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Preamble

* This presentation will attempt to cover “everything else” related to the
frequency of (L)SPI with all else being equal

— May still not be exhaustive and omissions were not intentional

— There may be contradictory observations, but a general view is presented

" |t is a collection of observations from literature and the various authors
are fully acknowledged
— Additional sources are SwRI Internal Research and P3 Consortium
" Much of our understanding of LSPI is based on steady-state testing

— Please accept for now that it is a reasonable representation of real-world
behavior
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Working Hypothesis

" There are numerous publications that point s =
to the crevice fluid as a likely cause of LSPI E{ = ; |

. of o . . ) |—|_|
— Mixture of fuel and oil in right proportion =:| b ::| ot || o |

: : o™ —
= Combustion related soot and/or particulates s e
appear to have a contributing/complementary S (o) P

Figure 16: Estimation of pre-ignition mechanisms

impact, as do engine deposits SAE 2010-01-0355
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Figure 4. Mechanism for aute-ignirion of o1l dreplet from pisco
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Speed / Load Demands

" | SPI encountered in low speed, high
load parts of the engine map
Typical of forced induction, direct
injection spark ignition engines with
retarded spark

&
I

Torque (Nm)

Natural aspirated engine

SAE 2012-01-1276

Auto-ignition

Engine speed (rpm)

Variations in

engine operating

conditions
compared to
Baseline case

<

Baseline NG
( Reduced MAT _—|
Lean A/F ratio (Lambda = 1.05and 1.1) ._—I
Rich A/F ratio (Lambda=0.95and 0.9) HNNIIENEGE——
Retarded Camtiming NI
Retarded spark timing || R ——
Increased back-pressure | —
Low intake air humidity ._—1
Reduced Coolant Temp _—c

12

SAE 2011-01-0342 No.of LSPI Events per 30,000 engine cycles
SAE 2012-01-1141 Low  Frequency of SuperKnock  High
Intake air Pressure Low o0OC———=ssi— High
Lambda | Rich 00—l [ean
Intake air Temperature No Influence (26~42degC)
Ignition Timing Retard 00— Advance
Injection Timing Advance0 O C————mmj=—  Retard
Intake Open Timing Retard 00— Advance
Blow-by Oil Little 0OC————=mj® Much
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Calibration - Engine Coolant Temperature

= Multiple papers have shown that LSPI
increases with lower coolant temperatures

— This is engine / design specific

— Correlation between wall temperatures
and fuel evaporation (EXX) that
corresponds to LSPI frequency

' Coolant temp.

Inj. start timing

Fuel pressure

lg. timing

A/F (Exhaust)

Blow-by gas

Deposit

Top ring gap location

Low oil cetane number (and w/o Ca)

Oil w/ & w/o Ca

©|0|0|0|>|x [x [O|CI©

©: Strong effect
O: effect

A weak effect
x: no effect

SAE 2015-01-0756

1/2000rpm 355 Nm A= 1.1 SAE 201 1-01-0340

4 spark advance= 2.25 °bTDC

1 | baseline ol
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B == -

Block -28°C Block -20°C  Block-11°C Base Block +6°C  Block +14°C

Temperature

Coolant Temperature

| SAE 2013-01-2569
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Coolant (outlet) Temp., deg.C
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Calibration - Air-Fuel Ratio

Baseline _—I
( Reduced AT
, , e e e e e ——
" Lean mixtures generally increase o o — ;
engine operating Retarded Cam timing |
LSPI e 7L s ——
Baseline case Increased back-pressure |
— Either by direct fueling action or et F—
indirectly by engine breathing N e —

i . SAE 2011-01-0342
— Mechanism is not clear

No. of LSPI Events per 30,000 engine cycles

Low  Frequency of SuperKnock  High

No Influence (26 ~42degC)

Retard 00—l Advance

Advanced O ‘:* Retard

Retard 00— Advance

" This response can be used both SAE 2012.01-1 14
. Intake air Pressure _

to accelerate LSPI during research  Ep—

and testing but also to mitigate in L SRR
gnition Timing

LSPI in real-life calibration Injection Timing
Intake Open Timing
Blow-by Oil

Little DO—————=mji® Much

POWERTRAIN ENGINEERING

®
©SOUTHWEST RESEARCH INSTITUTE

swri.org



Calibration - EGR

= L SPI frequency is reduced with increasing levels of EGR

— EGR levels may not be production feasible
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Calibration - Injection Timing and Pressure

= | SPI is affected by fuel injection
timing due to wall impingement
and mixing

— Production calibration also
needs to consider durability,
emissions, NVH and
performance

= Similar impact of injection
pressure

— Trade-off between
atomization and penetration
depth

Coolanttemb. o o _O__1 ©: Strong effect
1Inj. start timing © | O:effect
IFuel pressure O : A weak effect
llg.timng ™~~~ " T T T T T T T T T x: no effect

A/F (Exhaust) X

Blow-by gas A

Deposit O

Top ring gap location ©

Low oil cetane number (and w/o Ca) ©

Oil w/ & w/o Ca © SAE 2015-01-0756

2779 | HC Emission [ppm]
-6.0 Spark Timing (KLSA) [deg bTDC]
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\ Inj. PW: 4900 psec = 37 CAD
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\
\
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10.0

1685
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120° aTDC intake 145° aTDC intake
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Design - Injection Targeting

“liner wall wetting injector”

. o o . r
* Changing injector targeting to place 2 ] ‘
.. : : = 2 | : SAE 201 1-01-0340
liquid fuel on piston not liner decreased £ | | !
2 16 1 ! L
LSPI T 12 I :
. . 5 42 I 37
— Consistent with lowest hydrocarbon ‘i | : N
emissions at minimum LSPI e | e | SQUT pRAMmIT Ao
(befora (305°, 150 | (after
injector study)| bar, SF 0) I injector study)
l
Production Piston wetting 8 I :
injector injector I "pis:':'”*"*tl“”ﬂ ryector
= I I 1
e !
;; ! ,
z | :
;] | oz | i B
production I has=s EMS I T Cool out piston w/o production
injector | settings 60°C bowl injctor
(before (305°, 150 | (after
injector study}l_baL SF _ﬂ} 3 injector study)

Piston Pos. 30mm below TDC
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Design - Injector Location

SAE 2018-01-1678

= Central DI and PFl generally

| I 1 |

worsens LSPl compared to side
DI

— Attributed to increased wall
wetting

n—o method
Ru—Ro method

» Results are confounded by piston
design and injection pressure
that are matched to injector type
and location

Central DI Side DI PFl Gasoline PFl Methane
Injection Strategy
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Design - Piston Chamfer

* Chamfered piston crown decreases LSPI frequency

— Likely leads to reduced crevice fluid accumulation and impacts composition

" Design may not be production appropriate due to emissions, costs or
robustness

M Stock pistons

| mcChamfered pistons

| SAE2012-01-1148

. Configuration X X h_|A, deg

[~AN, NB 3837 |1.54] 458

X4 p 43 | 3.24 2.0 | 53.0
Y1l 2 | 27425 62.2
T 6.5 | 2.24 3.0 | 71.0
29 | 47405 | 315

= Moojm
3]
N

Removed volume kept
constant at 1.95cc for all
configurations

Figure 14. Chamfered Piston Crown - Second Iteration

Baseline Lambda=1.05 SOI=395 afTDC Coolant & oil
temp=65degC
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Design — Top Land Height

= Strong correlation between piston top land height and LSPI frequency

— Reduces crevice volume

* May not be production feasible due to strength and robustness
considerations

Coolant temp. © ©: Strong effect = Baseline
Inj. start timing © O: effect | mLambda=1,05
Fuel pressure @) A weak effect
lg. timing X x: no effect
A/F (Exhaust) x
Blow-by gas A
lDeposit | 0O SAE 2015-01-0756
lTop ring gap location © _IE
Low oil cetane number (andw/oCa) ™" " | ©
Oil w/ & w/o Ca ©

Top Land Height (h)
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Design - Ring Tension and Gaps

" Higher ring tension and gapless rings reduce LSP| tendency

" Both impact the oil transfer to the crevice region

* Need to balance LSPI benefits with friction and durability

SAE 2015-01-0753

B

regular ring tension

SwRI

increased ring tension

www.totalseal.com

B Stock Rings
B Gapless Rings

/ # of LSPI Events

/# of Pl Cycles per LSPI Event

Baseline

Total # of PI Cycles

/otal # of Pl Cycles
/ of LSPI Events
/# of PI Cycles per LSPI Event

Lambda=1.05
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D e S i g n — P i Sto n St re n gt h https://www.sae.org/news/2017/06/mahle-tests-for-

mega-knock-in-downsized-boosted-engines

= | SPI typically manifests in piston ring land
and skirt damage

— Less commonly spark plug, valves or
conrod damage

" |[mproved piston design and material
choices can enhance strength and
improve durability

— LSPI damage is unlike that caused by

spark-knock and may require different
solutions

* Ultimately a cost-benefit trade-off

0 POWERTRAIN ENGINEERING
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Engine Condition - Age

* New oil LSPI activity generally reduces with engine age

— Test bed (left and middle) and on-road (right) aged engine LSPI activity

= Attributed to engine wear and changes in flow past ring pack and into

crevice

— Countered by re-honing and bore damage (not shown)
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Engine Condition - Fugitive Oil

® |ncreased LSPI due to increased
blow-by either due to design,

25

maintenance or engine wear

= Similar observations with PCV
and turbo-seal leakage

BMEP [bar]

" Goldilocks response

— A small increase increases LSPI

Blowby =40 LPM

owby=30LPM

SAE 2015-01-0758

0

T A Iarge Increase decreases LSPI 1000 15;]0 20‘00 ZSIOO 30'00 35I00 40;30 45;30 SOIOO SS;JO 6000

Engine speed [rpm]
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Engine Condition - Deposits

* Deposits liberated during first LSPI cycle of a
multi-cycle event

— May not heat up sufficiently within a single
engine cycle to cause preignition (top)

— Volatile components incorporated into
deposits required for ignition

" Dynamics of real-life deposits nearly impossible
to measure / replicate repeatably in an engine

— “Dirty-up” pre-conditioning in some LSPI

bench tests aimed at consistency

* Rebuilding and cleaning of engine does not
affect LSPI activity (bottom)

SAE 2014-01-1218

A B

(Deposits formed at low J
r

Deposits formed by
cylinder liner wall

wetting:
These deposits accumulate at the

engine operation loads:

These deposits accumulate at many

locations in the combustion chamberove
\relatively long periods of time.

Piston

bore top and around the piston
crevice in arelatively shorttime. ..*] =

Lombustion cycle just before LSPI Combustion cycle of LSPI
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% i spaikiii(Bumedn flame l Oxygen Mitureisignited |
5 10l & propagation X i
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N
|
Engine Clean and

rebuild
I

SAE 2018-01-1663
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Transient LSPI

= Real-life LSPI is truly a transient phenomenon during which the factors above may
reinforce or detract from each other due to dynamics

No known systematic study

* On-road LSPI encountered at higher engine speeds (>3,000 rpm) and with “rea
deposits

Rare event (~5,000/200 million cycles)

I”

m Peak cylinder pressure and engine speed.

Peak Cylinder Pressure eessssess Engine Speed
250 4000
T | 3500
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2500 =
o
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wn
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0 0
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200
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Lh
=

Peak Cylinder Pressure (bar)

© SAE International
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Conclusions

" Factors that impact the amount or composition of the crevice fluid
appears to impact LSPI

— Not all design, operation or calibration adjustments are attainable due to
emissions / performance / durability / cost considerations

* Operational and hardware factors are agnostic to fluid changes

" Little evidence of the impact of engine deposits, although it is thought
to be complementary

* Quantification of transient or real-life LSPI response still open
— OEM proprietary flagging and mitigation are already in use
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Recommendations

" | SPI observed during steady-state testing transients may be mined for
additional insight

* Determine how “steady state factors’” may manifest during transient testing
— Acceleration /deceleration
— Tip-in / tip-out
— Warm-up / cool down

* Determine the impact on LSPI severity, not only frequency

* Understanding the impact of “real” deposits

* Cost-benefit analyses of design and calibration mitigation versus fluid solutions

— Likely not in the research realm
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Thank You

Andre Swarts
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