery	-20 to	-	20	-	-	Batte	0.9 °	-	-	Greater	-
	4 cases to	system	25					ry	C/mi			mileage	
	compare	model; air							n				
	performan	heater											
	ce after	model;											
	preheating	powertrain											
		model											
	[2] Heating	strategies for L	i-ion batte	eries of	perated	from su	ıbzero t	emperatu	res. Elec	trochimi	ca Acta, 20	13	
	https://doi.o	<u>rg/10.1016/j.el</u>	ectacta.20	<u>13.03.</u>	<u>147</u>				1	1			I
	-	Electroche	-20 to	Ν	2.2	Cyl.	44	Batte	40 °	-	5%-	-	-
		mical-	20	Μ				ry	C/		10% of		
		thermal		С					85s		capacit		
		(ECT)							(R _{heat}		у		
		coupled							er=0.		(dischar		
		model							4Ω)		ge		
											voltage		
											level		
											from2.6		
											6V to		
											3.40 V)		
	[2] Duch 4	na Cimulati	f Dower I) Dattar	Ducci	mt Car	f I I	n	Comr	Frah - 1	dad and Mr	Itimadia Camera 20	11
	[5] Preneatin	$m_{\pi}/10,1007/079$	01 Power I	Sattery	5. PTOC I	m. Con	i numa	n-centric	Comp &	e Embed	ued and MI	numedia Comp, 20	J11
	<u>mups://d01.0</u>	rg/10.100//9/8	5-94-00/-2	2103-0	<u></u>								

				-	-	-							
-	Mathemati	-20 to	LF	10	Pris	150	-	35 °	-	-	-	Higher	
	cal Model	15	Р		m.	0		C/ 15				velocity of	
	of Battery							min				air →bigger	
	and							(Inlet				temp	
	Aluminum							temp				gradients.	
	Shell in							=50°				harmful to	
	Fluent							С,				hattomy life	
								veloc				battery me	
	sonware							ity=4					
								m/s)					
[4] Design o	f electric air-he	eated box	for bat	teries in	n electri	c vehicl	es. Chin.	J. Powe	r Sources	s, 2013. (in	Chinese)		
Heating	-	-15 to	-	-	-	-	40V	0.69	-	-	-	-	
the battery		0					DC	°C/m					
with the								in					
designed													
air heating													
hov													
[5] Doutourne	maa af mlua in	امتنام ماد	atuia T	rahiala r	un dan la		anatuna a	andition	and ason		ais of hottoms and h	anting Journal	
[5] Periorina	unce of plug-in	nyona ele	curic v	enicie	under id	w temp	erature c	onanion	and ecor	iomy analys	sis of battery pre-fi	eating. Journal	
bttps://doi.or	1000000000000000000000000000000000000	20	10 00	002									
<u>intps://doi.or</u>	DUEV	20 to	10.00.	60		200	ECU	22 0				With	
-	PILV	-20 10	LF D	00	-	200	EGU (En el	33 C/	-	-	-	vv itti	
	powertrain	13	Р			0	(Engi	C/				preneating,	
	model with						ne	714 s				battery	
	convective						and					degradation	
	heating						gener					reduced	
	function						ator					from	
							unit)					1.647×10 ⁻⁴ t	
							or					0	
							grid					0.336×10 ⁻⁴ (
							U					capacity is	
												normalized	
												to 1)	
[6] Design a	f the control co	hama af m		aattam	lorri tom	a sesting	a ahanain	a haatin	a haaad a	n tha naal t	ahiala annliastiona	$I_{\rm m} = 2012$	
[0] Design 0		neme of p	ower i	battery		iperatur	e chargin	ig neating	g based o	in the real v	enicle applications	. III 2015	
	$\frac{10}{10}$	opuision c	contere	ence (v)	PPC)								
https://doi.oi	<u>'g/10.1109/VP</u>	PC.2013.6	1 1	<u>3</u>	1		DEG						
Comment: n	ot well written	; an exterr	nal cha	rger wa	s used t	o powe	r a PTC a	and blow	heated a	ir for batter	y warm-up		
Environm	-	-5 to 5	-	90	-	-	Exter	10 °	-	-	-	-	
ental							nal	C/ 24					
chamber							Sour	min					
and real							ce						
vehicle													
test in													
winter													
were													
were													
performed													
				1					1				
based on a													
based on a Changan													
based on a Changan electric													

Table A.2 Summary of heating rate and differences in battery in reviewed liquid preheating method

Metho 1	Experime	Model	Ambie	Ce	Cell	Cell	Cell	Powe	Heati	Tem	Energy/	Iı	npact
d 1	nt		nt -	11	Cap	Geo	Mas	r	ng	р.	Capacit		
			final	Ch		m.	s	Sour	Rate	Diff.	у	Performance	Durability
			Temp.	em	(Ah		(g)	ce		ΔT	Consu		
			(°C))						mption		
											_		
	[10] Evaluating the performance of liquid immersing preheating system for Lithium-ion battery pack Applied Thermal												
ſ	Engineering 2021												

Liquid	https://doi.o	org/10.1016/j.ap	plthermal	eng.20	21.116	811							
prehea	Comment: h	neat transfer of	fluid and	the nur	nber of	batterie	es affect	the risin	g temp r	ate			
ting	A	3D CFD in	-28 to	-	50	Pris	-	-	4 18°	Unde	-	_	-
ung	nrototyne	COMSOL	25		50	m			C/mi	r			
	experime	COMBOL	20						n	1°C			
	nt was set								11	т С amon			
	III was set									amon			
	up to									g			
	validate									cells			
	the CFD									in the			
	model									pack			
	[11] Numer	ical analysis of	temperati	ire uni	formity	of a liq	uid coo	ling batte	ery modu	ile compo	osed of hear	t-conducting blocks	s with gradient
	contact surf	ace angles. App	plied Ther	mal Er	ngineeri	ng, 202	0						
	https://doi.o	org/10.1016/j.ap	plthermal	eng.20	20.115	<u>509</u>							
	Comment:	The optimal inl	et velocity	of the	fluid n	nedium	is 0.015	óm∕s					
	An	3D CFD in	-	-	2.2	Cyl.	-	-	-	8.05	-	-	-
	experime	ANSY				-				°C			
	nt was	Fluent								amon			
	conducted	1 100110								σ			
	to									5 cells			
	volidata									in the			
	validate									In the			
	the model									pack			
										(24			
										cells			
										in			
										each			
										row)			
	[12] Multi-	objective optim	ization de	sign fo	r a dou	ble-dire	ction lie	uid heat	ing syste	m-based	Cell-to-Ch	assis battery	
	module. Int	ernational Jour	nal of Hea	t and M	Mass Tr	ansfer.	2022	1					
	https://doi.o	org/10.1016/i.iil	neatmasstr	ansfer	2021.1	22184							
	-	CFD in	-40 to	LF	5	Pris	165	-	67°	88°	-	_	-
		Fluent	40	P	U	m	100		C/mi	C			
		Tucht	T U	1		111.			n	c omon			
									n (dou	amon			
									hle	g			
									direct	cells			
									ion	in the			
									1011 1. and	pack			
									nqui a)				
	[12] Inde and	te d. A.11. Climent	II	Carlin	C	Deri		D	u)		ь)-44 D1- D-44	2022
	[15] Integra	(10 2200/l)	e Heating/	170	ig Syste	m Desi	gn and	Preneatir	ig Strateg	gy for Li	nium-ion E	Sallery Pack. Baller	1es, 2022
	https://doi.o	org/10.3390/bat	teries8100	<u>179</u>									
	Comment:	Three sides and	an extra c	cooling	g plate v	vere ado	led in th	ie middle	C (1 1		ck		
	A battery	Battery							e of the b	attery pa			
	charging	Dattery	-20 to	LF	30	-	795	-	35°	attery pa Belo	-	-	-
	Charging	heat	-20 to 15	LF P	30	-	795	-	35 ° C/	attery pa Belo w	-	-	-
	experime	heat	-20 to 15	LF P	30	-	795	-	35 ° C/ 1740	attery pa Belo w 5°C	-	-	-
	experime nt was	heat generation and transfer	-20 to 15	LF P	30	-	795	-	35 ° C/ 1740 s	attery pa Belo w 5°C of	-	-	-
	experime nt was	heat generation and transfer model and	-20 to 15	LF P	30	-	795	-	35 ° C/ 1740 s	attery pa Belo w 5°C of batter	-	-	-
	experime nt was conducted	heat generation and transfer model and	-20 to 15	LF P	30	-	795	-	35 ° C/ 1740 s	Belo W 5°C of batter y	-	-	-
	experime nt was conducted to verify	heat generation and transfer model and cooling	-20 to 15	LF P	30	-	795	-	35 ° C/ 1740 s	attery pa Belo W 5°C of batter y pack	-	-	-
	experime nt was conducted to verify the	heat generation and transfer model and cooling structure	-20 to 15	LF P	30	-	795	-	35 ° C/ 1740 s	attery pa Belo w 5°C of batter y pack	-	-	-
	experime nt was conducted to verify the accuracy	heat generation and transfer model and cooling structure model in	-20 to 15	LF P	30	-	795	-	35 ° C/ 1740 s	attery pa Belo w 5°C of batter y pack	-	-	-
	experime nt was conducted to verify the accuracy of the	heat generation and transfer model and cooling structure model in COMSOL	-20 to 15	LF P	30	-	795	-	35 ° C/ 1740 s	attery pa Belo w 5°C of batter y pack (flow	-	-	-
	experime nt was conducted to verify the accuracy of the model	heat generation and transfer model and cooling structure model in COMSOL	-20 to 15	LF P	30	-	795	-	35 ° C/ 1740 s	attery pa Belo W 5°C of batter y pack (flow rate	-	-	-
	experime nt was conducted to verify the accuracy of the model	heat generation and transfer model and cooling structure model in COMSOL	-20 to 15	LF P	30	-	795	-	s of the b 35 ° C/ 1740 s	attery pa Belo W 5°C of batter y pack (flow rate great	-	-	-
	experime nt was conducted to verify the accuracy of the model	heat generation and transfer model and cooling structure model in COMSOL	-20 to 15	LF P	30	-	795	-	s of the b 35 ° C/ 1740 s	attery pa Belo W 5°C of batter y pack (flow rate great er	-	-	-
	experime nt was conducted to verify the accuracy of the model	heat generation and transfer model and cooling structure model in COMSOL	-20 to 15	LF P	30	-	795	-	s of the b 35 ° C/ 1740 s	attery pa Belo W 5°C of batter y pack (flow rate great er than	-	-	-
	experime nt was conducted to verify the accuracy of the model	heat generation and transfer model and cooling structure model in COMSOL	-20 to 15	LF P	30	-	795	-	s of the b 35 ° C/ 1740 s	attery pa Belo W 5°C of batter y pack (flow rate great er than 0.8m	-	-	-
	experime nt was conducted to verify the accuracy of the model	heat generation and transfer model and cooling structure model in COMSOL	-20 to 15	LF P	30	-	795	-	s of the b 35 ° C/ 1740 s	attery pa Belo W 5°C of batter y pack (flow rate great er than 0.8m /s)	-	-	-
	experime nt was conducted to verify the accuracy of the model	heat generation and transfer model and cooling structure model in COMSOL	-20 to 15	LF P	30	-	795	- hicle-mo	unted li-	attery pa Belo W 5°C of batter y pack (flow rate great er than 0.8m /s)	- jes at subz	- ero temperatures F	- nergies 2017
	experime nt was conducted to verify the accuracy of the model	imized energy	-20 to 15 manageme 0020243	LF P ent stra	30 tegy fo	- r prehea	795 ting ve	- hicle-mo	unted li-	attery pa Belo W 5°C of batter y pack (flow rate great er than 0.8m /s)	- ies at subze	- ero temperatures. E	- inergies, 2017
	enarging experime nt was conducted to verify the accuracy of the model [14] An opt <u>https://doi.o</u> Real	imized energy indexed energy	-20 to 15 manageme 0020243 -10 to	LF P ent stra	30 Itegy fo	- r prehea	795 tiing ve	- hicle-mo	unted li-	attery pa Belo w 5°C of batter y pack (flow rate great er than 0.8m /s) ion batter	- ies at subzo	- ero temperatures. E	- inergies, 2017
	enarging experime nt was conducted to verify the accuracy of the model [14] An opt <u>https://doi.o</u> Real vehicle	imized energy index of the second sec	-20 to 15 manageme 0020243 -10 to 2	LF P ent stra	30 .tegy fo 180	- r prehea	795 iting ve	- hicle-mo Exter	unted li- 12° C/	attery pa Belo w 5°C of batter y pack (flow rate great er than 0.8m /s) ion batter	- ies at subze	- ero temperatures. E	- inergies, 2017 The battery fade ratio of
	<pre>[14] An opt https://doi.org/ https://doi.org/ [14] An opt https://doi.org/ Real vehicle taction m/</pre>	imized energy i rg/10.3390/en1 Electro- thermal	-20 to 15 manageme 0020243 -10 to 2	LF P ent stra LF P	30 Itegy fo	- r prehea	795 iting ve 580 0	- hicle-mo Exter nal	unted li- 12° C/ 12° C/ 12° C/ 12° C/	attery pa Belo W 5°C of batter y pack (flow rate great er than 0.8m /s) ion batter	- ies at subze 14.38 KWh	- ero temperatures. E	- inergies, 2017 The battery fade ratio of preheating
	<pre>[14] An opt https://doi.org/ Real vehicle testing w/ and w/</pre>	imized energy brief in the formula i	-20 to 15 manageme 0020243 -10 to 2	LF P ent stra LF P	30 Itegy fo 180	- r prehea	795 sting ve 580 0	- hicle-mo Exter nal sourc	unted li- 12 ° C/ 1740 s	attery pa Belo W 5°C of batter y pack (flow rate great er than 0.8m /s) ion batter 3.1 ° C amon g	- ries at subzo 14.38 KWh	- ero temperatures. E -	- inergies, 2017 The battery fade ratio of preheating and

preheatin	degradation								ent			unpreheating
g (to	model								cells			is 0.015%
2 °C)												and 0.023%
,												in the
												experiment
												respectively
[15] Improv	Lement of therm	nal charact	eristic	s and di	ischarge	naram	eters of N	JCM811	nower b	atterv prehe	eated by oil immers	ion Chemical
progress, 20)22(in Chinese))	leristie	s and a	iseniai ge	purum		(CIMOI I	powero	attery prene	ated by on miners	ion. Chemieur
Comment:	immersion preh	eating										
Experime	-	-20 to	Ν	4.6	-	70	Exter	13.04	3.5°	-	Internal and	-
nt based		10	С				nal	°C/m	C of		polarization	
on oil			M				sourc	in	differ		resistances	
immersio							e		ent		decreased to	
n							C		point		37.0% and	
11 much cotin									s on		37.970 and $21.10/$ of	
									the		21.170 01	
g									surfa		unpreneating	
									ce of		(SOC:33.3%)	
									а			
									batter			
									у			
[16] Therm	al insulation an	d preheati	ng Per	forman	ce of Li	thium E	Battery ba	used on F	CM. Che	emical Engi	neering, 2022 (in C	Chinese)
Comment:	coolant + PCM	(for warm	ing)									
The	Battery	-	LF	20	Pris	-	Exter	7.26°	4.24°	-	-	-
temperatu	preheating		Р		m.		nal	C/mi	С			
re rising	model and						sourc	n	amon			
curve in	insolation						e		g			
the	model								cells			
experime												
nt												
consistent												
with that												
in model												
[17] Investi	gation into heat	ting syster	n of lit	hium-io	on batte	rv nack	in a low	-temnera	ture envi	ronment I	South China Univ	
Technol.(N	at. Sci.), 2016 (in Chinese	e)		on outto	. j puen	111 û 10 îi	tempera			South China China	
Comment:	immersion preh	eating	/									
Pack 16S	Thermal	-30 to	-	37	Pris	_	Exter	30 °	3°C	-	-	-
cells.	sim model	0			m.		nal	C/ 35	amon			
Immersed	of battery	-20 to					sourc	min	g			
in	unit and the	0					e	20 °	cells			
iii transform	nack						L L	C/ DD				
uansiorm	раск		÷.				1 1	C/ 22	in the			
	Î tî m	10.4						C/ 22 min	in the 16			
er	heating	-10 to						C/ 22 min 10 °	in the 16 cell			
er (insulatin	heating device in	-10 to 0						C/ 22 min 10 ° C/ 12	in the 16 cell series			
er (insulatin g) oil	heating device in ANSYS	-10 to 0						C/ 22 min 10 ° C/ 12 min	in the 16 cell series pack			
er (insulatin g) oil External	heating device in ANSYS software.	-10 to 0						C/ 22 min 10 ° C/ 12 min	in the 16 cell series pack			
er (insulatin g) oil External Heater by	heating device in ANSYS software.	-10 to 0						C/ 22 min 10 ° C/ 12 min	in the 16 cell series pack			
er (insulatin g) oil External Heater by a high	heating device in ANSYS software.	-10 to 0						C/ 22 min 10 ° C/ 12 min	in the 16 cell series pack			
er (insulatin g) oil External Heater by a high voltage	heating device in ANSYS software.	-10 to 0						C/ 22 min 10 ° C/ 12 min	in the 16 cell series pack			
er (insulatin g) oil External Heater by a high voltage (220 V)	heating device in ANSYS software.	-10 to 0						C/ 22 min 10 ° C/ 12 min	in the 16 cell series pack			
er (insulatin g) oil External Heater by a high voltage (220 V) power	heating device in ANSYS software.	-10 to 0						C/ 22 min 10 ° C/ 12 min	in the 16 cell series pack			
er (insulatin g) oil External Heater by a high voltage (220 V) power supply	heating device in ANSYS software.	-10 to 0						C/ 22 min 10 ° C/ 12 min	in the 16 cell series pack			
er (insulatin g) oil External Heater by a high voltage (220 V) power supply. [18] Model	heating device in ANSYS software.	-10 to 0	oflo	w.temp	eratura	hybrid	preheatir	C/ 22 min 10 ° C/ 12 min	in the 16 cell series pack	-ter Screeni	ng of Lithium ion	Battery Packs
er (insulatin g) oil External Heater by a high voltage (220 V) power supply. [18] Model Journal of 7	heating device in ANSYS software.	-10 to 0	s of Lo	w-temp	erature 21 (in C	hybrid (preheatir	c/ 22 min 10 ° C/ 12 min	in the 16 cell series pack	ster Screeni	ng of Lithium ion 1	Battery Packs.
er (insulatin g) oil External Heater by a high voltage (220 V) power supply. [18] Model Journal of 7 Comment	heating device in ANSYS software.	-10 to 0 I Analysis ty (Natura d PTC	s of Lo 1 Scier	w-temp ice), 20	perature 21 (in C	hybrid hinese)	preheatir	C/ 22 min 10 ° C/ 12 min	in the 16 cell series pack	ster Screeni	ng of Lithium ion 1	3attery Packs.
er (insulatin g) oil External Heater by a high voltage (220 V) power supply. [18] Model Journal of 7 Comment: o	heating device in ANSYS software. ing and Therma <u>`ongji Universit</u> cooling plate an Sim in	-10 to 0 Il Analysis ty (Natura id PTC -40 to	s of Lo 1 Scier	w-temp ace), 20	verature 21 (in C	hybrid 'hinese)	preheatir	C/ 22 min 10 ° C/ 12 min ng system	in the 16 cell series pack	ster Screeni	ng of Lithium ion 1	Battery Packs.
er (insulatin g) oil External Heater by a high voltage (220 V) power supply. [18] Model Journal of 7 Comment: o	heating device in ANSYS software. ing and Therma <u>longji Universit</u> cooling plate an Sim in FULENT	-10 to 0 Il Analysis ty (Natura d PTC -40 to 0	s of Lo 1 Scier LF	w-temp ace), 20	erature 21 (in C	hybrid 'hinese) 165	preheatir	C/ 22 min 10 ° C/ 12 min mg system 3.56 °C/m	in the 16 cell series pack	ster Screeni 69500.7	ng of Lithium ion] -	Battery Packs.
er (insulatin g) oil External Heater by a high voltage (220 V) power supply. [18] Model Journal of 7 Comment: o	heating device in ANSYS software. ing and Therma <u>longji Universit</u> cooling plate an Sim in FLUENT for the	-10 to 0 Il Analysis ty (Natura id PTC -40 to 0	s of Lo 1 Scier LF P	w-temp ace), 20	erature 21 (in C	hybrid 'hinese) 165	preheatir	C/ 22 min 10 ° C/ 12 min mg system 3.56 °C/m in	in the 16 cell series pack	ster Screeni 69500.7 J	ng of Lithium ion] -	Battery Packs.
er (insulatin g) oil External Heater by a high voltage (220 V) power supply. [18] Model Journal of 7 Comment: o	heating device in ANSYS software. ing and Therma <u>longji Universit</u> cooling plate an Sim in FLUENT for the guide the state	-10 to 0 Il Analysis ty (Natura id PTC -40 to 0	s of Lo 1 Scier LF P	w-temp ace), 20	erature 21 (in C	hybrid 'hinese) 165	preheatir	C/ 22 min 10 ° C/ 12 min mg system 3.56 °C/m in	in the 16 cell series pack	ster Screeni 69500.7 J	ng of Lithium ion 1	Battery Packs.
er (insulatin g) oil External Heater by a high voltage (220 V) power supply. [18] Model Journal of 7 Comment: o	heating device in ANSYS software. ing and Therma <u>longji Universit</u> cooling plate an Sim in FLUENT for the fluid-solid	-10 to 0 Il Analysis ty (Natura id PTC -40 to 0	s of Lo 1 Scier LF P	w-temp ace), 20	erature 21 (in C	hybrid 'hinese) 165	preheatir	C/ 22 min 10 ° C/ 12 min mg system 3.56 °C/m in	in the 16 cell series pack	ster Screeni 69500.7 J	ng of Lithium ion 1	Battery Packs.
er (insulatin g) oil External Heater by a high voltage (220 V) power supply. [18] Model Journal of 7 Comment: o	heating device in ANSYS software. ing and Therma <u>Tongji Universit</u> cooling plate an Sim in FLUENT for the fluid-solid coupling	-10 to 0 Il Analysis ty (Natura id PTC -40 to 0	s of Lo 1 Scier LF P	w-temp ace), 20	erature 21 (in C	hybrid 'hinese) 165	preheatir	C/ 22 min 10 ° C/ 12 min mg system 3.56 °C/m in	in the 16 cell series pack	ster Screeni 69500.7 J	ng of Lithium ion 1	Battery Packs.
er (insulatin g) oil External Heater by a high voltage (220 V) power supply. [18] Model Journal of 7 Comment: o	heating device in ANSYS software. ing and Therma <u>Tongji Universit</u> cooling plate an Sim in FLUENT for the fluid-solid coupling heat	-10 to 0 Il Analysis ty (Natura id PTC -40 to 0	s of Lo 1 Scier LF P	w-temp ace), 20	erature 21 (in C	hybrid 'hinese) 165	preheatir	C/ 22 min 10 ° C/ 12 min mg system 3.56 °C/m in	in the 16 cell series pack	ster Screeni 69500.7 J	ng of Lithium ion) -	Battery Packs.

	[19] Design	research on ba	ttery heati	ng and	l preser	vation s	ystem ł	based on	liquid co	oling mo	de. Journal	of Hunan Univers	ity, 2017 (in
F	The	The	-28 to	_	_	_	_	_	38 °	1°C	_	_	_
	liquid-	transient	10	_	_	_	_	_	C/	amon		_	-
	cooled	heat	10						70mi	g			
	nower	conduction							n	cells			
	battery	equation											
	system	and the											
	installed	finite											
	on the	element											
	vehicle	method											
	and	used for											
	nowered	model											
	on at high	model											
	voltage												
F	[20] Apolyci	is of Heat Diss	ination and	d Drah	enting N	Aodula	for Veb	icle Lith	ium Iron	Dhospha	to Bottery	Energies 2021	
	https://doi.or	$r\sigma/10.3390/en1$	4196196	u i i cii		viouuie			ium non	1 nospita	ne Danery.	Lifergies, 2021	
F	-	The heat	-20 to	LF	-	Pris	-	-	45 °	8.332	-	-	_
		generation	25	Р		m.			C/	°C			
		model and		-					1500	amon			
		Liquid							s	g			
		cooling							(cells			
		model in							T _{coolan}				
		Solidworks							35°C				
		Sona one)				
	[21] Effect a	inalysis on per	formance i	improv	/ement	of batte	ry thern	nal mana	gement i	n cold w	eather. Jour	mal of Energy Stor	age, 2022
_	https://doi.or	<u>rg/10.1016/j.es</u>	t.2021.103	<u>3728</u>							r		
	-	CFD model	-20 to	-	150	-	-	-	4 °C/	2.11	-	-	-
		of 6	-						min	°C			
		batteries							(0.52	amon			
		and a							5 kg/s	g 11			
		heating							and	cells			
		plate							60°				
┝	[22] Thorea	al analyzic and	ontimizat	ion of	on EV^{1}	attom	nool: for	. ran1	ligations	Internet	tional Iour	l al of Heat and Mar	26
	Transfer 20	ai anaiysis allu 20	opunizat	1011 01		Janery	pack 10	i icai app	meations	. mema	uonai jouff	iai of freat and Ma	55
	https://doi.or	20 rα/10 1016/i ;;i	1eatmacetr	anctor	2020.1	20384							
┝	Comment: h	est performen	reat minir	num er	.2020.1	<u>20204</u>	tion for	ind: cons	idering -	eversible	heat is hat	ter on mating test "	eculte
┝	EV_ARC	Heat	-20 to	-	153	-			0.5 °	6 °C			-
	test and	generation	5	-	155	-	-	-	C/mi	amon	-	-	-
	heating	and transfer	5						n	g			
	test	model and							(8	cells			
	iest								L/mi				
		simulation							n,				
		of the							40°C				
		battery)				
		pack with											
		cooling											
1		coomig	1				l I				1	1	
		nlata											

Table A.3 Summary of heating rate and differences in battery in reviewed heat pump preheating method

Metho	Experim	Model	Am	Cell	Ce	Cell	Cell	Power	Heating	Tem	Energy/		Impact	
d	ent		bien	Che	11	Geo	Mas	Source	Rate	р.	Capacit			
			t -	m.	Ca	m.	s			Diff.	у	Performan	Durabilit	Environ
			fina		p.		(g)			ΔT	Consu	ce	у	ment
			1		(A						mption			
			Te		h)									
			mp.											
			(°C)											

Heat	[27] Batter	ry thermal m	anagem	ent stra	tegy u	tilizing	a secon	dary heat	pump in ele	ectric veh	icle under o	cold-start			
pump	conditions	. Energy, 202	23												
prehea	https://doi	.org/10.1016/	j.energ	y.2023.	12682	7									
ting	-	Thermal	-5	-	1	-	-	-	20 °C/	-	-	-	-	-	
C		model	to						60 min						
		and	15												
		transient													
	heat pump model														
	heat pump model														
	pump model model model model [28] Evaluation of the energy consumption of a thermal management system of a plug-in hybrid electric vehicle using the														
	[28] Evaluation of the energy consumption of a thermal management system of a plug-in hybrid electric vehicle using the model														
	model model <td< td=""></td<>														
	[28] Evaluation of the energy consumption of a thermal management system of a plug-in hybrid electric vehicle using the example of the Audi Q7 e-tron. SAE International Journal of Passenger Cars-Mechanical Systems, 2018 http://dx.doi.org/10.4271/06-11-03-0017														
	Real	-	-	-	-	-	-	-	-	-	-	Realizing	-	The	
	vehicle											an		CO2 is	
	test											increase		6 g/km	
												of driving		with	
												range of >		heat	
												10% with		pump	
												heat pump		for	
														cabin	
														heating	

Table A.4 Summary of heating rate and differences in battery in reviewed PCM preheating method

Method	Experiment	Model	Ambie	Cell	Ce	Cell	Ce	Powe	Heating Rate	Temp.	Ene	Iı	mpact
			nt -	Che	11	Geo	11	r		Diff. ΔT	rgy/		
			final	m.	Ca	m.	М	Sour			Cap	Performance	Dura
			Temp.		р.		ass	ce			acit		bility
			(°C)		(A		(g)				у		-
					h)						Con		
											sum		
											ptio		
											n		
PCM	[35] A fast-heat	battery sys	stem using	; the hea	at relea	used fro	m detc	nated su	percooled phase	change mate	erials. E	nergy, 2021	
preheati	https://doi.org/10).1016/j.er	hergy.2020).11949	6	•				•	1		•
ng	A device	-	5 to 20	-	3.2	Cyl.	-	-	15°C / 2 min	-	-	Increase in	-
	designed to								(PCM with			discharge	
	trigger the								subcooling)			capacity and	-
	solidification											power up to	
	of the								15°C/37			9.87% and	
	subcooled								min (PCM			7.56% in the	
	PCM to release								without			PCM with	
	heat to battery								subcooling)			subcooling	
	[36] Experimenta	al investig	ation of th	ermal r	nanage	ement s	ystem	for lithiu	m ion batteries r	nodule with	couplin	g effect by heat she	eets
	and phase change	e material	s. Internat	ional Jo	urnal o	of Energ	gy Res	earch, 20)18		•		
	https://doi.org/10).1002/er.4	4081 <u></u>										
	Designation of	-	-15 to	-	-	Cyl.	-	Exter	0.5 - 1°C	2.82 °C	200	-	-
	battery module		-					nal	/min with	among	0 -		
	with composite							powe	heat sheets	cells in	250		-
	PCMs and							r	from 40 to	the	0		
	experiment for							sourc	65 ℃	battery	J/°C		
	thermal							e		module			
	properties												

Table A.5 Summary of heating rate and differences in battery in reviewed heat pipe preheating method

Method	Experiment	Model	Ambi	Ce	Cell	Ce	Cell	Powe	Heating	Temp. Diff.	Ene	
			ent -	11	Cap	11	Mas	r	Rate	ΔT	rgy/	Impact

			final Tem p. (°C)	Ch em	(Ah)	Ge om	s (g)	Sour ce			Cap acit y Con sum ptio	Performance	Dur abili ty
TT	[20] E			¥71		1.	11			1.551 1.55	n	2015	
Heat pipe	[39] Experimen	ntal investigat	tion on E	V batt	ery coo	ling ar	id heati	ng by hea	at pipes. Applie	ed Thermal Engi	neering	, 2015	
preheati	https://doi.org/	10.1016/j.app	lthermal	eng.20	14.09.0	<u>83</u>	r	_			r	Γ	r
ng	L-shape heat pipe inserted in the cell gap	-	-15 to 0 -20 to 0	-	-	-	-	Exter nal sourc e (DC)	15°C / 1200s or 300s (20 or 40 °C hot fluid) 20°C / 1500s or 500s (20 or 40 °C hot	-	-	-	-
	[40] Experime	ntal investigat	ion on a	n inteo	rated th	ermal	manag	ement sv	fluid) stem with heat	nine heat exchar	or for	electric	
	vehicle. Energy	y conversion a	and mana	ageme	nt, 2016)	manag	Sincine sys	stelli with heat	pipe neur exenui	1501 101	electric	
	https://doi.org/	10.1016/j.enc	onman.2	016.03	<u>3.066</u>		1.0		20.00 /		1 1 1	r	1
	heat pipe	-	-20 to 0	-	-	-	30	-	13.33 min	-	1.11 W/	-	-
	heat exchanger										°C		
	and heat												
	pump air												
	conditioning												
	the												
	performance												
	of this												
	integrated												
	under												
	different												
	working												
	conditions			1			0.124		1 11			1 11 1 1	a .
	[41] Experiment micro heat pipe	ntal investigat e array. Appli 10.1016/j.arg	tion of pr ed Energ	y, 202	ng perto 3	orman	ce of lit	hium-ion	battery modul	es in electric ver	ncles er	hanced by bendir	ng flat
	Designation	-	-20	LF	52	Pri	-	Exter	1 °C / min	Below 5 °C	-	-	-
	of battery		to 0	Р		sm		nal		at single cell			
	module with					•		sourc		and pack			
	bending FMHPAs							e		level			
	and												
	experiment												
	of this												
	[42] Experiment	ntal study on l nternational L	heating p	erforn f Heat	nance of and Ma	f pure	electric	vehicle j 021	power battery u	inder low temper	rature		
	https://doi.org/	10.1016/j.ijhe	atmasstr	ansfer	.2021.1	21191	115101, 2	021					
	Designation	-	-20	LF	68	Pri	-	-	1.62 °C /	-	-	Discharge	-
	of battery		to 0	Р		sm			min			voltage	
	module with TiO ₂					•						increased to 3.06V(-	
	CLPHP and											10 °C),	
	experiment											3.01V(-20 °C)	
	of this											and 2.99V(-	
												the discharge	

											capacity	
											3 9% 11 6%	
											and 24 4%	
											respectively	
[43] Investigat	tion of therma	l manage	ment o	of lithiu	m-ion	batterv	based or	n micro heat pi	e array. Journal	of Ener	gy Storage, 2021	
https://doi.org/	/10.1016/j.est.	2021.102	2624		<u> </u>				j		8,8-,	
Comment: inte	egration of coo	oling and	heatin	ig; nega	tive in	npact of	n each ot	her	D 1	1		1
L1-10n	3D heat	-30		18	Pri	-	Expe	Model:	Below	-	-	-
battery	transfer	10 0	Р		sm		nime	30°C / 20	3.03 °C			
heating unit	model and				•		nı. evter	(heating	among cells			
Dased on							nal	nower 30	in the pack			
MHPA lor	hetter						sourc	W)				
experiment	battery						e	,				
	neating											
							Mod					
							el· -					
							C 1.					
	COMSOL											
	ios											
[44] Inclined I	U-shaped flat r	nicrohea	t nine	array co	nfigu	ration fo	or cooling	α and heating li	ithium_ion batter	l v modu	les in electric	
vehicles. Ener	gv. 2021	meronea	t pipe		migui	ation it		g and neating n		y modu		
https://doi.org/	/10.1016/j.ene	rgy.2021	.12143	33								
3p4s battery	-	-10	Ν	50	Pri	-	Exter	0.56°C/	Below 5°C	-	-	-
pack with 6		to 0	М		sm		nal	min	at the			
U-shaped		-10	С				sourc	0.61°C /	surface of			
FMHPAs for		to 10					e:	min	battery			
experiment							PTC		-			
[15] Experime	ntal invastigat	ion on a	oling	haating	ahara	otoristi	of ultre	thin miara ha	at ning for algorit	io vohio	la hattamy tharmal	
[45] Experime	Chinese Journ	al of Med	sonng/	al Engi	, chara	$\tau 2018$	in Chin	a-uiiii iiicio iic ese)	at pipe for electi	ie venie	the battery thermal	L
5n battery		-20	_	50				40°C /	~34°C			_
pack with 12	-	-20 to 20	-	50	-	-	-	4558-5028	~J.4 C	-	-	-
IMHPs (A		10 20						(heating	among cens			
in group) for								power				
experiment								180W)				
[46] Experime	l ntal study on i	nreheatin	a ther	mal mai	nagem	ent syst	em for li	thium-ion batte	l erv based on U-s	haned n	nicro heat nine	
array Energy	2022	preneatin	ig then	inai mai	liagem	ent syst		linum-ion batt	ery based on 0-s	naped n	nero neat pipe	
https://doi.org/	/10/1016/i ene	rov 2022	1241	78								
Experiment	-	-20	LF	120	Pri	-	Exter	15 °C / 26	Batterv	-	-	-
for LIB		to 0	P	120	sm		nal	min	level:			
preheating			1				sourc	(Electrical	1.06 °C			
based U-					•		e	heating	(with heat			
shape								power is	pipe)			
MHPA and								32W with	0.97 °C (no			
PI electric								heat pipe	heat pipe)			
heating film									Module			
on the upper									level:			
surface of									2.35 °C			
each laver of									(with heat			
batteries									pipe)			
541101105									1.9/ °C (no			
									Module			
heating film on the upper surface of each layer of									level: 2.35 °C (with heat pipe)			
batteries									pipe) 1.97 °C (no			
									heat pipe)			
			1		1	1			Module			

Table A.6 Summary of heating rate and differences in battery in reviewed resistance preheating method

		Model										Impact
--	--	-------	--	--	--	--	--	--	--	--	--	--------

Metho d	Experime nt		Ambi ent - final Tem p. (°C)	Cell Che m.	Cell Cap (Ah)	Cell Geo m.	Ce ll M ass (g)	Power Source	Heating Rate	Temp. Diff. ΔT	Energy/ Capacity Consum ption	Performance	Durab ility
Resista	[48] PTC se	lf-heating exp	beriments	and the	ermal m	odeling	g of litl	hium-ion ba	attery pack	in electric veh	nicles. Energi	ies, 2017	
prehea ting	Battery pack with PTC resistance inserted for experime nt in two cases: 220V AC as supplying power and battery as supplying power	Heat generation and transfer model and temp rising model (internal and external heat)	-23.3 to - 0.5	LM O	35	Pris m.	10 80	Externa l source: 220V AC and Battery	0.504 ° C / min	4.67 °C (- 40 to -20) 3.506 °C (-20 to 0) among cells in the pack	~ 13% of the total pack energy	After preheated to 0.5 °C, battery pack can discharge for 10s at 3C pulse current, but not at the 3.5C	-
	[49] Heating	g character of	a LiMn2	:O4 batt	ery pac	k at low	v temp	erature base	ed on PTC a	and metallic r	esistance ma	terial. Energy	
	https://doi.o)1 / org/10.1016/j.e	egypro.20	017.03.(602								
	Comment: ł	nigher battery	temperat	ture and	l better j	pack the	ermos-	consistency	of MRF si	de heating wi	th same ener	gy consumption	
	PTC bottom heating and Metallic resistance film side heating [50] Resear Transportat	- ches on heatir	-12 to 2	LM O	35 re lithin	um-ion	- power Pacific	Grid power	Averag e rising rate of external and internal battery cells are 4.34 and 2.77 °C / h Respect ively (PTC) ~0.34 ° C/min (MRF) electric veh	5.2 °C among cells (PTC) 2.81 °C among cells (MRF) icles. In 2014	- IEEE Confe	- rence and Expo	-
	https://doi.o	on Electrifica	LION ASIA	1-Pacific 2014.69	e (11EC <u> 41276</u>	Asia-P), 2014	42.5.00	1	1	D: 1	1
	Experime nts based on the heating aluminum plate twined by PTC resistance wire heating method	Battery heat generation model; geometric model; finite element model	to 2.5	O LM	55	-	-	Externa l source: 220V AC	/ 25 min		-	Discharge capacity increases from 21.9Ah to 24.11 Ah at 0.3C after heated	

Method	Experiment	Model	Ambi ent -	Cell Che	Cell Cap	Cell Geo	Cell Mas	Power Source	Heating Rate	Temp. Diff.	Energy/ Capacity		Impact
			final Tem p. (°C)	m.	(Ah)	m.	s (g)			ΔΤ	Consum ption	Performance	Dura bility
	[52] Preheating Technology, 20 https://doi.org/ Comment: sym	g performanc)22 <u>10.1007/s10</u> 1metric PI fil	e by hea 694-022- m better	ting film 01251-(than sp	n for the <u>0</u> iral case	e safe aj e in the	pplicatio uniform	on of cylir	drical lithin	um-ion ba	ttery at low t Higher pow	emperature. Fire er of heating film	can
Electrot hermal film	cause increased Experiment based on the PI heating film attached on both sides of the battery	battery electro- thermal model and battery simulatio n model in Fluent	-10 to 25	LM O	-	<u>p differ</u> Cyl.	-	Batter y	35 °C / 395 s(1W) 35 °C / 190 s(3W) 35 °C / 126 s(5W)	8.5 °C in the battery level (5W)	540 J (heating power is 3W)	Ohm resistance from 0.12 (- 15 °C) to 0.05 (25 °C) at SOC=0.5	-
preheati	[53] Low curre (VPPC)	ent rate disch	arge with	n extern	al heatii	ng at lo	w temp	erature. In	2015 IEEE	E Vehicle	Power and P	ropulsion Confere	ence
	https://doi.org Electrotherm al film powered by 110V DC at the bottom of battery for experiment	/ <u>10.1109/VP</u> Thermal model	PC.2015 -27 to 5 -17 to 0	.735297 LFP	80	-	-	110V DC power supply	32 °C / 50 min 17 °C / 40 min	-	1.713 kWh 0.9515 kWh	The discharge energy has been promoted by 0.36031(- 17 °C) and 0.7664 (- 27 °C) after heating respectively	-
	[54] Low-temp	erature Heat	ing Expe	riment	of Powe	er Batte	rv Mod	ule for Ele	ectric Vehic	le. Batter	es. 2021 (in	Chinese)	
	The heating film under the battery pack for the experiment	Thermal model and battery simulatio n model in STAR- CCM	-	LM O	52	-	-	Extern al source	About 0.6 °C / min (heating power 100W)	-	- -	-	-
	[55]Preheating	method of li	ithium-io	n batter	ries in a	n electr	ic vehic	le. Journa	l of Moderr	n Power S	ystems and C	Clean Energy, 201	5
	https://doi.org/ Experiment based on wide-line metal film installed in four heaters between 3 cells	<u></u>	<u>-40</u> to -	0115-1 LM O	35	-	-	Batter y	2.67 °C / min	-	-	The voltage and power performance of the battery pack were improved (1C), and the discharging and charging capacity restored	-

Table A.7 Summary of heating rate and differences in battery in reviewed electrothermal film preheating method

						and half its	
						room-	
						temperature	
						level	

Table A.8 Summary of heating rate and differences in battery in reviewed Peltier effect preheating method

Method	Experime nt	Model	Ambient -final	Ce 11	Cell Cap	Ce ll	Ce 11	Powe r	Heatin g Rate	Temp. Diff. ΔT	Energy/ Capacity		Impact
			Temp.	Ch		Ge	М	Sour			Consumpti	Performanc	Durability
			(°C)	em	(Ah	om	ass	ce			on	e	
)		(g)						
Peltier	[57] A nove	l thermal m	anagement f	or elec	tric and	l hybri	d vehi	cles. IEE	E transact	ions on vehi	cular technolog	y, 2005	•
effect	https://doi.o	org/10.1109/	TVT.2004.8	42444							_	-	
preheat	Comment: c	cooling is me	ore effective	and et	fficient	than h	eating						
ing	Experime	Thermal	17 to 37	-	60	-	-	Batte	20 °C	8 °C	2.5% of	-	-
	nt based	manage	(frontal					ry	/ 20	(Heat	capacity		
	on Peltier-	ment	battery						min	lost to			
	effect	model in	box)						12 °C	ambient			
	thermoele	SPICE							/ 20	at the			
	ctric heat		17 to 29						min	hose			
	pumps		(rear							systems)			
			battery										
			compart										
			ment)										

Table A.9 Summary of heating rate and differences in battery in reviewed self-Heating Lithium-Ion Battery

Metho	Experim	Model	Amb	Cell	Cel	Cell	Cel	Ро	Heating	Temp.	Energy/		Impact
d	ent		ient -	Che	I	Geo	1	we	Rate	Diff.	Capacity		
			final	m.	Ca	m.	Ma	r		ΔT	Consum	Performance	Durability
			Tem		p.		SS	So			ption		
			p.		(A		(g)	urc					
			(°C)		h)			e					
Self-	[58] Rapic	l self-heating	and inte	rnal ten	iperati	ire sens	ing of	lithium	ion batter	ies at low te	emperatures.	Electrochimica	Acta, 2016
heating	https://doi	.org/10.1016	j.electac	ta.2016	.09.11	7			-	-	-		
lithium	Nickel	-	-20	LM	10	-	21	Bat	20 °C/	Foil	2.9%	The self-	After 500
-ion	foil		to 0	0			0	ter	12.5 s	tempera	4.1%	heated cell	preheating at
battery	sheets in		-30					У	30 °C/	ture	5.4%	yields a	CCCV (1C), the
	parallel		to 0						19.2 s	increase		discharge/	cell capacity
	inserted								40 °C/	s much	Of	regeneration	fade is less than
	within		-40						29.4 s	faster	capacity	power of	7 2%
	the 2-		to 0							than the	1 5	1061/1425	/.2/0
	sheet									battery		w/kg at 50%	
	cell.									surface		SOC in the	-
										tempera		ambient	
										ture		temp of -	
												30 °C	
	[59] Lithiu	um-ion batter	y structu	re that s	self-he	ats at lo	w tem	peratur	es. Nature,	2016			1
	https://doi	.org/10.1038/	/nature1	<u>6502</u>									
	One	-	-20	LM	7.5	-	16	Bat	20 °C/	-	3.8%	14 min	SHLB can
	nickel		to 0	0			0	ter	19.5 s		5.5%	charged to	achieve 500
	foil		-30					у	30 °C/		Of	80% at the	cycles in 3C fast
	sheet		to 0						29.6 s		capacity	degree of -	charging at -
	inserted		-40						40 °C/			30	30 °C, while the
	in cell		to 0						42.5 s				conventional
	for tests.												cells would lose

												20% capa after 12 cy
												_
[60] A fas	t rechargeabl	e lithium	n-ion ba	ttery a	t subfre	ezing t	empera	atures. Jour	nal of The I	Electrochem	ical Society, 201	6
https://iop	science.iop.o	rg/article	e/10.114	19/2.06	<u>81609j</u>	es/met	<u>a</u>	1	1		1	1
One	Electroch	-10	LM	10	-	20	Ext	20 °C/	-	-		
nickel	emical-	to 10	0			6	ern	54 s				
foil	thermal	-20 to 10					al	30 C/				
sheet	coupled	-30					rce	40 °C/				
inserted	model in	to 10					(pu	40°C/ 90 s				
in cell	Software	10 10					lse	,00				
for tests.	AutoLion)					
[61] Pani	1D d restoration	 	c vehici	la hatte	ny porf	ormon	o whil	e driving a	t cold temp	araturas Iou	rnal of Power S	201
https://doi	a restoration of a row of a	/i inowsc	v = 201'	7 10 02	ny perio ng	orman		ie unving a	i colu temp	Jatures. Jou		Jurces, 201
Comment	control strat	egy nam	ed 'Bat	terv H	<u>. /</u> eating V	While I	Drivino	' proposed	where bral	cing energy i	used for internal	heating
Battery	-	-10	LM	9.5	-	21	-	20 °C/	-	-		licating
with two		to 10	0	7.5		0		33 s				
inserted		-20	Ŭ			÷		30 °C/				
nickel		to 10						46 s				
foils		-30						40 °C/				
tested		to 10						56 s				
accordin		-40						50 °C/				
g to EV		to 10						112 s				
load												
profile												
[62] Comp	putational des	sign and	refinem	ent of	self-hea	ating li	thium	ion batterie	s. Journal o	f Power Sou	rces, 2016	
https://doi	.org/10.1016	/j.jpowsc	our.2010	5.08.02	28			T				
Experim	Electroch	-20	LM	10	-	-	-	20 °C/	Lower	4.15%		
ents	emical-	to 0	0					27.7 s	than	3.23%		
carried	thermal							(one	$5^{\circ}C(3)$	3.03%		
out to	coupled							$20 \circ C/$	sneets)	OI		
obtain	model.							20°C/ 20.8 s	surface	capacity		
data for								(two	of			
validatio								sheets)	battery			
n of the								20 °C/	and Ni			
present								19.4 s	foil			
ECI								(three				
model.								sheets)				
[(2]]]	. 1	61				11	T	1.0		017		
[63] Innov	vative heating	g of large	-size at	itomoti	ive L1-10	on cell	s. Jour	nal of powe	er sources, 2	2017		
Commont	.org/10.1010	<u>j.jpowsc</u>	ur.2010	<u>5.12.10</u> tor for	<u>12</u> tompor	oturo o	rodion	t noross col	1 thisknoss			
-	Flectroch			40	-					_		1
_	emical-	to 0	_	-10	_		_			_		
	thermal	10 0										
	coupled											
	model.											
[64] Impro	oving temper	ature uni	formity	of a li	thium-i	on batt	tery by	intermitter	t heating m	ethod in colo	d climate. Interna	ational Jour
Heat and I	Mass Transfe	r, 2018	5				5 5		0			
https://doi	.org/10.1016	/j.ijheatn	nasstran	sfer.20	017.12.1	159						
Comment	: heating for s	some tim	e and s	topping	g heatin	g to en	sure u	niformity				
-	A three-	-	LM	-	Pris	-	-	-	3-4	-		
	dimensio		0		m.				kelvin			
	n heating								across			
	finite								the			
	element								thicknes			
	model is								s of			
									battery			
									(heating			

	establishe				for 0.1 s		
	d.				and		
					stoppin		
					g for		
					0.3s)		

Table A.10 Summary of heating rate and differences in battery in reviewed CC/CV discharging

Metho	Experim	Model	Ambi	Ce	Cell	Cell	Ce	Powe	Heating	Tem	Energy/	Impost	
u	em		final	II Ch	Сар	m	п М	r Sour	Kale	p. Diff	Capacity	Derformanc	Durability
			Tem	em	(Ah		ass	ce		AT	n	e	Durability
			p.)		(g)					č	
			(°C)		,		(8)						
CC/CV	[2] Heating	g strategies for	Li-ion b	atterie	s operat	ed from	ı subze	ero tempo	eratures. Elect	rochimic	a Acta, 2013		
dischar	https://doi.	.org/10.1016/j.	electacta	.2013.	03.147			1			· · ·		
ge	Comment:	CC discharge											
	-	Electroche	-20	Ν	2.2	Cyl.	-	Batte	35 °C/	-	-	-	-
		mical-	to 15	С				ry	420 s (2C)				
		thermal		Μ									
		(ECT)											
		coupled											
	F(7) A 1	model		1		1	1 1			1.1	E : 2017		
	[65] Analy	$\sqrt{10}$ sis of low tem		prenea	iting eff	ect base	ed on t	battery te	mperature-rise	e model.	Energies, 2017		
	Comment:	CC discharge	11008112	21									
	Dischar	Temperatur	-10	Тi	26	Cyl	45	Batte	15 °C/	_	Not exceed		
	ge	e-rise	-10 to 5	Ni	2.0	Cyl.	чJ	rv	280 s (2C)	-	15%	-	-
	process	model with	10.5	Co				-5	15 °C/				
	test for	the		AI					more than		30% of the		
	self-	dynamic		O ₂					1080 s		rated		
	heating	characterist							(1C)		capacity		
	at low	ic of the									1 5		
	temperat	battery											
	ule	temperatur											
		e and SOC.											
	[2] Heatin	a strategies for	Lijonh	ottorio	s operat	ed from	subze	ro temp	rotures Flect	rochimic	Acta 2013		
	https://doi	$arg/10\ 1016/i$	electacta	2013	s operat 03 147	cu nom	I SUUZC	no tempo	fatures. Elect		a Acta, 2015		
	Comment:	CV discharge	erectueta	.2013.	0.5.1.17								
	-	Electroche	-20	Ν	2.2	Cvl.	-	Batte	40 °C/	-	23% of	-	_
		mical-	to 20	С		-)		ry	360 s		capacity		
		thermal	-	М				5	(2.8V)		1 5		
		(ECT)							35 °C/				
		coupled							197 s				
		model.							(2.5V)				
	[66] Multi	stage CC-CV c	harge m	ethod t	for Li-io	on batte	ry. Ma	thematic	al Problems in	n Engine	ering, 2015		
	https://doi.	.org/10.1155/2	015/2947	7 <u>93</u>									
	Comment:	multistage CC	C-CV cha	rge	1	1				1	1	1	
	CC-CV,	Electroche	-10	LF	1.37	Cyl.	-	Batte	-	-	Multistage	-	Multistag
	two-	mical and	to -	Р				ry			CC-CV		e CC-CV
	stage	first-order									decreases		decreases
	CC-CV,	KC									power		the
	anu multiste	equivalent									by 3 04%		capacity
	$\frac{11}{10}$	model									compared		5 65%
	CV	mouel.									with CC		compared
	tested in										discharging		with CC
	battery.										Build		

												dischar
												g
[67] Multi https://doi	i-objective opti .org/10.1109/A	mization CCESS.	discha 2018.2	arge me 2837652	thod for	heatin	ng lithiur	n-ion battery	at low ter	mperatures. IEE	E Access, 2018	
Comment	: multi-objectiv	e optimi	zation	dischar	ge							
The	Thevenin	-10	LF	5	-	14	Batte	15 °C/	-	-	-	-
paramet	equivalent	to 5	Р			5 g	ry	291.33 s				
ers	circuit					-						
identifie	model and											
d by test	the											
data	temperatur											
	e-rise											
	model											
[68]Comp	aring optimal b	battery w	arm-u	p strateg	gies bas	ed on a	self-heati	ng. In 2017 II	EEE 56th	Annual Confer	ence on Decisio	on and
Control (C	CDC)											
https://doi	.org/10.1109/C	DC.2017	7.8264	231								
Comment	: CV-CC-rest p	hase disc	charge	; energy	and wa	arm-up	time as	objectives; po	ower deli	verability as a te	rminal constrai	nt
-	Coupled	-20	LF	2.3	Cyl.	-	batter	20 °C/	-	ΔZ is	-	-
	electrother	to 0	Р				У	93.06s		0.1199.		
	mal model							(Power as				
		-20						a terminal		ΔZ is		
		to 10						point)		0.1552.		
								30°C/ 78.03s				
								70.038 (Temp as				
								a terminal				

Table A.11 Summary of heating rate and differences in battery in reviewed DC preheating method

Method	Experiment	Model	Ambi ent -	Cell Chem	Ce 11	Cell Geo	Ce 11	Pow er	Heati	Te mp	Energ		Impact
			final Tem p. (°C)		Ca p. (A h)	m.	M ass (g)	Sou rce	Rate	· Di ff. ΔT	Capaci ty Consu mptio	Performance	Durability
DC preheati	[69] An optima reduction. Appl https://doi.org/1	 l internal-heatin lied Energy, 20 10.1016/j.apene	ng strateg 19 19. 19.2019	gy for lithi 0.113797	um-io	n batterie	s at lo	w temp	erature co	onside	ring both	heating time and l	ifetime
	Testing system and monitoring system in the experimental platform.	Battery heat generation model, the lumped thermal equivalent circuit model, and the semi- empirical fade model.	-30 to 2.1	LiNi 1/3 Co 1/3 Mn 1/3 O 2	8	-	30 0	-	32.1 °C/ 103 s	-	-	The heated battery can offer 8.7/32.7 times the discharge/cha rge power and 62.46 times the discharge energy of the unheated battery	The capacity loss is only 1.4% after 500 repeatedly heating -
	[70] Experimen Transfer, 2019 https://doi.org/1	ital study on pu	lse self–l masstran	neating of sfer.2019.	lithiur 02.02(n—ion ba	ttery a	t low te	mperatur	e. Inte	rnational.	Journal of Heat ar	ıd Mass
	Comment: heat electrode mater	ing efficiency i ial, while the lo	s 15.3%; onger bat	The lowe tery life in	r disch pulse	arge volt heating i	tage ai is attri	nd highe	er polariz	ation i	n DC heat charge vol	ting easily cause c	racks in the
	Three current values (maximum current (11	N/A	-10 to 10	ĹĊŎ	2	Cyl.	45	-	20 ° C/ 280 s (DC- 8A)	-	-	-	The SOH drops to 0.8 at the 81st cycle.

A), minimum						
current (8 A)						-
and mean						
current (9.5						
A))						
performed the						
continuous						
DC heating.						

Table A.12 Summary of heating rate and differences in battery in reviewed AC preheating method

Meth	Experimen	Model	Ambie	Cell	Ce	Cell	Ce	Powe	Heating	Tem	Ener		Impact
od	t		nt -	Che	11	Geo	11	r	Rate	p.	gy/		5 1 11
			final	m.	Ca	m.	Μ	Sour		Diff.	Capa	Performanc	Durability
			$(^{\circ}C)$		p.		ass	ce		$\Delta 1$	Corre	e	
			(\mathbf{C})		(A b)		(g)				umpt		
					11)						ion		
AC	[71] Cooling	and probacting a	fbottorios	in hyb	rid ala	atria vol	violog	In 6th A	SME ISME T	Thormal I	Inginogri	ng Joint Confo	romaa 2002
nrehe	https://www	researchgate net/	nrofile/An	dreas-	iu eie		neies.	III OUI A	SME-JSME I		Ingineen	ing John Come	Telice, 2003
ating	Vlahinos/pul	blication/2287805	594 Cooli	ng and	prehe	ating o	f batt	eries in	hvbrid electr	ic vehicl	es/links/	0c96053189038	3d5e39000000
uting	/Cooling-and	d-preheating-of-ba	atteries-in-	-hybrid-	electri	ic-vehic	les.pd	f	- * _				
	-	A simple	-40 to	Ni	13	-	49	-	46 °C/ 6	-	-	AC can	-
		lumped	6	MH			00		min (AC-			decrease	
		capacitance							110 Arms			the	
		calculation							60 Hz)			resistance	
		and finite										from 1.36	
		element										Ohm in -	
		analysis in										30°C to	
		software										0.205 Ohm	
		ANSYS.										in 25°C,	
												which	
												hattam	
												deliver	
												more	
												nower	
	[72] HEV be	tterv heating usir	I AC curr	ents Io	urnal	of Powe	r Sou	rces 200	4			power	
	https://doi.or	rg/10.1016/i.ipow	sour.2003	.10.014	umur	011000	500	200					
	AC	-	-20 to	Ni	6.5	-	-	-	40°C/3	-	-	At both -	-
	provided		20	MH	(1				min (AC-			20 °C and -	
	by 60 Hz				6				80Arms			30 °C, 10-	_
	source.				ser				10-20			20 kHz AC	
					ies				kHz)			currents at	
)							60-80	
												Arms can	
												restore the	
												battery	
												resistance	
												to values	
												close to	
												that at	
	[72] T	1 (° 1 1	<u> </u>		1 4			· 1.4	·	· 1	l.,.	25 °C	1 6 7 1
	[/3] Temper	ature-adaptive alt	ernating c	urrent p	reneat	ing of I	itnium	-ion batte	eries with lith	ium depo	osition pr	evention. Journ	ai of The
	https://iopse	ience ion org/artic	, sle/10/1140	9/2 096	1602;	es/mete							
	Comment [,] fl	ie maximum pern	aissible an	nplitude	$\frac{1002}{\text{s}}$ of th	e heatir	1g curi	ent with	out lithium de	position	at differe	nt frequencies	determined at
	each temper	ature in the multis	step AC pr	eheatin	g meth	nod	-5 -uii	-ine wielly	a an manufin de	r oblition		nequeneres	actorninoù ut
	Sinusoidal	The	-25 to	70	1	-	25.	-	30°C/ 800	-	-	-	_
	alternating	equivalent	5	%			6		s				

current	electric circuit		NC					(AC-100				
was used	(EEC) models		Μ					Hz				-
or the	fitted through		and					-20 to -5:				
est.	the EIS data		30					3.5 A				
	and the		%					-15 to -10:				
	maximum		LM					4 A				
	permissible		0					-10 to -5:				
	AC and the							5 A				
	heat							-5 to 0: 6				
	generation							A				
	rate combined							0 to 5: 7 A				
	in the model)				
	in the model.											
[74] Internal	heating of lithiur	n-ion batte	eries usi	ing alte	ernating	curre	nt based	on the heat ge	neration	model in	the frequency	
domain. Jou	rnal of Power Sou	rces, 2015	5	C		, ,		C			1 2	
https://doi.or	g/10.1016/j.jpow	sour.2014	.09.181									
Experimen	Equivalent	-20 to	Li _x	2.8	Cyl.	46	-	30°C/	Less	-	-	Capacity
s to prove	circuit model	5	Ni o.					1000 s	than			loss is not
nodel	and the model		₈ Co					(AC-7A 1	2 °C			seen after
	for the heat		0.15					Hz)	in			repeated
	generation		Alo						batter			preheating
	and the		05 O						У			experiments
	temperature		2						level			
	rise in the		4									
	frequency											-
	domain											
751 A rapid	low-temperature	internal h	eating s	trateos	with o	ntimal	frequen	L cy based on co	nstant n	olarizatio	n voltage for li	thium-ion
patteries Ar	nlied Energy 201	16	cating 5	integy	with 0	Puintai	nequen	ey bused on et	nistant p	olulizatio	in voltage for in	
https://doi.or	$r_{\alpha}/10$ 1016/i apen	erav 2016	05 151									
nttery	Electro	15.4	NC					21°C/338	Less			After
atted by	thermol	-13.4	M	-	-	-	-	21 C/ 338	than	-	-	heating 30
	agualad	10 5.0	IVI					3 (AC- 1377 Hz)	16°			times IC
Creasing	coupled							1377112)	C in			neaks are
AC WIIN	model								batter			almost the
arious									v			same which
ets of									level			means there
equencie												is no
												obvious
												detrimental
												effect on the
												SOH of
												LIB
												LIDS
761 An alter	nating current he	ating meth	nod for	lithium	n-ion ba	tteries	from sul	bzero tempera	tures. Int	ernation	l al Journal of Er	ergy
Research, 20)16	annig men	104 101					02 0 10 10 11p 0 10				
https://doi.or	g/10.1002/er.357	6										
Comment: c	omparison of AC	and pulse	heating	; metho	ods; wh	en the	frequence	cy exceeds 10	Hz, the c	capacity a	and impedance	would barely
experience a	.											
.	ny attenuation		T IM		Cyl.	45	-	31.79°C/	-	-		After 20 and
Experimen	A thermal	-24 to	LIN			1		600 -		1		10 times
Experimen s with	A thermal model	-24 to 7.79	nNi	2.3				000 s				40 times
Experimen s with lifferent	A thermal model considering	-24 to 7.79	nNi Co	2.3				(SAC-				heating
Experimen s with lifferent current	A thermal model considering battery safe	-24 to 7.79	nNi Co O2	2.3				(SAC- 30Hz				heating (rectangular
Experimen s with lifferent surrent mulitudes	A thermal model considering battery safe	-24 to 7.79 -24 to 25.6	nNi Co O ₂	2.3				(SAC- 30Hz 10A)				heating (rectangular pulse-1Hz-
Experimen s with lifferent urrent mplitudes	A thermal model considering battery safe operating voltage limite	-24 to 7.79 -24 to 25.6	nNi Co O ₂	2.3				600 s (SAC- 30Hz 10A)				heating (rectangular pulse-1Hz-
Experimen Swith ifferent urrent mplitudes	A thermal model considering battery safe operating voltage limits	-24 to 7.79 -24 to 25.6	nNi Co O ₂	2.3				600 s (SAC- 30Hz 10A) 49.6°C/				heating (rectangular pulse-1Hz- 10A), 3.7%
perimen with ferent rrent uplitudes quencie	A thermal model considering battery safe operating voltage limits with heat	-24 to 7.79 -24 to 25.6	nNi Co O ₂	2.3				600 s (SAC- 30Hz 10A) 49.6°C/ 600 s				heating (rectangular pulse-1Hz- 10A), 3.7% and 6.6%
xperimen with ifferent urrent nplitudes equencie and	A thermal model considering battery safe operating voltage limits with heat generation	-24 to 7.79 -24 to 25.6	nNi Co O ₂	2.3				600 s (SAC- 30Hz 10A) 49.6°C/ 600 s (Rectangu				heating (rectangular pulse-1Hz- 10A), 3.7% and 6.6% capacity
xxperimen s with ifferent urrent mplitudes requencie , and /aveforms	A thermal model considering battery safe operating voltage limits with heat generation rate and	-24 to 7.79 -24 to 25.6	nNi Co O ₂	2.3				600 s (SAC- 30Hz 10A) 49.6°C/ 600 s (Rectangu lar pulse				heating (rectangular pulse-1Hz- 10A), 3.7% and 6.6% capacity fading are
xxperimen s with ifferent urrent mplitudes requencie , and /aveforms	A thermal model considering battery safe operating voltage limits with heat generation rate and temperature	-24 to 7.79 -24 to 25.6	nNi Co O ₂	2.3				600 s (SAC- 30Hz 10A) 49.6°C/ 600 s (Rectangu lar pulse AC 30Hz				heating (rectangular pulse-1Hz- 10A), 3.7% and 6.6% capacity fading are observed,
Experimen s with lifferent urrent mplitudes requencie , and vaveforms	A thermal model considering battery safe operating voltage limits with heat generation rate and temperature	-24 to 7.79 -24 to 25.6	nNi Co O ₂	2.3				600 s (SAC- 30Hz 10A) 49.6°C/ 600 s (Rectangu lar pulse AC 30Hz 10A				heating (rectangular pulse-1Hz- 10A), 3.7% and 6.6% capacity fading are observed, and DC
Experimen s with different current amplitudes frequencie s, and waveforms	A thermal model considering battery safe operating voltage limits with heat generation rate and temperature	-24 to 7.79 -24 to 25.6	nNi Co O ₂	2.3				600 s (SAC- 30Hz 10A) 49.6°C/ 600 s (Rectangu lar pulse AC 30Hz 10A				heating (rectangular pulse-1Hz- 10A), 3.7% and 6.6% capacity fading are observed, and DC resistance
Experimen s with lifferent surrent implitudes requencie , and vaveforms	A thermal model considering battery safe operating voltage limits with heat generation rate and temperature	-24 to 7.79 -24 to 25.6	nNi Co O ₂	2.3				600 s (SAC- 30Hz 10A) 49.6°C/ 600 s (Rectangu lar pulse AC 30Hz 10A				heating (rectangular pulse-1Hz- 10A), 3.7% and 6.6% capacity fading are observed, and DC resistance increases by

												1.2% and 2.2% respectively.
[77] Experin temperatures <u>https://doi.or</u>	nental investigations. Journal of Powe g/10.1016/j.jpows	ons of an A er Sources, sour.2017	AC puls , 2017 .09.063	e heati	ng metl	nod for	r vehicul	ar high power	lithium-	ion batte	ries at subzero	
AC pulse heating tests with different parameters , the AC pulse heating cycle tests, the low temperatur e charge tests, and the calibration tests.	-	-25 to 5	LFP	30	-	67 5	-	30°C/ 1800 s (SAC-1Hz 60A)	Tem perat ure incon sisten cy betw een the cell interi or and surfa ce is less than 5°C	-	_	The AC preheating does not cause irreversible damage to the battery even in the low frequency range (0.5 Hz) under normal voltage protection limitations for the battery.
[78] A novel https://doi.or	echelon internal	heating str ergy.2018.	rategy c 03.052	of cold	batterie	es for a	ll-climat	e electric vehi	icles app	lication.	Applied Energy	7, 2018
EIS tosts	The Putler	g strategy of	oi varia	$\frac{1}{2}$	Cul	16		2 50 °C/	200			After
AC heating tests, Echelon heating tests, life tests and performan ce tests	Volmer equation and a novel electro- thermal coupled model	10	nNi Co O ₂					min	C amon g cells in pack			heating 40 times, there is no obvious capacity deterioration
[79] An auto on Power Ele https://doi.or	motive onboard A ectronics, 2017 ·g/10.1109/TPEL.	AC heater	without <u>3661</u>	extern	ial pow	er supj	plies for	lithium-ion ba	itteries at	low tem	peratures. IEE	2 Transactions
Comment: C	only triangle curre	nt generat	ed by h	eater a	nd som	e heat	lost in m	osfet	-	-	-	
An onboard AC heater proposed to heat lithium- ion batteries without the requireme nt of external power supply		-20 to 0 -30 to 0	nNi Co O ₂	2.3	r Cyl.		on board AC heate r- batter y	1.34 °C/ min (AC- 7.8A, 833Hz) 2.4 °C/ min (AC- 7.8A, 20 kHz) 3.33 °C/ min (AC- 10.6A, 500Hz)	only 0.3° C betw een two cells, but the unbal ance in SOC or inter nal resist	y of cell energ y 6.7% of cell energ y 7.7% of cell energ y y		-

									a large			
									temp			
									differ			
									ence			
									belw			
									cells.			
80] A sine-v	wave heating circ	uit for auto	omotive	batter	y self-l	neating	at subze	ro temperatur	es. IEEE	Transac	tions on Indust	rial
Informatics, https://doi.or	2019 rg/10.1109/TH.20	19.292344	6									
A high-	Modeling of	-20 to	LiM	6	Cvl.	46	On	1.54 °C/	-	5.4%	-	-
frequency	the Heating	0	nNi	ser	5		board	min (AC-		of		
sinewave	Current and		Co	ies			AC	6.8A, 40		cell		
(SW)	Efficiency		O ₂				heate	kHz)		energ		
neater	and			2.5			r-			у		
based on	development						batter					
resonant	of heating						У					
LC	model											
converters												
to heat the												
Dattery	1 1 1			14		· 1		1.41.5		1 1		
[81] Modeling and analysis of high-frequency alternating-current heating for lithium-ion batteries under low-temperature												
operations. Journal of Power Sources, 2020 https://doi.org/10.1016/j.jpowsour.2019.227435												
<u>nups://doi.org/10.1016/j.jpowsour.2019.22/435</u>												
transport car	not be neglected:	large curr	ent may		e lithiur	ng um n-ion a	lepositio	n, reducing ba	atterv life		ation of the fittin	um-ion
A high-	High-	-20 to	LiM	2.5	Cvl.	46	On	2.7 °C/	-	6.0%	-	The AC
frequency	frequency	0	nNi		-)		board	min (AC-		of		frequency
AC heater	thermoelectric		Co				AC	4.17Å, 45		cell		should be as
based on	model based		O_2				heate	kHz)		energ		high as
ouck-boost	on the heat						r-			у		possible
conversion	generation of						batter					without
	the ohmic						У					detrimental
	resistance and											effect
	lithium ion											
[82] Experin	nental study on th	e mechani	sm of f	requer	cy-dep	endent	heat in A	AC preheating	g of lithiu	m-ion ba	attery at low	
temperature.	Applied Thermal	l Engineer	ing, 202	22	5 1			1 6			,	
https://doi.or	rg/10.1016/j.applt	hermaleng	<u>.2022.1</u>	18860	<u>)</u>							
Comment: th	ne increased heat	with high	AC free	luency	is not i	eflect	ed by the	simplified Be	ernardi's	heat gen	eration equation	1
EIS tests	-	-20 to	-	2.9	Cyl.	47	-	1.42 °C/	-	-	-	-
and		5						$\min (AC - 2.48 \wedge 2.0)$				
evnerimen								2.46A, 5.9 kHz)				
ts								3.26 °C/				
								min (AC-				
								2.48À, 20				
								kHz)				
0014 6 4	1 (1 1		· 1	L .	1 .	1		6 (1)	ļ	т. Т		022
[83]A Iast pi https://doi.or	re-neating method	2023 100	m-10n b 227	atterie	s by wi	reless	energy tr	ansier at low	temperat	ures. e i r	ansportation, 2	023
Comment: n	roducing SAC ba	.2023.100	<u>onboar</u>	d wire	less cho	raina	system					
Evnerimen	Equivalent	-20 to		26	Cyl	1911g	system	8.4 °C/mi	250	_		
t to prove	circuit model	0		2.0	Cy1.	-10	_	n	Č. 5	_	_	_
the model	of AC heating	0						 (85 kHz	amon			
	system model							7800 mA)	g			
	based on the								cells			
	wireless								acros			
	energy								s 10s			
	transfer								pack			
	system											

Table A.13 Summary of heating rate and differences in battery in reviewed pulse preheating method

Metho d	Experime	Model	Ambi ent -	Cell Che	Cell Can	Ce 11	Cell Mas	Powe r	Heating Rate	Tem p	Energy/ Capacity		Impact
ŭ	iii iii		final Tem	m.	(Ah	Ge	s (g)	Sour	Tuto	Diff.	Consumpti	Perfor	Durability
			p.)								
			(°C)										
Pulse	[84] Capacity degradation minimization oriented optimization for the pulse preheating of lithium-ion batteries under low												
preheat ing	temperature. Journal of Energy Storage, 2020 <u>https://doi.org/10.1016/j.est.2020.101746</u>												
mg	Comment: T	The capacity de	gradatio	n of the b	attery i	s due	to the lo	oss of the	active materi	al and lit	hium inventory		
	Pulse	Electro-	-20	LiNi	2.87	-	44.7	-	4.87 °C/	-	-	-	The battery
	oreheating	thermal	to 5	CoAl					min				only had a
	experimen	hased on		02									of 0.035%
	t with a	electroche											after 30
	fixed	mical											heating
	and a	impedance											cycles.
	fixed	spectrosco											
	frequency	different											-
		temperatur											
		es											
	[85] The pre	heating strateg	gy of vari	iable-frec	luency l	pulse f	or lithiu	ım batter	y in cold wea	ther. Inte	rnational Journ	al of Ener	gy Research,
	https://doi.or	rg/10.1002/er.:	5715										
	Tests to	Temperatu	-20	-	2.8	Су	44.5	-	25 °C/	-	-	-	After 10
	prove the	re rise	to 5			1.			1000s				preheating
	preheating	model and											cycles, the
	using	thermo-											capacity of
	variable-	electric											the cell is
	frequency	coupling											changed by
	puise	model at											only 0.4%
		different											
		es											-
	[86] Preheat	ing the lithium	i-ion batt	ery with	real-tin	ne opti	mized p	oulse free	uency under	low temp	eratures. Electr	ric Machin	es and
	Control, 202	(in Chinese))										
	Comment: v	ariable freque	-20	; 	51	_	83.0	_	25 °C/	110	_	_	_
	main	thermoelec	to 5	-	5.1	-	5	-	368s	C in	-	-	-
	parameter	tric								the			-
	s of	coupling								batter			
	ballery	combining								y level			
		the											
		equivalent											
		the internal											
		ine internal											
		resistance											
		heat											
	[70] E	generation		1f h 1'		 	ion 1				tional I	flloct -	1 Maga
	Transfer. 20	nemai study of 19	n puise se	en-neath	ig of lit	mum–	ion datt	ery at lo	w temperature	. merna	uonai journal (n neat and	1 IVIASS
	https://doi.or	rg/10.1016/j.ij	heatmass	transfer.2	2019.02	.020							

A circuit module designed to generate a	N/A	-10 to 10	LCO	2	Cy l.	45	-	20 °C/ 175s (DC- 8A)	-	Less than 15% of battery energy	-	
pulse high current in the												
battery.												
[87]A rapid lithium-ion battery heating method based on bidirectional pulsed current: Heating effect and impact on battery life. Applied Energy, https://doi.org/10.1016/j.apenergy.2020.115957												
Low	ECM and	-10	NCM	50	Pri	-	-	11.3 °C/m	-	-	-	
temperatur	thermal	to			sm			in (4C				
e	model	31.3						T=0.8s)				
characteris												
tics and												
the												
n between												
pulsing												
parameter												
s and												
heating												
rate found												
by												
ts												
[88] On the	warmup of Li-	ion cells	from sub	-zero te	empera	atures. I	n 2014 A	merican Cont	trol Conf	erence, 2014		
https://doi.or	rg/10.1109/AC	C.2014.	<u>5859350</u>		-							
[89] Energy-	-conscious war	m-up of	li-ion cel	lls from	subze	ro temp	eratures.	IEEE Transa	ctions on	Industrial Elec	tronics, 2	016
https://doi.or	rg/10.1109/TH	E.2016.2	523440									
Comment: n	nutual pulse: p	ulse betv	veen batt	ery and	extern	al energ	gy storag	e system; Pov	ver as a to	erminal constra	int; energ	y efficient
Experime	Equivalent	-20	LFP	-	Су	-	batter	37.5 °C/	-	Comparing	-	
nts set to	circuit	to			I.		У	1/2s (value of		the CV		
the	model and	17,5						(value of penalty on		with Pulse		
models	thermal	• •						SOC loss		(penalty		
	model	-20						is 0)		the total		
		to						, ,		energy loss		
		12.25						32.25 °C/		increases		
		26						278s		by nearly		
		-20						(value of		35%.		
		to 24.2						penalty on				
		24.3						SOC loss				
								is 0.58)				
								44.3 °C/				
								143s (CV)				

Table A.14 Summary of heating rate and differences in battery in reviewed the combination of internal preheating and external preheating method

Method	Experiment	Mode	Am	Cell	Cell	Cell	Cell	Power	Heatin	Temp.	Energy/		Impact
		1	bien	Che	Cap	Geo	Mas	Source	g Rate	Diff.	Capacity		
			t -	m.		m.	s			ΔT	Consumptio	Performanc	Durabil
			fina		(Ah		(g)				n	e	ity
			1)								
			Te										
			mp.										
			(°C)										
	[47] PTC self	f-heating exp	erimen	ts and the	ermal m	odeling	of lithiu	m-ion bat	tery pack	in electric v	ehicles. Energie	s, 2017	

Dischar	https://doi.org/10.3390/en10040572												
ge	Comment: promoting restorability of battery discharge capacity with integrating internal and external heat; internal heat good for uniform												
heating	temp distribu	tion		•	•	U 1		e	C			C C	
+ PTC	Battery	Heat	-	LMO	35	Pris	108	Extern	0.352	4.67 °C	$\sim 13\%$ of the	After	-
	pack with	generatio	19.3			matic	0	al	°C /	(-40 to -	total pack	preheated	
	PTC	n and	to -					source	min	20)	energy	to 0.5 °C,	
	resistance	transfer	2.4					: 220V	(SOC			battery	
	inserted for	model						AC	=100	3.506 °		pack can	
	experiment	and temp						and	%)	C (-20		discharge	
	in two	rising						Batter		to 0)		for 10s at	
	cases:	model						У		among		3C pulse	
	220V AC	(internal								the		current, but	
	as	and								nack		not at the	
	supplying	external								pack		3.5C	
	power and	heat)											
	battery as												
	supplying												
	power												
Air	[90]Synthesis	s of an energ	y-optim	al self-h	eating s	trategy fo	or Li-io	n batteries	. In 2016	IEEE 55th (Conference on D	ecision and Co	ntrol
preheati	(CDC)												
ng +	https://doi.or	g/10.1109/Cl	DC.201	<u>6.779849</u>	<u>02</u>								
Internal	Comment: Te	emperature-d	lriven e	nergy-op	timal pr	oblem; 7	The syst	em needs	to be well	-insulated f	or the heater to b	pe of any assist	ance.
preheati	-	Coupled	-20	LFP	2.3	Cylin	-	battery	40 °C/	-	The initial	-	-
ng		electroth	to			der			within		SOC is 0.6		
(CV-		ermal	20						150 s		and the SOC		
CC-rest		model									after		
phase)											warmup is		
											greater than		
											0.35 to		
											ensure		
											performance		
											atter		
Ain	[01] An amon	ary antimal y		atratage	forti	on hotta	riag and	ita annuar	imationa	IEEE Trop	preneating.	mal Systems	
nreheati	Technology	2018	/ann-up	snalegy	IOI LI-I	on batter	les and	ns approx	linations.	TEEE Train	sactions on Com	ioi systems	
ng +	https://doi.or	2010 р/10.1109/Т(CST.20	17.27858	33								
Internal	Comment: ti	ne-limited et	nergy-0	ntimal pr	oblem:	approxir	nating t	he optima	l policy by	v either a C	V-CC sequence	or a CV-CC-res	st
preheati	sequence			punnar pr	oorenn,	uppionii	inating t	ne optimu	i ponej oj	enner a c	v ee sequence		
ng	-	Coupled	-20	LFP	2.3	Cvlin	-	batterv	40 °C/	-	CV-CC	-	-
(ČV-		electroth	to			der			within		trajectory		
CC-rest		ermal	20						150 s		consumes		
phase)		model							(more		~9% more		
- ·									loss		energy than		
									leads		CV-CC-rest		
									to less		trajectory		
									warmi		5 5		
									ng				
Flectrot	[02] Low Ter	nnerature Co	mnosit	a Haatin	r Metho	d for Lit	hium ic	n Dower I	lume) Rottery Cl	ninese Iour	al of Mechanic	1 Engineering	2010 (in
hermal	[32] LOW ICI Chinese)	nperature CC	mposit	e meaning	5 IVICUIC		111111-10		Janery. Cl	miese Jouri		a Engliceting,	2019 (III
film	Comment:	combined wi	ith AC 1	reheatin	σ								
preheati	battom	The	20	I M.	5	Culin	16		0.69.0		1 2 W/h		
ng +	connected	temporat	-20 to 5	NiCa	5	der	40	-	0.08 C/min	-	1.∠ vv fl	-	-
ĂĊ	with a wide	ure	105	Ω^2		uci			(only		2 4 33 71		
-	with a wide	rising		02					with		3.4 Wh		
	film in	model							electro				
	series and	and							therma				
	nowered by	equivale							l film)				
	an AC	nt circuit							3.2 °C				
	power	model							/min				
	supply.												