CRC Report No. AVFL-37

THERMAL AND ELECTRICAL PROPERTIES OF LUBRICANTS FOR HEV/EV APPLICATIONS

Final Report

May 2022

COORDINATING RESEARCH COUNCIL, INC. 5755 NORTH POINT PARKWAY • SUITE 265 • ALPHARETTA, GA 30022

The Coordinating Research Council, Inc. (CRC) is a nonprofit corporation supported by the petroleum and automotive equipment industries. CRC operates through the committees made up of technical experts from industry and government who voluntarily participate. The four main areas of research within CRC are: air pollution (atmospheric and engineering studies); aviation fuels, lubricants, and equipment performance; heavy-duty vehicle fuels, lubricants, and equipment performance (e.g., diesel trucks); and light-duty vehicle fuels, lubricants, and equipment performance (e.g., passenger cars). CRC's function is to provide the mechanism for joint research conducted by the two industries that will help in determining the optimum combination of petroleum products and automotive equipment. CRC's work is limited to research that is mutually beneficial to the two industries involved. The final results of the research conducted by, or under the auspices of, CRC are available to the public.

LEGAL NOTICE

This report was prepared by Southwest Research Institute as an account of work sponsored by the Coordinating Research Council (CRC). Neither the CRC, members of the CRC, Southwest Research Institute, nor any person acting on their behalf: (1) makes any warranty, express or implied, with respect to the use of any information, apparatus, method, or process disclosed in this report, or (2) assumes any liabilities with respect to use of, inability to use, or damages resulting from the use or inability to use, any information, apparatus, method, or process disclosed in this report. In formulating and approving reports, the appropriate committee of the Coordinating Research Council, Inc. has not investigated or considered patents which may apply to the subject matter. Prospective users of the report are responsible for protecting themselves against liability for infringement of patents.

Preface

CRC would like to acknowledge the member companies who helped supply base oils for this study including Chevron, Chevron Phillips Chemical Co., Croda, Dow Chemical, Infineum, Oleon, Phillips 66 Co. Additionally, Oleon contributed financially to this work by funding testing directly.

Table of Contents

4
5
6
7
8
9-13
14-26
27
28
29-30

List of Figures

Figure 1: Density vs Temperature Chart

Figure 2: Thermal Conductivity vs Viscosity, Group III Chart

Figure 3: Thermal Conductivity vs Viscosity, Group IV Chart

Figure 4: Thermal Conductivity vs Viscosity, Group V Chart

Figure 5: Thermal Conductivity vs Temperature Chart

Figure 6: Specific Heat Capacity vs Temperature Chart

Figure 7: Specific Resistivity vs Temperature Chart

List of Tables

Table 1: Oil Property Tests

Table 2: Sample Description Table 3: Test Method Summary Table 4: Retest Samples and Test Methods

Table 5: Kinematic Viscosity Results

Table 6: Density Results

Table 7: Thermal Conductivity Results

Table 8: Specific Heat Capacity Results Table 9: Specific Resistivity Results

List of Acronyms and Abbreviations

EV: electric vehicle HEV: hybrid electric vehicle CRC: Coordinating Research Council SwRI: Southwest Research Institute

Executive Summary

At Coordinating Research Council's request, Southwest Research Institute and an outsourced lab conducted 5 thermal characteristic and electrical property tests at specified temperatures for a set of 29 samples to create a base oil database. The properties included density, kinematic viscosity, specific heat capacity, specific resistivity, and thermal conductivity. The temperature ranges tested ranged from -25°C to 130°C, and varied for the specific test method. Base oil samples were supplied ranging from Group I to Group V base oils. As the test temperature increased, density, kinematic viscosity, thermal conductivity, and specific resistivity values decreased, while specific heat capacity increased. Within each base oil group, as viscosity increased, the density and thermal conductivity values increased. Moving from Group I to Group IV, the density and specific heat capacity decreased while the thermal conductivity values increased.

Background

In an effort to better understand the thermal and electrical properties of lubricants used for hybrid electric vehicles and electric vehicle applications, CRC sought to create a database of these properties for Group I to Group V base oils with an emphasis on Group III through Group V base oils. The thermal characteristics such as thermal conductivity, density, viscosity, and specific heat are important to understand as they will need to be optimized for future hybrid and electric vehicle lubricants. Electrical properties such as electrical resistivity and conductivity are necessary to measure to ensure the non-conductance of lubricants used in the hybrid and electric vehicles. For those reasons, a matrix of thermal characteristic tests and electrical property tests at specified temperatures were conducted on 29 samples to generate a better understanding of these base stocks. In the need to understand the properties it was important to consider the laboratory quality practices, familiarity with testing, and precision.

Approach

The experimental plan was to measure kinematic viscosity, density, thermal conductivity, specific heat, and specific resistivity of 29 base oils suggested and supplied by CRC members and associated companies. The temperatures requested for these properties varied from -25°C to 130°C and are listed in Table 1 of the Oil Property Tests. This testing program lasted from February 1, 2021, when samples first arrived at SwRI, to June 30, 2021, when all testing was completed. The tests were completed on SwRI Work Orders G19648, G20057, and G20592.

	Table 1: Oil Property Tests							
ltem #	Item # Property Test Method and Temperatures							
1	Kinematic Viscosity	ASTM D445 at 40, 100°C						
2	Density	ASTM D4052 at 40, 60, 80, 95°C						
3	Thermal Conductivity	ASTM D7896 at 0, 40, 70, 100, 130°C						
4	Specific Heat	ASTM E1269 at -25, 0, 40, 70, 100, 130°C						
5	Specific Resistivity	ASTM D1169 at 25, 40, 70, 100, 110°C						

CRC member companies selected and sent all of the base oils for this study to SwRI. They are listed in Table 2: Sample Description. The samples varied from Group I to Group V with a range of viscosities to represent some of the base oils available on the market. The requested amount was 600 mL per sample to allow sufficient testing volume. Four (4) of the five tests were performed at Southwest Research Institute while ASTM D1169 specific resistivity was conducted at another Iab, United Power Services, Inc in Nashville, Tennessee.

As samples arrived at different time points from different sources, a majority of testing (23 samples) was scheduled at a similar time, with 6 samples arriving afterwards. Tests were run as samples arrived and continued as additional samples arrived. The bulk of the samples, 27 of 29, were shipped together to the outsourced lab in one batch, however the last 2 samples were shipped separately. Hence, the completion of the tests varied for the samples and tests.

Table 2: Sample Description						
Sample name	Trade name	Details				
Group I, 4 cSt	Holly	SN148				
Group II+, 4 cSt	EHC45					
Group III A, 4 cSt	UltraS					
Group III B, 2 cSt	Yubase					
Group III B, 3 cSt	Yubase					
Group III B, 4 cSt	Yubase					
Group III B, 6 cSt	Yubase					
Group III B, 8 cSt	Yubase					
Group III+ B, 4 cSt	VHVI					
Group III+ A, 4 cSt	XHVI	GTL-based				
Group III+ A, 8 cSt	XHVI	GTL-based				
Group IV, 3 cSt	Synfluid (PAO)					
Group IV, 5 cSt	Synfluid (PAO)					
Group IV, 6 cSt	Synfluid (PAO)					
Group IV, 8 cSt	Synfluid (PAO)					
Group IV, 65 cSt	Metallocene (m-PAO)					
Group V, Di-ester, 3.2 cSt		Short chain branched				
Group V, Monoester, 2.9 cSt		Mixed chain, mixed linear				
		branched				
Group V, Monoester, 4.2 cSt		Long chain linear				
Group V, Monoester, 5.5 cSt		Long chain branched				
Group V, Polyolester, 4.1 cSt		Short chain linear				
Group V, Polyolester, 4.4 cSt		Medium chain linear				
Group V, Adipate Ester, 4 cSt	Hitec					
Group V, PAG, 4 cSt	UCON OSP-18					
Group V, PAG Blend, 4 cSt	UCON LB-135					
Group V, bio-based Polyolester						
Group V, bio-based Di-ester		Multi branched				
Group V, bio-based Monoalcohol						
Ester A		Branched				
Group V, bio-based Monoalcohol						
Ester B		Multi branched				

The selected standardized test methods are noted below in Table 3: Test Method Summary including the year designation, general test procedure, method significance, instrument used, and comments on test repeatability and reproducibility.

Testing was conducted as described per the ASTM methods with no additional repeat testing. Duplicate testing was offered but not selected for this project. Running a fresh new aliquot of the sample for each test or repeat test is recommended and never reusing any sample. A repeat test would be when a new sample aliquot is taken and gone through the whole test procedure.

To minimize test result variability, SwRI used certified technicians, calibrated and

referenced equipment (where applicable), and adherence to quality certifications. SwRI accreditations include ISO 9001, ISO 14001, ISO 17025, and participation in ASTM and other industry crosscheck and proficiency testing programs. United Power Services, Inc. does participate in ASTM Proficiency Test Program for Insulating Fluids.

Table 3: Test Method Summary								
Test Method	General Procedure	Method Significance	Instrument	Precision				
ASTM D445-21 Kinematic viscosity	A fixed sample amount, after equilibrating at test temperature, is allowed to flow under gravity into the capillary of a viscometer and this time is measured and used with the calibration constant of the viscometer to calculate the kinematic viscosity. Two determinations are made and the average of the two is reported.	Important property of sample in determining storage, handling, and operation conditions. This method limits application to Newtonian fluids where shear stress and shear rate are proportional	Manual kinematic viscosity baths, calibrated viscometers	Per test method, repeatability for base oils at 40°C is 1.01 % and at 100°C is 0.85% of the average of two results. Reproducibility for base oils at 40°C is 1.36% and at 100°C is 1.90% of the average of two results.				
ASTM D4052-18a Density	Sample is prepared to temperature and injected into digital density analyzer where the change in the oscillating U-tube frequency determines the density of the sample	It is a fundamental physical property of sample used to characterize petroleum products	Anton Paar DMA 4500 M	Per test method, at 15°C, repeatability of base stocks is 0.00016 (single determination), while reproducibility is 0.00052 (single determination)				
ASTM D7896-19 Thermal Conductivity	A thin wire is immersed in the test liquid where current is sent through the wire, heating the wire and liquid. As the wire cools, the wire resistance is measured and this temperature-time profile determines the thermal properties.	Fundamental property of a material measuring its ability to resist electrical current	ThermTest Flucon Fluid Control GMBA Lambda	Limited precision data as test method precision was based on one lab				
ASTM E1269- 11(2018) Specific Heat Capacity	A very small sample aliquot is placed into a pan and heated from initial temperature to final temperature at 20°C/min and the heat flow measured. Usually compared to a reference material (sapphire).	Measurement of the heat needed to raise 1 kg of material by 1 Kelvin. Helpful in understanding heat absorbing property of material.	TA Instruments Q2000-2455 DSC	Per test method for temperature range of 40°C to 80°C, the repeatability was 6.2% of average of two results, and the reproducibility was 8.4% of average of two results.				

Test Method	General Procedure	Method	Instrument	Precision
		Significance		
ASTM D1169-19a Specific Resistivity	Direct polarity of potential is applied to test specimen for 1 min and the current and voltage are recorded. After a short circuit for 5 min, the reverse polarity of potential is applied and again current and voltage are recorded to determine resistivity.	The resistivity is a measure of its electrical insulating properties under test conditions. High resistivity reflects low content of free ions and ion- forming particles, and normally indicates a low concentration of conductive contaminants.	Baur DTL	Per test procedure on referee method: results of two properly conducted tests (each the average of two fillings) by the same operator on the same sample using the same equipment should not differ from each other by more than 5.7 % of their average. Unable to produce additional precision and bias due to limited interest in round robin participation and lack of a reference material. Max detection limit of 10E15.

Additional test comments are noted below per test method.

ASTM D445: Kinematic viscosity was performed by six technicians with about ten different viscometers from March to May.

ASTM D4052: Density was tested by two technicians with one instrument between March and May.

ASTM D7896: Thermal conductivity was run on two instruments by one technician between March and June.

ASTM E1269: Specific heat capacity was run on one instrument with two technicians performing testing. The majority of samples (22) were run on the same date, and the remaining seven tests run after a time gap of about 4-8 weeks. This instrument did undergo repair during the gap where the chiller was replaced. Reference standard and calibration were completed before any testing was restarted on the instrument.

ASTM D1169 (by United Power Services, Inc):

ASTM D1169 has two options for the analysis – referee and routine.

Referee – Clean cell completely between each different sample. Fill the cup and take a reading. Reverse polarity and take another reading and average the results. This is automated on the equipment. Fill the cup again without rinsing and repeat the procedure of taking two readings. Report the average of the two sets of results.

Routine – No cleaning of the test cell between samples is required if the test specimens are of the same type of fluid. However, it is required to rinse with the test specimen prior to analysis, which was done. For routine tests, only one reading is taken and the average is reported.

Due to the limited volume of sample, samples ran the analysis two times on the same cup filling- a hybrid of the two methods (referee and routine). In between fluids, the cell was not broken down and cleaned. To clean between each sample would have quadrupled the amount of time taken for the analysis. Ideally, samples should have had separate fillings (two aliquots) of the cup. To do so, one sample would have had to complete all temperatures, allowed to cool down so it can be cleaned, and then start the next sample. It would have added significantly to the cost of the analysis.

Two qualified personnel were available to run this test and tests were completed in April and June. Southwest Research Institute then compiled the data and produced this final reporting documenting the sample data and charts.

Retesting

Additionally, 10 samples were rerun to check variability and inconsistent results. These samples were retested for specific resistivity ASTM D1169, thermal conductivity ASTM D7896, and specific heat ASTM E1269 as shown in Table 4. New aliquots of the samples were then supplied to be used for retesting. As some data showed consistency, these results were included with the original data. Some questionable original data were replaced with rerun data.

Table 4: Retest Samples and Test Methods					
Sample	Tests Required				
Group III A, 4 cSt	Specific Resistivity ASTM D1169				
Group III B, 2 cSt	Thermal Conductivity ASTM D7896				
Group III B, 3 cSt	Thermal Conductivity ASTM D7896				
Group III B, 4 cSt	Specific Resistivity ASTM D1169				
Group III B, 8 cSt	Specific Resistivity ASTM D1169				
Group III+ A, 4 cSt	Specific Resistivity ASTM D1169				
Group III+ B, 4 cSt	Specific Resistivity ASTM D1169				
Group IV, 3 cSt	Thermal Conductivity ASTM D7896, Specific Resistivity ASTM D1169				
Group IV, 8 cSt	Thermal Conductivity ASTM D7896, Specific Resistivity ASTM D1169				
Group V, Monoester 4.2 cSt	Specific Heat ASTM E1269				

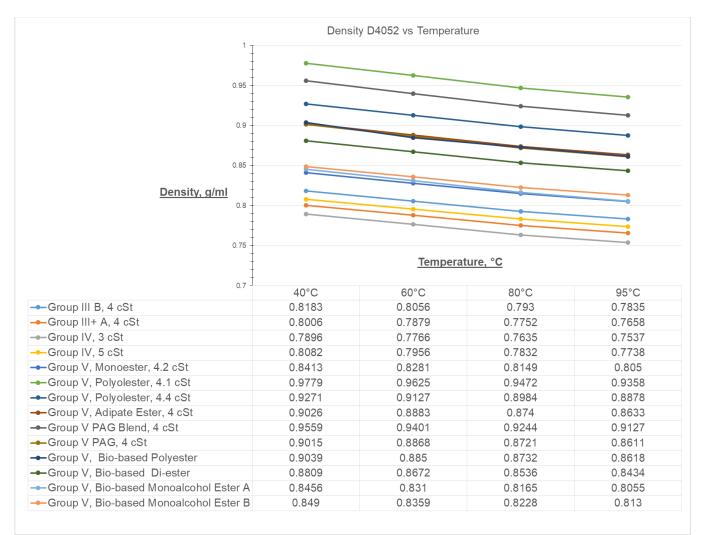
Results

Below are the test results for the 29 base oil samples across 5 different test methods. Additionally, this data is available in csv format as a separate file. A few charts are included to look at general data relationships.

Table 5: Kinematic Viscosity Results							
ASTM D445, cSt							
Sample	<u>40°C</u>	<u>100°C</u>					
Group I, 4 cSt	25.847	4.668					
		1.000					
Group II+, 4 cSt	23.215	4.666					
	40.040	4.007					
Group III A, 4 cSt	19.642	4.267					
	0.405	0.547					
Group III B, 2 cSt	9.435	2.547					
Group III B, 3 cSt	12.193	3.078					
Group III B, 4 cSt	19.192	4.186					
Group III B, 6 cSt	35.656	6.458					
Group III B, 8 cSt	45.778	7.623					
	47.040	4.000					
Group III+ A, 4 cSt	17.948	4.092					
Group III+ A, 8 cSt	43.637	7.671					
	40.000	4.000					
Group III+ B, 4 cSt	19.003	4.268					
	0.400	0.000					
Group IV, 3 cSt	8.109	2.393					
Group IV, 5 cSt Group IV, 6 cSt	24.588 30.562	5.169 5.844					
Group IV, 8 cSt	46.875	7.840					
Group IV, 8 cSt Group IV, 65 cSt	611.831	63.859					
	611.831	63.859					
Group V, Di-ester, 3.2 cSt	11.489	3.200					
Group V, Monoester, 2.9 cSt	9.616	2.781					
Group V, Monoester, 4.2 cSt	17.014	4.253					
Group V, Monoester, 5.5 cSt	25.457	5.526					
Group V, Mondester, 5.5 CSt Group V, Polyolester, 4.1 cSt	18.882	4.177					
Group V, Polyolester, 4.1 CSt Group V, Polyolester, 4.4 cSt	18.882	4.177					
	13.885	4.434 3.586					
Group V, Adipate Ester, 4 cSt	13.885	4.496					
Group V PAG Blend, 4 cSt	19.785						
Group V PAG, 4 cSt	6.61	3.804					
Group V, Bio-based Polyester Group V, Bio-based Di-ester	25.715	2.12 5.182					
Group V, Bio-based Monoalcohol Ester A	4.351	1.56					
Group V, Bio-based Monoalcohol Ester B	21.141	4.473					

See below Table 5: Kinematic Viscosity Results.

For kinematic viscosity, as the test temperature increased, the viscosity result


decreased. The range of results for this dataset was from 2.393 cSt to 611.831 cSt.

See below Table 6: Density Results.

Table 6 Density Results								
ASTM D4052, g/mL								
<u>Sample</u>	<u>40°C</u>	<u>60°C</u>	<u>80°C</u>	<u>95°C</u>				
Group I, 4 cSt	0.8439	0.8313	0.8186	0.8092				
Group II+, 4 cSt	0.8253	0.8127	0.8001	0.7906				
Group III A, 4 cSt	0.8188	0.8061	0.7935	0.7840				
Group III B, 2 cSt	0.8192	0.8061	0.7931	0.7833				
Group III B, 3 cSt	0.8171	0.8042	0.7913	0.7817				
Group III B, 4 cSt	0.8183	0.8056	0.7930	0.7835				
Group III B, 6 cSt	0.8256	0.8131	0.8008	0.7915				
Group III B, 8 cSt	0.8293	0.8170	0.8046	0.7954				
Group III+ A, 4 cSt	0.8006	0.7879	0.7752	0.7658				
Group III+ A, 8 cSt	0.8120	0.7996	0.7873	0.7781				
	0.0120	0.7330	0.7075	0.7701				
Group III+ B, 4 cSt	0.8118	0.7992	0.7866	0.7771				
Group IV, 3 cSt	0.7896	0.7766	0.7635	0.7537				
Group IV, 5 cSt	0.8082	0.7956	0.7832	0.7738				
Group IV, 6 cSt	0.8114	0.7989	0.7865	0.7771				
Group IV, 8 cSt	0.8163	0.8039	0.7916	0.7824				
Group IV, 65 cSt	0.8287	0.8168	0.8049	0.7960				
Group V, Di-ester, 3.2 cSt	0.8992	0.8849	0.8705	0.8598				
Group V, Monoester, 2.9 cSt	0.8422	0.8286	0.8150	0.8048				
Group V, Monoester, 4.2 cSt	0.8413	0.8281	0.8149	0.8050				
Group V, Monoester, 5.5 cSt	0.8476	0.8346	0.8217	0.8120				
Group V, Polyolester, 4.1 cSt	0.9779	0.9625	0.9472	0.9358				
Group V, Polyolester, 4.4 cSt	0.9271	0.9127	0.8984	0.8878				
Group V, Adipate Ester, 4 cSt	0.9026	0.8883	0.8740	0.8633				
Group V PAG Blend, 4 cSt	0.9559	0.9401	0.9244	0.9127				
Group V PAG, 4 cSt	0.9015	0.8868	0.8721	0.8611				
Group V, Bio-based Polyester	0.9039	0.885	0.8732	0.8618				
Group V, Bio-based Di-ester	0.8809	0.8672	0.8536	0.8434				
Group V, Bio-based Monoalcohol Ester A	0.8456	0.831	0.8165	0.8055				
Group V, Bio-based Monoalcohol Ester B	0.849	0.8359	0.8228	0.813				

For density, as test temperature increased, the density decreased for the same sample. Generally the density values decreased for Groups I through IV samples. Group V sample densities varied widely likely as a result of the widely varying

composition of Group V base oils. Within each Group, as the viscosity result increased, the density also increased. The range of results for this dataset was from 0.7537 to 0.9779 g/mL.

See below Figure 1: Density vs Temperature Chart comparing a subset of samples.

Figure 1: Density vs Temperature Chart

See below Table 7: Thermal Conductivity Results.

Table 7: Thermal Conductivity Results									
ASTM D7896, W/m*K									
Sample	<u>0°C</u>	<u>40°C</u>	<u>70°C</u>	<u>100°C</u>	<u>130°C</u>				
Group I, 4 cSt	0.1291	0.1268	0.1250	0.1232	0.1215				
Group II+, 4 cSt	0.1364	0.1336	0.1314	0.1293	0.1272				
Group III A, 4 cSt	0.1396	0.1364	0.1340	0.1316	0.1291				
Group III B, 2 cSt run 2	0.1312	0.1264	0.1229	0.1195	0.1159				
Group III B, 3 cSt	0.1314	0.1286	0.1265	0.1244	0.1223				
Group III B, 3 cSt Rerun	0.1348	0.1299	0.1262	0.1226	0.1189				
Group III B, 4 cSt	0.1394	0.1361	0.1337	0.1313	0.1289				
Group III B, 6 cSt	0.1452	0.1419	0.1395	0.1370	0.1345				
Group III B, 8 cSt	0.1466	0.1435	0.1412	0.1389	0.1366				
	0.1464	0.1409	0.4266	0.1224	0.1000				
Group III+ A, 4 cSt		0.1408	0.1366	0.1324	0.1282				
Group III+ A, 8 cSt	0.1532	0.1496	0.1468	0.1441	0.1414				
Group III+ B, 4 cSt	0.1438	0.1391	0.1356	0.1321	0.1285				
Group IV, 3 cSt	0.1453	0.1389	0.1340	0.1292	0.1244				
Group IV, 3 cSt Rerun	0.1422	0.1382	0.1339	0.1295	0.1251				
Group IV, 5 cSt	0.1534	0.1481	0.1440	0.1400	0.1360				
Group IV, 6 cSt	0.1518	0.1463	0.1422	0.1381	0.1340				
Group IV, 8 cSt	0.1525	0.1477	0.1440	0.1404	0.1367				
Group IV, 8 cSt Rerun	0.1543	0.1488	0.1449	0.1410	0.1371				
Group IV, M-PAO, 65 cSt	0.1573	0.1534	0.1504	0.1475	0.1445				
Group V, Di-ester, 3.2 cSt	0.1498	0.1445	0.1405	0.1365	0.1324				
Group V, Monoester, 2.9 cSt	0.1492	0.1446	0.1412	0.1377	0.1342				
Group V, Monoester, 2.9 cSt Group V, Monoester, 4.2 cSt	0.1492	0.1531	0.1412	0.1458	0.1342				
Group V, Monoester, 5.5 cSt	0.1550	0.1510	0.1480	0.1450	0.1420				
Group V, Polyolester, 4.1 cSt	0.1514	0.1459	0.1418	0.1430	0.1420				
Group V, Polyolester, 4.4 cSt	0.1535	0.1479	0.1437	0.1395	0.1353				
Group V, Adipate Ester, 4 cSt	0.1399	0.1355	0.1322	0.1333	0.1355				
Group V PAG Blend, 4 cSt	0.1453	0.1333	0.1322	0.1203	0.1237				
Group V PAG, 4 cSt	0.1524	0.1467	0.1304	0.1386	0.1345				
Group V, Bio-based Polyester	0.1437	0.1395	0.1363	0.1332	0.1300				
Group V, Bio-based Di-ester	0.1519	0.1482	0.1454	0.1425	0.1397				
Group V, Bio-based Monoalcohol Ester A	0.1319	0.1265	0.1224	0.1184	0.1143				
Group V, Bio-based Monoalcohol Ester B	0.1496	0.1462	0.1437	0.1412	0.1386				

On the thermal conductivity results, as the test temperature increased, the conductivity values decreased. Within each base oil group, as viscosity increased, thermal conductivity results also increased. Moving from Group 1 samples to Group IV samples, the thermal conductivity increased generally. The higher values for Group III B 2 cSt are noted compared to other Group III B samples. The Group

IV 3 cSt fluid results also varied from the other Group IV oils and was rerun along with the Group IV, 8 cSt sample. The range of results for this data was from 0.1215 to 0.1579 W/mK. The initial results on Group IIIB 2 cSt were totally inconsistent with the results in the same group and thus was not included in the report.

See below Figures 2 -5 for the thermal conductivity charts for a subset of samples.

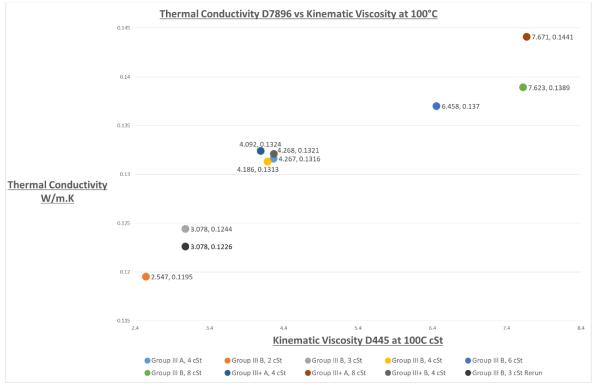


Figure 2: Thermal Conductivity vs Viscosity, Group III Chart

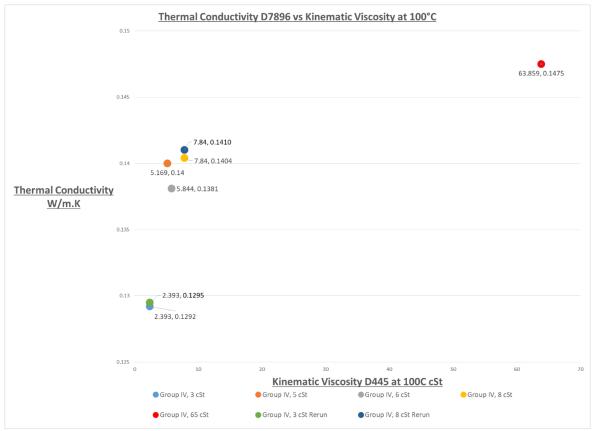


Figure 3: Thermal Conductivity vs Viscosity, Group IV Chart

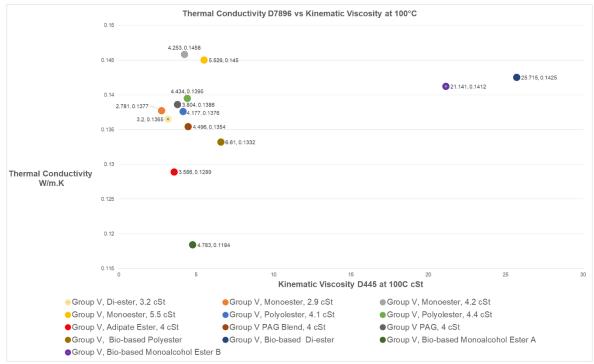


Figure 4: Thermal Conductivity vs Viscosity, Group V Chart

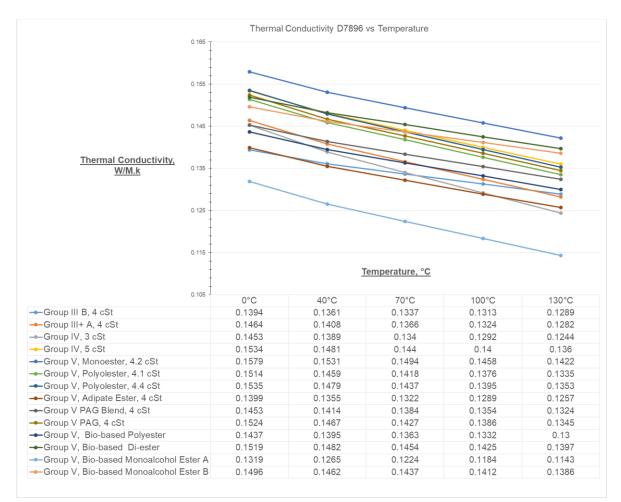


Figure 5: Thermal Conductivity vs Temperature Chart

Table 8: Specific Heat Capacity Results									
ASTM E1269, J/(g*degC)									
Sample	<u>-25°C</u>	<u>0°C</u>	<u>40°C</u>	<u>70°C</u>	<u>100°C</u>	<u>130°C</u>			
Group I, 4 cSt	1.918	1.794	1.864	1.967	2.056	2.139			
Group II+, 4 cSt	1.832	1.723	1.746	1.821	1.908	1.996			
Group III A, 4 cSt	1.850	1.693	1.689	1.758	1.841	1.924			
Group III B, 2 cSt	1.709	1.689	1.802	1.896	1.987	2.077			
Group III B, 3 cSt	1.744	1.728	1.834	1.918	2.018	2.117			
Group III B, 4 cSt	2.045	1.871	1.802	1.875	1.965	2.067			
Group III B, 6 cSt	1.834	1.648	1.628	1.720	1.837	1.928			
Group III B, 8 cSt	1.905	1.746	1.734	1.805	1.885	1.960			
Group III+ A, 4 cSt	1.863	1.805	1.870	1.933	2.010	2.092			
Group III+ A, 8 cSt	2.019	1.902	1.929	1.992	2.071	2.152			
Group III+ B, 4 cSt	1.898	1.840	1.894	2.002	2.063	2.129			
Group IV, 3 cSt	1.833	1.822	1.874	1.942	2.023	2.111			
Group IV, 5 cSt	2.023	1.852	1.906	1.969	2.039	2.108			
Group IV, 6 cSt	1.731	1.765	1.844	1.910	1.991	2.071			
Group IV, 8 cSt	1.781	1.799	1.881	1.968	2.047	2.125			
Group IV, M-PAO, 65 cSt	1.630	1.672	1.761	1.837	1.921	1.996			
Group V, Di-ester, 3.2 cSt	1.566	1.584	1.630	1.677	1.743	1.813			
Group V, Monoester, 2.9 cSt	1.443	4.161*	1.953	2.017	2.093	2.174			
Group V, Monoester, 4.2 cSt	1.768	5.321*	1.860	1.889	1.953	2.015			
Group V, Monoester, 4.2 cSt Rerun	2.510	2.225	1.880	1.947	2.033	2.510			
Group V, Monoester, 5.5 cSt	2.458	2.198	1.805	1.862	1.947	2.027			
Group V, Polyolester, 4.1 cSt	1.692	1.709	1.766	1.813	1.869	1.920			
Group V, Polyolester, 4.4 cSt	2.321	2.227	1.927	1.946	1.972	1.997			
Group V, Adipate Ester, 4 cSt	1.821	1.840	1.900	1.950	2.029	2.087			
Group V PAG Blend, 4 cSt	1.540	1.569	1.622	1.666	1.718	1.766			
Group V PAG, 4 cSt	2.842	1.654	1.678	1.727	1.780	1.831			
Group V, Bio-based Polyester	4.042	2.051	1.927	1.995	2.065	2.118			
Group V, Bio-based Di-ester	1.825	1.880	1.992	2.053	2.116	2.165			
Group V, Bio-based Monoalcohol Ester A	1.754	1.813	1.911	1.999	2.089	2.166			
Group V, Bio-based Monoalcohol Ester B	2.035	2.089	2.181	2.267	2.350	2.433			

See below Table 8: Specific Heat Capacity Results.

The specific heat capacity data presented in Table 8 is a subset of the full data that was captured for these samples as the test recorded the results for each sample from -40°C to 200°C in 5C increments. Only the selected temperatures (-25°C, 0°C, 40°C, 70°C, 100°C, and 130°C) were requested and hence listed in this report and data attachment.

The specific heat results showed generally an increase as the test temperature increased while others decreased and then increased between 0°C and 40°C.

Additionally, there were two Group V samples that showed a spike in specific heat at 0°C (results were 4.161 and 5.321 with * noted) that was outside the range of the other samples. Both results were checked and confirmed to be real results, likely due to some type of phase transition or kinetic event, such as de-waxing, that occurred around 0°C. This likely was a kinetic event that falls outside of the definition of specific heat. Sample Group V, Monoester, 4.2 cSt was retested and the rerun results brought the data more consistent with other Group V specific heat data. Additional heating and cooling would be needed to determine if this kinetic event was reversible. The range of results for this dataset was from 1.443 to 2.842, but up to 5.321 J/(g*degC) including the two spikes.

Figure 6 charts the Specific Heat Capacity vs Temperature for a subset of samples.

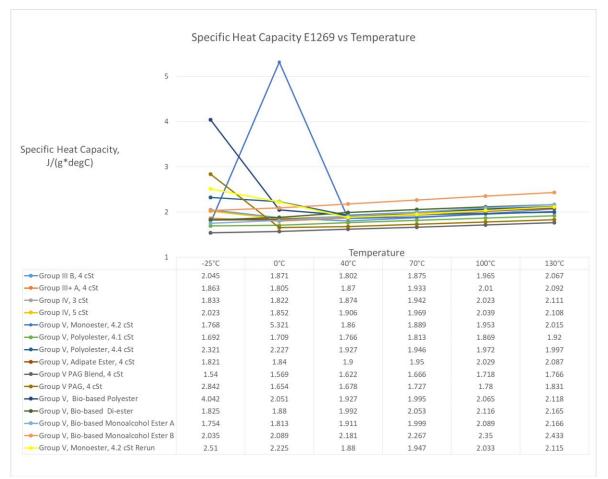


Figure 6: Specific Heat Capacity vs Temperature Chart

See below Table 9: Specific Resistivity Results. NA was listed when result was >10.0E+15. Additionally, the complete data set for specific resistivity is reported in Appendix A.

Table 9 Specific Resistivity Results									
ASTM D1169, Ωcm									
<u>Sample</u>		25°C	40°C	<u>70°C</u>	<u>100°C</u>	<u>110°C</u>			
Group I, 4 cSt	Run1	284E+12	170E+12	67.4E+12	15.8E+12	4.34E+12			
•	Run2	336E+12	200E+12	64.7E+12	17.4E+12	4.67E+12			
	AVG	310E+12	185E+12	66.1E+12	16.6E+12	4.51E+12			
Group II+, 4 cSt	Run1	381E+12	213E+12	197E+12	134E+12	7.95E+12			
	Run2	450E+12	342E+12	258E+12	177E+12	8.19E+12			
	AVG	416E+12	278E+12	228E+12	156E+12	8.07E+12			
Group III A, 4 cSt	Run1	87.2E+12	50.4E+12	64.9E+12	28.1E+12	19.8E+12			
	Run2	103E+12	54.8E+12	76.3E+12	33.5E+12	20.5E+12			
	AVG	95.1E+12	52.6E+12	70.6E+12	30.8E+12	20.2E+12			
	Run3	4.38E+15	1.68E+15	880E+12	193E+12	90.5E+12			
	Run4	4.75E+15	1.69E+15	1016E+12	202E+12	89.1E+12			
	AVG	4.57E+15	1.69E+15	948E+12	198E+12	89.8E12			
Group III B, 2 cSt	Run1	1.03E+15	571E+12	223E+12	71.3E+12	8.36E+12			
••••• = , = •••	Run2	1.44E+15	728E+12	249E+12	75.2E+12	8.52E+12			
	AVG	1.24E+15	650E+12	236E+12	73.3E+12	8.44E+12			
Group III B, 3 cSt	Run1	378E+12	444E+12	15.7E+12	6.16E+12	2.66E+12			
)	Run2	675E+12	582E+12	16.1E+12	6.35E+12	2.85E+12			
	AVG	527E+12	513E+12	15.9E+12	6.26E+12	2.76E+12			
Group III B, 4 cSt	Run1	382E+12	427E+12	79.0E+12	7.39E+12	2.84E+12			
	Run2	632E+12	623E+12	90.0E+12	7.35E+12	3.07E+12			
	AVG	507E+12	525E+12	84.5E+12	7.37E+12	2.96E+12			
	Run3	2.53E+15	3.95E+15	1.88E+15	402E+12	186E+12			
	Run4	3.12E+15	NA	2.64E+15	430E+12	190E+12			
	AVG	2.83E+15	NA	2.26E+15	416E+12	188E+12			
Group III B, 6 cSt	Run1	2.72E+15	3.37E+15	682E+12	15.7E+12	6.75E+12			
	Run2	NA	NA	904E+12	15.2E+12	6.73E+12			
	AVG	NA	NA	793E+12	15.5E+12	6.74E+12			
Group III B, 8 cSt	Run3	139E+12	220E+12	211E+12	40.9E+12	21.1E+12			
	Run4	194E+12	412E+12	292E+12	64.9E+12	30.8E+12			
	AVG	167E+12	316E+12	252E+12	52.9E+12	26.0E+12			
0		5045 40		0455 40	70.05 10				
Group III+ A, 4 cSt	Run1	581E+12	441E+12	215E+12	70.9E+12	11.0E+12			
	Run2	906E+12	555E+12	243E+12	79.8E+12	11.1E+12			
	AVG	746E+12	498E+12	229E+12	75.4E+12	11.1E+12			
	Run3	370E+12	2.15E+15	720E+12	223E+12	128E+12			
	Run4	264E+12	2.66E+15	774E+12	275E+12 249E+12	135E+12			
Group III+ A, 8 cSt	AVG Run1	317E+12	2.41+15	747E+12		132E+12			
GIUUP III+ A, O COL	Run1 Run2	101E+12 120E+12	47.6E+12 58.9E+12	57.3E+12 72.9E+12	44.2E+12 63.2E+12	9.36E+12 9.81E+12			
	AVG	120E+12 111E+12	53.3E+12	65.1E+12	53.7E+12	9.81E+12 9.59E+12			
Sample	AVG	<u>25°C</u>	<u>40°C</u>	<u>70°C</u>	<u>100°C</u>	9.59E+12			
Group III+ B, 4 cSt	Run1	83.0E+12	27.0E+12	51.0E+12	340E+12	28.0E+12			
Givup III+ D, 4 (Sl	Run1 Run2	94.7E+12	27.0E+12 29.5E+12	51.0E+12 57.8E+12	430E+12	28.0E+12 26.1E+12			
	AVG	88.9E+12	29.5E+12 28.3E+12	57.6E+12 54.4E+12	385E+12	20.1E+12 27.1E+12			
	AVG	00.90+12	20.35+12	J4.4ET1Z	JUJET 12	21.15712			

	Run3	NA	NA	3.13E+15	134E+12	46.6E+12
	Run4	NA	NA	4.13E+15	140E+12	45.3E+12
	AVG	NA	NA	3.63E+15	137E+12	46.0E+12
		0.005 45	4 405 45	5005 40	1005 10	00.55.40
Group IV, 3 cSt	Run3	2.66E+15	1.42E+15	533E+12	186E+12	99.5E+12
	Run4	3.57E+15	1.86E+15	759E+12	240E+12	121E+12
	AVG	3.12E+15	1.64E+15	646E12	213E+12	110E+12
Group IV, 5 cSt	Run1	2.28+E15	738E+12	701E+12	554E+12	46.0E+12
	Run2	3.59E+15	807E+12	805E+12	617E+12	46.4E+12
	AVG	2.94E+15	773E+12	753E+12	586E+12	46.2E+12
Group IV, 6 cSt	Run1	1.97E+15	985E+12	675E+12	333E+12	40.5E+12
	Run2	2.43E+15	853E+12	613E+12	351E+12	39.1E+12
	AVG	2.20E+15	919E+12	644E+12	342E+12	39.8E+12
Group IV, 8 cSt	Run1	1.88E+15	794E+12	508E+12	408E+12	48.9E+12
	Run2	2.12E+15	781E+12	530E+12	418E+12	47.9E+12
	AVG	2.00E+15	788E+12	519E+12	414E+12	48.4E+12
	Run3	3.05E+15	2.33E+15	1115E+12	365E+12	408E+12
	Run4	3.52E+15	2.32E+15	1008E+12	374E+12	389E+12
	AVG	3.29E+15	2.33E+15	1062E+12	370E+12	399E+12
Group IV, 65 cSt	Run1	NA	2.78E+15	897E+12	593E+12	102E+12
	Run2	6.04E+15	1.69E+15	573E+12	579E+12	109E+12
	AVG	NA	2.24E+15	735E+12	586E+12	106E+12
Group V Di-ester, 3.2 cSt	Run1	2.31E+12	900E+09	622E+09	335E+09	300E+09
	Run2	2.23E+12	882E+09	640E+09	332E+09	289E+09
	AVG	2.27E+12	891E+09	631E+09	334E+09	295E+09
Group V Monoester, 2.9 cSt	Run1	20.3E+12	8.34E+12	4.18E+12	2.21E+12	1.89E+12
	Run2	19.8E+12	8.14E+12	4.27E+12	2.23E+12	1.90E+12
	AVG	2.01E+12	8.24E+12	4.23E+12	2.22E+12	1.90E+12
Group V Monoester, 4.2 cSt	Run1	210E+12	65.3E+12	32.7E+12	6.52E+12	3.27E+12
	Run2	175E+12	56.4E+12	16.1E+12	6.52E+12	3.31E+12
	AVG	193E+12	80.9E+12	29.4E+12	6.52E+12	3.29E+12
Group V Monoester, 5.5 cSt	Run1	149E+12	88.5E+12	27.7E+12	8.80E+12	4.99E+12
	Run2	167E+12	93.0E+12	27.5E+12	9.06E+12	5.15E+12
	AVG	158E+12	90.8E+12	27.6E+12	8.93E+12	5.07E+12
Group V, Polyolester, 4.1 cSt	Run1	9.79E+12	3.10E+12	803E+09	331E+09	275E+09
	Run2	8.15E+12	2.50E+12	838E+09	331E+09	262E+09
	AVG	8.97E+12	2.80E+12	821E+09	331E+09	269E+09
Group V, Polyolester, 4.4 cSt	Run1	8.16E+12	3.66E+12	866E+09	490E+09	422E+09
	Run2	6.86E+12	3.52E+12	909E+09	462E+09	426E+09
	AVG	7.51E+12	3.59E+12	888E+09	476E+09	424E+09
Sample		<u>25°C</u>	<u>40°C</u>	<u>70°C</u>	<u>100°C</u>	<u>110°C</u>
Group V, Adipate Ester, 4	Run1	2.89E+12	1.04E+12	322E+09	151E+09	109E+09
cSt						
	Run2	2.39E+12	988E+09	322E+09	152E+09	111E+09
	AVG	2.64E+12	1.02E+12	322E+09	152E+09	110E+09

-						
Group V, PAG Blend, 4 cSt	Run1	7.01E+09	3.84E+09	1.17E+09	1.54E+09	1.05E+09
	Run2	6.83E+09	3.77E+09	1.21E+09	1.40E+09	945E+06
	AVG	6.92E+09	3.81E+09	1.19E+09	1.47E+09	998E+06
Group V, PAG, 4 cSt	Run1	46.8E+09	24.8E+09	8.96E+09	4.89E+09	4.28E+09
	Run2	45.1E+09	25.5E+09	9.53E+09	5.82E+09	5.47E+09
	AVG	46.0E+09	25.2E+09	9.25E+09	5.36E+09	4.88E+09
Group V, Bio-based Polyester	Run1	1.04E+12	562E+09	91.6E+09	138E+09	115E+09
	Run2	1.02E+12	571E+09	107E+09	136E+09	123E+09
	AVG	1.03E+12	5.67E+09	99.3E+09	137+09	119E+09
Group V, Bio-based Di- ester	Run1	45.5E+09	21.6E+09	7.88E+09	4.39E+09	3.23E+09
	Run2	46.1E+09	22.6E+09	8.06E+09	4.49E+09	3.04E+09
	AVG	45.8E+09	22.0E+09	7.97E+09	4.45E+09	3.14e+09
Group V, Bio-based Monoalcohol Ester A	Run1	711E+09	179E+09	66.9E+09	58.4E+09	27.2E+09
	Run2	666E+09	182E+09	68.3E+09	57.8E+09	25.9E+09
	AVG	689E+09	181E+09	67.6E+09	58.1E+09	26.6E+09
Group V, Bio-based Monoalcohol Ester B	Run1	18.8E+12	10.3E+12	1.72E+12	309E+09	200E+09
	Run2	19.0E+12	10.9E+12	1.79E+12	328E+09	203E+09
	AVG	18.9E+12	10.6E+12	1.76E+12	319E+09	202E+09

For the specific resistivity results, as the temperature increased, the specific resistivity generally decreases. The resistivity results were an average of two measurements for two runs for a total of four individual results. Only the run average results are reported in Table 8, the full data is reported in Appendix A for each run. For some samples, the results were out of range (>10.0E+15) for the instrument, and hence no averaged results were reported. Within each group, no trend was found when looking at increasing viscosity. Additionally, there was not a trend in resistivity results from Group I to Group IV. The reported results ranged from 945E6 to 6.04E15. The result for Group IV, 3 cSt sample at 70°C did not trend with other results but the temperature and results were confirmed. For samples Group III B, 8 cSt and Group IV, 3 cSt original results were totally inconsistent with the rest in the same group and thus were not included in the report. Other retested results are shown in Table 9.

Figure 7 charts the Specific Resistivity vs Temperature for a subset of samples.

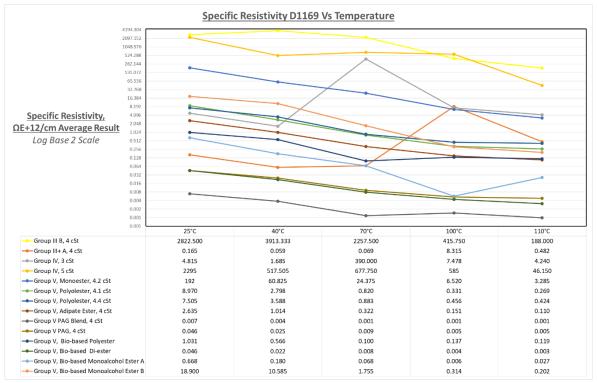


Figure 7: Specific Resistivity vs Temperature Chart

Conclusions

This test program looked to provide a large database of thermal and electrical properties at different temperatures of various base oils. Such a large data set is provided within this report.

As there are many ways to review and understand the data, limited analysis was conducted on the data. Commentary on trends was described in the Results section. Some repeat testing of samples were run where the original run results were not included, but other repeat test results show test method reproducibility of the method with these types of samples with more consistent data.

A few comments and suggestions if future testing is needed:

1. For future analysis with additional samples, it would be recommended to run each test in duplicate for all tests and samples to look at the variation of results. As different test temperatures were selected per test method, there could be variation in results not generally seen in some of the standardized test procedures which have limited test temperature range, and hence the ASTM test precision would not apply or be sufficient. Having each sample test per temperature run in duplicate could show if certain temperatures had greater variation than other temperatures. Also, as ASTM D1169 specific resistivity is a test method for insulating fluids, and not base oils, the variability may be different than listed in the test method precision due to the sample being outside of original test method scope and not included in the original matrix that generated the precision statement. Hence, setting up the test matrix, from the beginning, with repeat testing included, would better show the variation in specific resistivity results.

2. In order to minimize test variation, it would be suggested for future samples to arrive in one large batch and then testing all scheduled to run together. Multiple shipments over different time periods could allow for greater fluctuations in results inherent in using multiple instruments and technicians for testing.

3. It would be suggested to increase the sample volume for future tests to 1.2L to have sufficient volume for all tests and any re-running of tests, if needed. As mentioned in the Approach section, there was insufficient sample amount to run ASTM D1169 test with a new aliquot per run, the additional volume would be useful to properly measure the specific resistivity. Increasing the volume needed would also aid in any retesting that may be needed for other tests as well.

Overall, this study was able to provide a database of thermal and electrical properties for 29 base oils with a total of 1,073 data points.

List of References

ASTM D4052: Standard Test Method for Density, Relative Density, and API Gravity of Liquids by Digital Density Meter

ASTM D445: Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity)

ASTM D7896: Standard Test Method for Thermal Conductivity, Thermal Diffusivity, and Volumetric Heat Capacity of Engine Coolants and Related Fluids by Transient Hot Wire Liquid Thermal Conductivity Method

ASTM E1269: Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry

ASTM D1169: Standard Test Method for Specific Resistance (Resistivity) of Electrical Insulating Liquids

Appendix A ASTM D1169 Specific Resistivity Results

Group V, Bio-based Michoalconol Ester B		Group V, Bio-based Monoalcohol Ester A		Group V, Bio-based Di-ester	Group V, Bio-based Polyester	D	and four selector	Group V PAG Arst	Group V PAG Blend, 4 cSt		Group V, Adipate Ester, 4 cSt	aroup v, norganisari, 4.4 car	Group V Dolvolecter A ArSt	Group V, Polyolester, 4.1 cSt	or only a tribution steril side one	Group V Monoester: 5.5 cSt	Group V Monoester, 4.2 cSt		Group V Monoester, 2.9 cSt	Group V Di-ester, 3.2 cSt		Group IV, 65 cSt			Group IV, 8 Get		Group IV, 6 cSt	Group IV, 5 CST)	Group IV, 3 cSt			Group III+ B, 4 cSt		Group III+ A, 8 cSt			Group III+A, 4 cSt	Group III B, 8 CST		Group IIIB, 6 cSt			Group IIIB, 4 cSt	Group IIIB, 3 cSt	Group IIIB, 2 CSt			Group III A, 4 cSt	Group II+, 4 cst	0 II- 4-0-	Group I, 4 cSt	<u>3000 μτε 21203</u>	*00S-Out Of Spec
Run 1	Run 2	Run 1	Run 2	Run 1	Run 1		Run 2	Run 2	Run 1	Run 2	Run	Run 2	Run 2	Run	Run 2	Run 1	Run 1	Run 2	Run	Run 1 Run 2	Run 2	Run 1	Run 4	Run 3	Run 1	Run	Run	Run	Run 4	Runs	Run4	Run 2	Run 1	Run 2	Run 1	Run 3	Run 2	Run	Run 3 Run 4	Run 2	Run 1	Run 3	Run 2	Run 2	Run 1	Run 1 Run 2	Run 4	Run 3	Run 1	Run 1 Run 2	Run 2			
1 18.5E+12	-				1 790E+09		12 45.6E+09		_				1 7.83F±12	_		+	1 215E+12		-	1 2.01E+12 2 1.94E+12					_		-	12 1.77E+15	-			12 92.7E+12	_			13 584E+12 778E±17	-		14 177E+12	v		13 2.51E+15		12 635E+12 11 289E+12		1 833E+12 12 1.34E+15	-		_		12 330E+12	_	RHO+	1
+12 19.1E+12 +12 20.0E+12	-	-		-		+ +	+09 44.5E+09	-					:+12 8.59E+12	-		+	+12 204E+12	-	-11			-		-	_	:+15 3.05E+15		115 2.84E+15	-	-		F+15 6 66F+15		-		-	-				\square	+15 2.54E+15		-					_		+12 335E+12		C+ RHO-	5
FF12	: 0 9	781E+09	E+09	E+09	L.29E+12		F+09	E+09	E+09	E+12	F+12	E+12	F12	E+12	+12	156E+12	+12	E+12	21.7E+12	2.60E+12 2.52E+12	E+15	F+15	E+15	FF 15	F 75	F #15	E+15	Ŧ15	Ŧ.	E+15	E+15	F 15	E+12	:+12	108E+12	155E+12	+12	635E+12	14/E+12 211E+12	F+15	Ŧ15	F 15	:+12	/14E+12 475E+12	+12	1.18E+15 1.54E+15	F+15	Ŧ15	E+12 :+12	:+12 :+12	-12	290E+12		
18.8E+12 19.0E+12	666E+09	711E+09	46.1E+09	45.5E+09	1.04E+12		45, 1E+09	6.83E+09	7.01E+09	2.39E+12	2.89E+12	6.86E+12	8.15E+12 8.16E+12	9.79E+12	167E+12	149E+12	210E+12	19.8E+12	20.3E+12	2.31E+12 2.23E+12	6.04E+15	NA	3.52E+15	3.05E+15	1.88E+15	2.43E+15	1.97E+15	2.28+E15 3.59E+15	3.57E+15	2.66E+15	200	00S	83.0E+12	120E+12	101E+12	370E+12	906E+12	581E+12	139E+12 194E+12	00S	2.72E+15	2.53E+15	632E+12	6/5E+12 382E+12	378E+12	1.03E+15 1.44E+15	4.75E+15	4.38E+15	87.2E+12 103F+12	3816+12 450E+12	33bt+12	284E+12	Avg Run 1/Avg Run 2	
9.64E+12 10.3E+12	169E+09	165E+09	23.1E+09	21.6E+09	388E+09		25.6E+09	3./9E+09	3.91E+09	806E+09	821E+09	2.94E+12	2.19E+12	2.66E+12	76.0E+12	67.9E+12	60.6E+12	7.39E+12	7.55E+12	749E+09 773E+09	1.40E+15	2.75E+15	1.99E+15	1.89E+15	408E+12	496E+12	489E+12	499E+12 593E+12	1.79E+15	1.27E+15	>10.0E+15	20.9E+12	23.6E+12	56.7E+12	42.2E+12	2.32E+15	522E+12	371E+12	187E+12 376E+12	>10.0E+15	3.21E+15	4.49E+15	534E+12	299E+12	340E+12	466E+12 654E+12	1.41E+15	1.37E+15	42.9E+12 49.2F+12	302E+12	1926+12	155E+12	RHO+	
10.9E+12 11.5E+12	194E+09	193E+09	22.0E+09	21.5E+09	716E±09		25.4E+09	3./4E+09 24.7E+09	3.77E+09	1.17E+12	1.26E+12	4.10E+12	2.81E+12	3.53E+12	110E+12	109E+12	70.0E+12	8.89E+12	9.12E+12	1.05E+12 991E+09	1.98E+15	2.81E+15	2.64E+15	2.77E+15	1.125+15	1.21E+15	1.48E+15	977E+12	1.92E+15	1.56E+15	4.54E+15	22.1E+12	30.4E+12	61.1E+12	52.9E+12	1.97E+15	588E+12	510E+12	253E+12 447E+12	4.18E+15	3.52e+15	3.41E+15	712E+12	554E+12	548E+12	676E+12 802E+12	1.96E+15	1.99E+15	57.8E+12 60.3E+12	260E+12 382E+12	205E+12	185E+12	RHO-	
10.3E+12	182E+09	179E+09	22.6E+09	21.6E+09	562E+09		25.5E+09	3. / /E+09	3.84E+09	988E+09	1.04E+12	3.52E+12	2.50E+12	3.10E+12	93.0E+12	30.4E+12 88.5E+12	65.3E+12	8.14E+12	8.34E+12	900E+09 882E+09	1.69E+15	2.78E+15	2.32E+15	2.33E+15	781F+12	853E+12	985E+12	/38E+12 807E+12	1.86E+15	1.42E+15	200	21.36.47	27.0E+12	58.9E+12	47.6E+12	2.15E+15	555E+12	441E+12	220E+12 412E+12	2005	3.37E+15	3.95E+15	623E+12	582E+12 427E+12	444E+12	5/1E+12 728E+12	1.69E+15	1.68E+15	50.4E+12	213E+12 342E+12	200E+12	170E+12	Avg Run 1/Avg Run 2	
1.75E+12	64.1E+09	62.8E+09	8.33E+09	8.08E+09	90.1E+09		9.66E+09	1.23E+09	1.19E+09	254E+09	253E+09	688E+09	525E+09	476E+09	22.2E+12	22.1F+12	39.2E+12	3.29E+12	3.24E+12	425E+09 437E+09	493E+12	1.02E+15	805E+12	#00E+12	438E+12	513E+12	526E+12	851E+12	689E+12	398E+12	6.34E+15	27.9E+12	44, 7E+12	66.9E+12	50.9E+12	691E+12	230E+12	189E+12	162E+12 240E+12	1.21E+15	795E+12	2.12E+15	102E+12	20. 2E+12 81. 7E+12	18.5E+12	1/5E+12 204E+12	881E+12	669E+12	61.2E+12 76.3E+12	138E+12 227E+12	62.9E+12	68.4E+12		
1.69E+12 1.75E+12	-	71.0E+09	7.79E+09		103E+09	1 1	9.40E+09	1.19E+09	1.14E+09	390E+09	391E+09	1.13E+12	1.15E+12	1.13E+12		-	-		5.11E+12	819E+09 843E+09	652E+12	774E+12	1210E+12	1390E+12	5776+12	713E+12	823E+12	758E+12	828E+12	668E+12	1.92E+15	1 86F+15	57.3E+12	-	63.6E+12	748E+12	256E+12	240E+12	260E+12 344E+12	598E+12	569E+12	1.64E+15		12.0E+12 76.2E+12		2/1E+12 293E+12	1150E+12	1090E+12	68.5E+12 76.2E+12	256E+12 288E+12	bb.5E+12		RHO-	
1.79E+12		66.9E+09	8.06E+09	7.88E+09	91.6E+09		9.53E+09	1.21E+09	1.17E+09	322E+09	322E+09	909E+09	856F±09	803E+09	27.5E+12	27.7E+12	32.7E+12		4.18E+12	622E+09 640E+09	573E+12	897E+12	1008E+12	1115E+12	508E+12	613E+12	675E+12	701E+12	759E+12	533E+12	4.13E+15	3 13F+15	51.0E+12	72.9E+12	57.3E+12	720E+12	243E+12	215E+12	211E+12 292E+12	904E+12	682E+12	1.88E+15	90.0E+12	16.1E+12 79.0E+12	15.7E+12	223E+12 249E+12			64.9E+12 76.3E+12	197E+12 258E+12	64, /E+12	67.4E+12	Avg Run 1/Avg Run 2	
259E+09 293E+09	51.7E+09	52.6E+09	4.59E+09	4.44E+09	1114E+09		6.17E+09	1.49E+09	1.65E+09	134E+09	133E+09	415E+09	283E+09	284E+09	9.02E+12	8.70E+12	6.10E+12	2.04E+12	1.94E+12	278E+09 278E+09	795E+12	849E+12	327E+12	319E+12	520E+12	435E+12	391E+12	/48E+12 866E+12	231E+12	155E+12	107E+12	08 4F+12	391E+12	61.2E+12	39.8E+12	207E+12	83.4E+12	71.0E+12	31. 2E+12 56. 6E+12	9.25E+12	8.59E+12	384E+12	4.40E+12	4.09E+12 4.08E+12	3.88E+12	64.9E+12 71.3E+12	163E+12	146E+12	26.5E+12 33.9F+12	126E+12 179E+12	17.46+12	15.9E+12	2 RHO+	
343E+09	63.8E+09	64.2E+09	4.38E+09	4.33E+09	162E+09		5.46E+09	1.31E+09	1.43E+09	170E+09	168E+09	509E+09	3/8E+09	378E+09	9.09E+12	8.90F+12	6.94E+12	2.42E+12	2.48E+12	391E+09 386E+09	362E+12	337E+12	421E+12	410E+12	205F+12	268E+12	275E+12	359E+12 367E+12	249E+12	216E+12	173E+12	169F+12	289E+12	65.2E+12	48.5E+12	238E+12	76.2E+12	70.8E+12	50.6E+12 73.1E+12	21.2E+12	22.9E+12	419E+12	10.3E+12	8.60E+12 10.7E+12	8.44E+12	77.7E+12 79.0E+12	241E+12	240E+12	29.6E+12 33.1E+12	141E+12 175E+12	17.46+12	15.7E+12	RHO-	
309E+09					138E+09		5.82E+09						490F±09						2.21E+12			593E+12	374E+12		408E+12 418E+12		333E+12	554E+12 617E+12	240E+12	186E+12		430E+12	340E+12		44, 2E+12	223E+12			40.9E+12 64.9E+12			402E+12		5.35E+12 7.39E+12		71.3E+12 75.2E+12				134E+12 177E+12	1/.4t+12		Avg Run 1/Avg Run 2	
149E+09	25.1E+09	25.8E+09	3.20E+09	3.36E+09	102E+09		5.70E+09	994E+06	1.09E+09	91.8E+09	89. 3E+09	358E+09	2575409	224E+09	4.50E+12	4.26E+12	2.95E+12	1.66E+12	1.55E+12	239E+09 231E+09	119E+12	107E+12	431E+12	466E+12	41.3E+12	32.2E+12	31.8E+12	37.7E+12 39.4E+12	110E+12	81.9E+12	44.0E+12	41 0F+12	15.6E+12	7.71E+12	7.61E+12	111E+12	9.38E+12	8.95E+12	15.4E+12 27.0E+12	6.21E+12	6.16E+12	164E+12	2.82E+12	2.50E+12	2.60E+12	6.32E+12 6.84E+12	71.2E+12	71.9E+12	15.3E+12 17.2F+12	4.59E+12 5.37E+12	4.02E+12	3.69E+12	2 RHO+	
251E+09				_	128E+09	1 1	9 5.23E+09		_				307E+09			_	2 3.58E+12		2.22E+12					_	2 55.8E+12			2 54.2E+12 2 53.3E+12	_			2 34.0E+12	_			145E+12			2 25.7E+12 2 34.6E+12	-		208E+12		2 2.84E+12 2 3.18E+12		2 10.4E+12 2 10.2E+12				2 11.3E+1.2 2 11.0E+12	_11_		RHO-	
200E+09					113E+09	lÎ	5,47E+09	945E+06			109E+09		2525+09						1.89E+12				389E+12					40.0E+12 46.4E+12				20.1E+12				1255+12			21.1E+12 30.8E+12			186E+12		2.85E+12 2.84E+12		8.36E+12 8.52E+12	1				4, 6/6+12		Avg Run 1/Avg Run 2	