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Foreword

CRC Project No. AVFL-26 was conducted by two contractors, the Oak Ridge National Laboratory in Oak
Ridge, TN (Part A), and IAV Automotive Engineering in Northville, M1 (Part B). Both Contractor Final
Reports are presented here with an overview Executive Summary prepared by the CRC Advanced
Vehicle/Fuel/Lubricants Committee. Part A begins immediately following the AVFL Committee’s
Executive Summary with the text body and appendices spanning pages 1-27. Part B begins immediately
following Part A with the report spanning newly numbered pages 1-44. See the respective Part A and Part
B Tables of Contents for details on the placement of the information presented in the two reports.



AVFL Committee Executive Summary

This work investigated improving engine efficiency to reduce fuel consumption by 25% with future engine
technologies combined with higher octane fuels. A production direct injection turbocharged engine was
modified to incorporate an increased compression ratio (CR) from 9.5 to 11.5, a two-stage turbocharger
and increased levels of external cooled EGR. The octane of the fuels ranged from 92 RON to 102 RON,
the ethanol from 0% to 30%. The final boiling point, (a surrogate for PMI) as an indication of the propensity
of the fuel to create additional particulate matter, ranged from 363°F to 438°F. IAV Automotive
Engineering was contracted to conduct steady state engine dynamometer testing. Several steady state speed
and load test points were run and fuel consumption and emissions were measured and recorded. That data
was then used in the Autonomie model for vehicle- level modeling to determine fuel consumption and CO-
emissions benefits.

To establish a baseline to compare the future engine to, a production direct injection, turbocharged engine
was run under several steady state speeds and loads at Oak Ridge National Laboratory (ORNL) and fuel
consumption and emissions measurements were made. That data was input into the Autonomie model.
Attributes of a typical production mid-size vehicle were used to develop a vehicle for use in the Autonomie
model: vehicle mass, transmission gearing, drive ratios, aerodynamics.

The Autonomie modeling resulted in the high-octane 102-RON fuels consistently providing the lowest
energy consumption values for the advanced engine on all four test cycles, the UDDS, Highway Fuel
Economy Test and the city and highway portions of the US06. A 25% reduction in fuel consumption is
projected to be achievable with the advanced engine and fuel L, a 102-RON 30% ethanol fuel, in mixed
driving. Although the 30% ethanol fuel produced lowest fuel consumption, the high octane 102 RON 0%
ethanol fuels produced lowest volumetric fuel consumption, primarily because of the higher volumetric
heating value of gasoline compared to ethanol. For high-octane 102 RON fuels with same ethanol level,
higher final boiling point produced lower volumetric fuel consumption for all test cycles.
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EXECUTIVE SUMMARY

The Gasoline Engine and Fuels Offering Reduced Fuel Consumption and Emissions (GEFORCE) project
was proposed in response to the U.S. Department of Energy’s Funding Opportunity Announcement 0991
by a team made up of the members of the Coordinating Research Council (CRC) and the research staff at
Oak Ridge National Laboratory (ORNL.) The project focused on investigating the potential benefits that
might be attained through synergistic use of specific engine technology together with fuels formulated to
represent potential directions that high-octane fuels of the future might progress. A stated objective in the
DOE FOA was to demonstrate a 25% reduction in petroleum consumption through optimization of the
engine technologies together with a suitable fuel.

An advanced engine was constructed and used with a matrix of research fuels to investigate potential
avenues for efficiency improvement. The engine incorporated technologies expected to become
mainstream for boosted engines in the next 10 to 20 years. These included increased compression ratio, a
two-stage turbocharger, and cooled external exhaust gas recirculation (EGR). The fuel matrix was
designed to investigate impacts from research octane number (RON), volumetric ethanol content, and the
final boiling point of the fuel. The engine calibration was optimized for each fuel individually and data
collected to enable vehicle system modelling that projected energy consumption, fuel economy, tailpipe
CO; emissions, and impact on petroleum consumption for an industry-average mid-size sedan.

The engine calibration and data collection were carried out at IAV in Michigan and is the subject of a
separate report. AV provided the engine data to Oak Ridge National Laboratory to support the vehicle
modelling portion of the project.

The vehicle modelling results show the following trends:

e Ethanol content does have a consistently strong influence on the fuel economy results for all
cycles and all fuels. Among the fuels of a nominal RON level, increasing ethanol content
consistently lowers fuel economy, with the 30% ethanol fuels always providing the lowest fuel
economy for a given RON level. However, in some cases the energy consumption improvement
allows the 30% ethanol fuels to match the fuel economy of the ethanol-free fuel P. These
observations underscore the importance of both engine efficiency and fuel volumetric energy
content on vehicle fuel economy.

e There was no consistent trend in the projected energy consumption results for differences in fuel
T90 for all fuels and cycles. Fuel economy projections did show a consistent trend, with the
higher T90 fuel providing slightly greater fuel economy when compared to the low T90 fuel of
the same ethanol content. The observed trends were consistent with differences in the heating
value of the fuels.

e The 102-RON fuels provided reduced energy consumption and greater fuel economy for the
advanced engine on all drive cycles. The engine compression ratio of 11.5 was higher than would
typically be used in a turbocharged engine when 92-RON fuel use is expected. Hence, the engine
experiences more efficiency degradation from knock avoidance when using the 92-RON fuels.
This degradation causes the fuel economy results for the 92-RON fuels to be lower than those for
the 102-RON fuels.

o Fuels E and F (92-RON, 30% ethanol) are projected to achieve 10% or greater reduction in
petroleum consumption, with fuels K (102-RON, 30% ethanol) and O (97 RON, 30% ethanol)
achieving greater than a 20% reduction. Fuel L (102-RON, 30% ethanol) achieves greater than



25% reduction, meeting the petroleum reduction target of the project. All of the fuels that
achieve 10% or greater reduction in petroleum consumption are 30% ethanol blends.

Increasing final boiling point increased fuel economy at fixed ethanol content when the 102-RON
fuels were used. This trend is a result of differences in the volumetric energy content of the fuels
and the projected energy consumption values for the fuels. In the case of the 102-RON fuels,
increasing final boiling point also resulted in an increase in the energy content of the fuel. There
was not a consistent trend between the energy content and final boiling point for the 92-RON
fuels at fixed ethanol content.



1. INTRODUCTION

1.1 BACKGROUND

The current state-of-the-art in gasoline engine architecture is the gasoline turbocharged, direct-
injection engine. Such engines are presently in production but are prevented from achieving
even greater efficiency because of the onset of knock, which can irreversibly damage the engine.
Techniques for avoiding knock include delaying the ignition timing relative to the piston
position, which reduces peak temperatures and pressures in the cylinder and thus removes the
knocking condition. Under some conditions where changing ignition timing is insufficient to
remove knock, additional fuel is added to cause the combustion conditions to be fuel-rich, which
can further cool the in-cylinder conditions. However, the displacement of ignition timing from
the thermodynamic optimum location and the use of fuel-rich combustion both degrade the fuel
efficiency of the engine. Historically, the onset of knock is most often associated with very high
power driving events that occurred infrequently and did not have a significant impact on fuel
efficiency. However, the current trend of reducing engine displacement while improving
specific power ratings (downsizing) and reducing the engine speeds experienced during most
driving modes (downspeeding) are increasing the importance of knock avoidance during a larger
portion of typical driving conditions (both on certification cycles and those typical of consumer
use). Thus, knock avoidance is rapidly becoming one of the most important limitations to
increasing vehicle fuel efficiency.

Ever-tightening emissions regulations have challenged engine designs for many years, and
continue to do so. Recent emissions regulations have continued to apply more pressure to reduce
emissions, particularly of non-methane organic gas (NMOG) and nitrogen oxides (NOx).
Particulate matter (PM) emissions have historically not been problematic for gasoline engines;
however, tightening regulatory limits require that direct-injection gasoline engines be designed
with more attention to their PM emissions than had been the case with previous gasoline engine
architectures, perhaps requiring the use of gasoline particulate filters. Fuel formulation could
also play a strong role in PM emissions reductions, since in-cylinder charge motion and fuel
injection strategies could benefit from consideration for fuel properties such as the distillation
curve, fuel chemistry, density, and viscosity in order to minimize NMOG, NOx, and PM
formation during the combustion process. Hence, there is also a strong opportunity to reduce
emissions by taking advantage of potential future fuel formulations.

Existing studies have been undertaken to investigate the potential for exhaust gas recirculation
(EGR) to aid in both knock avoidance and emissions reduction. Southwest Research Institute’s
HEDGE consortium, for example, has demonstrated a 10% brake specific fuel consumption
benefit at low loads characteristic of certification cycles using many of the future technologies
anticipated to be included in this proposed activity!. The HEDGE consortium did not make use
of advantageous fuel properties, which can afford additional opportunities for performance
optimization leading to further reductions in fuel consumptions, and in some cases direct
petroleum displacement. Szybist et al. have shown that inclusion of ethanol in fuel can enable

1 “SwRI’'s HEDGE Technology for High Efficiency, Low Emissions Gasoline Engines,” presented at the 2010 DEER
Conference by Terry Alger.



additional benefits beyond chemical octane improvement that provides an opportunity for
improved ignition timing during knock-limited combustion that further improves brake engine
efficiency?. Storey et al. showed that inclusion of ethanol in the fuel could provide a significant
reduction in PM emissions, and Aikawa et al. showed that the distillation of the fuel, regardless
of ethanol inclusion, also plays a significant role in PM formation >*. Similarly, Jung et al.
showed that a GTDI engine modified to achieve higher compression ratio could achieve
sufficient efficiency improvement in a near-term engine architecture to balance the lower
volumetric heating value caused by inclusion of ethanol in the fuel®. None of these studies have
brought all of these potential interactions between fuel and engine technology together in one
designed experiment to assess the simultaneous ranges of both engine technologies and fuel
formulations that provide the most joint benefit.

There are a number of future directions that US gasoline formulations could take in response to
regulatory requirements, but none of these directions are definitive, and this situation leads to
considerable uncertainty in engine and vehicle development as a result. For example, the biofuel
mandates promulgated under the Renewable Fuel Standard could lead to increased ethanol
content in fuel, but whether this increased content will result in higher octane ratings that can be
used to improve fuel efficiency is unknown. PM emissions regulations under the EPA Tier 3 and
California LEV Il regulations may result in another round of gasoline reformulation to aid in
PM reduction, but again the collateral impact on other emissions and fuel efficiency is not clear.
Finally, the status quo of gasoline blended with 10% ethanol to produce an 87- 93 anti-knock
index (AKI) fuel may continue as these fuels will continue to be useful for the legacy fleet.
Future engines will need to provide higher levels of efficiency simultaneously with lower levels
of emissions than have ever been achieved, regardless of the direction fuel formulation may take.
As has already been discussed, there are opportunities for co-evolution of engine design with
gasoline formulation that can enhance efficiency while simultaneously reducing emissions.
Identifying the opportunities in self-reinforcing fuel formulation and engine technology could
significantly improve opportunities for the OEMs to balance the expectations of customers,
manufacturing costs, and national energy and environmental policy objectives. The energy
industry (producers, distributors, and retailers) also stands to benefit from this information, as it
will identify key fuel formulation directions that are most promising, allowing the industry to
subsequently determine the capital improvements that would be needed for changes to fuel
formulation towards the proposed solutions.

2 “Advantageous Fuel Properties of Ethanol Beyond Octane Number,” presented at the 2014 SAE
Government/Industry Meeting by Jim Szybist.

3 “Exhaust Particle Characterization for Lean and Stoichiometric DI Vehicles Operating on Ethanol-Gasoline Blends,”
John M.E. Storey et al., SAE Paper 2012-01-0437.

4 “Development of a Predictive Model for Gasoline Vehicle Particulate Matter Emissions,” Koichiro Aikawa et al.,
SAE Paper 2010-01-2115.

5 “Fuel Economy and CO2 Emissions of Ethanol-Gasoline Blends in a Turbocharged DI Engine,” Hosuk Jung, et al.,
SAE Paper 2013-01-1321.



The Gasoline Engine and Fuels Offering Reduced Fuel Consumption and Emissions (GEFORCE) project
was proposed in response to the U.S. Department of Energy’s Funding Opportunity Announcement 0991
by a team made up of the members of the Coordinating Research Council (CRC) and the research staff at
Oak Ridge National Laboratory (ORNL.) The project focused on investigating the potential benefits that
might be attained through synergistic use of specific engine technology together with fuels formulated to
represent potential directions that high-octane fuels of the future might progress. A stated objective in the
DOE FOA was to demonstrate a 25% reduction in petroleum consumption through optimization of the
engine technologies together with a suitable fuel. This objective was carried into the project, with a
vehicle modeling exercise focused on examining the vehicle fuel economy metric based on data generated
using an experimental engine and a matrix of potential future fuel formulations.

1.2 ENGINE EXPERIMENTAL STUDY

The largest effort in the GEFORCE project was the assembly and calibration of an engine to include
technologies expected to become mainstream in the next 10-20 years using fuels formulated to explore
potential fuel formulation pathways that may emerge during a similar timeframe. This work was carried
out at GM and at IAV in Michigan and is documented in a companion report.® Some information is
repeated here for the convenience of the reader.

The experimental engine was developed with component parts from a GM 2.0-liter LTG and other
engines as well as purpose-built components. The swept volume of the engine was increased by replacing
the crankshaft with a production model to achieve increased stroke while retaining the bore size and
pistons from the original LTG engine. Increasing swept volume in this manner increases compression
ratio which in turn is needed to take advantage of fuels with improved anti-knock performance. The
swept volume increased from 2.0 to 2.35 liters; the compression ratio increased from 9.5 to 11.5.
Additionally, a high-volume exhaust gas recirculation (EGR) system was added and a two-stage
turbocharger system fitted to the engine. These technologies were anticipated to provide flexibility in the
engine system to explore potential fuel-related optimization strategies. A production LTG engine was
used to provide baseline data against which the performance of the advanced engine could be compared.
The baseline data were collected using a premium-grade, ethanol-free certification gasoline (Haltermann
Tier 2 EEE) at ORNL.

Staff at IAV performed calibration optimization on the advanced engine using a matrix of fuels
formulated to support this project. The fuel matrix was designed to explore the impacts of research
octane number (RON), ethanol content (volume %), and the fuel distillation final boiling point. The fuel
matrix is shown in Figure 1. The experimental work at IAV developed fuel consumption and emissions
data for the engine for each fuel. These data were developed by operating the engine at a series of speeds
from 1,000 RPM to 5,000 RPM and at a range of output up to maximum output torque at each speed.

6 Chi Binh La, Shane Macfarlane, Kevin Sittner, “AVFL-26 Calibration Study on Modified GM LTG Engine Using a
Matrix of 15 Fuels,” available from the CRC website, www.crcao.org.
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Figure 1. The GEFORCE matrix of fuels was formulated to explore impacts of RON, ethanol content, and final boiliing point on
the fuel economy and emissions of the experimental engine.



2.  VEHICLE MODELING STUDY

A vehicle modeling study was used to evaluate the engine data developed at 1AV to estimate potential
impacts on vehicle fuel economy, energy consumption, and tailpipe CO; emissions. A related study was
previously carried out to evaluate these impacts for a near-term gasoline, turbocharged, direct-injection
(GTDI) engine using near-term technology in the AVFL-20 project.” The Autonomie simulation package
was used to support vehicle modeling in the AVFL-20 project and is also used in the current
investigation.

Vehicle modeling investigations were carried out by using an industry-average mid-size sedan as the
target vehicle for both the baseline engine and the advanced engine. A detailed description of the
development of parameters to describe this vehicle in the Autonomie environment is contained in the
AVFL-20 report. The vehicle parameters used in AVFL-20 were carried forward for the current study,
with the exception that transmission and final drive ratios were taken from a production vehicle that is
equipped with the baseline LTG engine to better match the engine and transmission for the mid-size sedan
application. The vehicle model parameters are shown in Table 1.

Table 1. Parameters used in Autonomie to describe the industry-average mid-size sedan.

Parameter Value

Target Coefficient A (Ibf) 34.0501
Target Coefficient B (Ibs / MPH) 0.2061
Target Coefficient C (lbs / MPH”2) 0.0178
Equivalent Test Weight (Ibs) 4000
1st Gear Ratio 4.69
2nd Gear Ratio 3.31
3rd Gear Ratio 3.01
4th Gear Ratio 2.44
5th Gear Ratio 1.92
6th Gear Ratio 1.44
7th Gear Ratio 1.00
8th Gear Ratio 0.75
9th Gear Ratio 0.62
Final Drive Ratio 2.89
Tire Rolling Radius (m) 0.32775

As in the AVFL-20 study, the urban dynamometer driving schedule (UDDS), the highway fuel economy
test (HWFET), and both the city and highway portions of the US06 driving schedule (US06_city and
US06_hwy) were used to investigate vehicle fuel economy, energy consumption, and tailpipe CO-
emissions. The UDDS is the driving schedule used in the U.S. Federal Test Procedure (FTP). The FTP
together with the HWFET are used in fuel economy certification calculations in the U.S. The two
portions of the more aggressive US06 driving schedule are additionally used in calculation of the 5-cycle
fuel economy value that is posted on the window sticker of new vehicles offered for sale.

7 C. Scott Sluder, David E. Smith, Martin Wissink, James E. Anderson, Thomas G. Leone, and Michael H Shelby,
“Effects of Octane Number, Sensitivity, Ethanol Content, and Engine Compression Ratio on GTDI Engine Efficiency,
Fuel Economy, and CO2 Emissions,” AVFL-20 Project Final Report, available from the CRC website, www.crcao.org.



2.1 BASELINE VEHICLE MODEL RESULTS

Projected energy consumption results for the baseline engine and vehicle using the Haltermann EEE 97
RON gasoline are shown in Figure 2. Lowest energy consumption occurs for the HWFET cycle; highest
energy consumption occurs on the city portion of the US06 cycle. This trend in energy consumption is
typical of light-duty vehicles and was also observed in modeling results from the AVFL-20 project.
Projected fuel economy values depend on the energy consumption for a given cycle combined with the
volumetric energy content for the fuel being used. The projected fuel economy values are shown in
Figure 3.

8000

7000 6,900

=)
[=]
o
o

ul
o
o
o

4,064

3,759
2,822
1000 I
0

uDDS HWFET US06_City US06_Hwy

w
(=]
o
o

N
o
o
o

Projected Energy Consumption (BTU/mile)
3
S
o

Figure 2. Projected energy consumption for the baseline engine and vehicle using Haltermann EEE 97 RON gasoline.
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2.2 FUEL ECONOMY RESULTS FOR THE ADVANCED ENGINE AND VEHICLE

The advanced engine has a 17.5% larger displacement than the baseline engine. Comparing this engine
using a fuel similar to the fuel used in the baseline engine is a useful comparison to assess differences in
energy consumption and fuel economy that may result from the difference in engine displacement. Fuel P
is a 97 RON, ethanol-free fuel used in the advanced engine and is therefore similar to the EEE gasoline
used in the baseline engine. Comparison of the energy consumption and fuel economy results are shown
in Figures 4 and 5.
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Figure 4. Comparison of projected energy consumption values for the baseline engine using EEE gasoline and the advanced
engine using fuel P.

<))
o
o
o

(%4
o
o
o

w
o
o
o

Projected Energy Consumption (BTU/mile)
8
o
o

The projected energy consumption on a per-mile basis is higher for the advanced engine using fuel P than
for the baseline engine using the EEE fuel on all cycles. This outcome is consistent with a greater degree
of throttling loss when the larger displacement engine is used in the same vehicle as the smaller baseline
engine. The difference between the two engines is much smaller for the city portion of the US06 cycle,
indicating that the advanced engine may be more efficient than the baseline engine at high-load
conditions that are more prevalent on this portion of the US06 cycle.

Fuel P has a volumetric energy density of 123,615 BTU/gallon compared with 115,421 for EEE. This
difference reduces the mpact of the energy consumption differences noted previously on fuel economy.
Nevertheless, for UDDS and HWFET cycles the fuel economy values for the advanced engine are lower
than the baseline because of the difference in engine displacement.

Figure 6 shows the projected energy consumption for the UDDS for all the study fuels used in the
advanced engine. A broken green line indicates the result achieved with fuel P for comparison. The 92
and 97 RON fuels (except for fuel O) provide similar energy consumption results. The 102 RON fuels all
provide lower (better) energy consumption results.
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Figure 7 shows the fraction of time spent at each engine operating condition on the UDDS for fuels L and
P. The highest concentration of points occurs in very similar locations for the two fuels, but the
calibration of the engine for fuel L causes the efficiency contours to move relative to fuel P. These
differences at low output torque values are not likely a result of differing fuel anti-knock properties at low
load conditions but are instead more likely an outcome of the overall calibration strategy enabled by the
102-RON fuels. Since the 102-RON fuels span a range of ethanol content, this difference is also not
likely a result that is strongly tied to the ethanol content of the fuel

Fuel economy projections for the advanced engine on the UDDS cycle are shown in Figure 8. The lower
energy consumption noted for the 102-RON fuels enables them to achieve greater fuel economy than
other fuels when evaluated at fixed ethanol content. In fact, Fuel L (a 30% ethanol fuel) is projected to
achieve the same fuel economy as fuel P (an ethanol-free fuel). This occurrence is noteworthy since
ethanol blending reduces fuel volumetric energy content and frequently reduces fuel economy. The
remainder of the 97- and 92-RON fuels were projected to provide lower fuel economy than fuel P on the
UDDS.

Figure 9 shows the energy consumption for the advanced engine and study fuels for the HWFET cycle.
Figure 10 shows a comparison between the fraction of time spent at each operating condition for the
HWFET cycle for fuels L and P. Figure 11 shows the projected fuel economy for the study fuels for the
HWFET cycle. Fuels M and P exhibit nearly identical energy consumption, with the remainder of the
fuels providing lower energy consumption on the HWFET. Comparing the time spent at each condition
for fuels L and P shows that for these two fuels, the difference in energy consumption is primarily driven
by the difference in size and shape of the 35% efficiency contour of the engine map. The fuel economy
results for many fuels still fall below that of fuel P. Four of the six 102-RON fuels (with ethanol content
less than 30%) do provide an improvement in fuel economy relative to fuel P. Fuel L, a 30% ethanol fuel,
provides parity with fuel P in terms of fuel economy and the lowest energy consumption of any of the
fuels on the HWFET cycle.

Figure 12 shows the energy consumption and fuel economy results for the city portion of the US06 cycle.
Although the energy consumption levels are higher for the city portion of the US06 than for the UDDS,
the trend among the fuels is similar. The 92-RON fuels provide energy consumption results that are
comparable to fuel P, with four fuels providing improved energy consumption. All of the 102-RON fuels
provide improvements in energy consumption, with fuel L providing the lowest energy consumption.
Comparison of the fraction of time spent at each condition for fuels L and P on this cycle (Figure 13)
shows that the primary driver of improved cycle-average energy efficiency for fuel L is the size and shape
of the 35% efficiency contour. Figure 14 shows the projected fuel economy for the study fuels for the
city portion of the US06 cycle. Two of the 102-RON fuels (G and H, both ethanol-free fuels) provide
higher fuel economy than fuel P.

Figure 15 shows the energy consumption and fuel economy projections for the highway portion of the
USO06 cycle. Figure 16 show the comparison of fraction of time spent at each point for fuels L and P for
the highway portion of the US06 cycle. As noted previously, the size and shape of the 35% efficiency
contour is the prevailing difference between the two engine calibrations.

Figure 17 show the projected fuel economy for the study fuels on the highway portion of the US06 cycle.
All fuels except fuel M offer reduced energy consumption compared to fuel P on this cycle, with four
fuels (G, H,I, and J) simultaneously offering equal or higher fuel economy. Among the 92-RON fuels
there does not seem to be a strong overall trend linking ethanol content to energy consumption for all the
drive cycles examined. In some cases the 30% ethanol fuels (E and F) provide the lowest energy
consumption of the 92-RON fuels, but in other cases the greatest benefit is provided by fuel A, a 10%
ethanol fuel. Fuel O consistently provided the lowest energy consumption of the 97-RON fuels, but the
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results from fuels M and P don’t provide as much consistency. This trend suggests that ethanol content
may be a contributor, but is not the only factor in the consistently low energy consumption of fuel O.
Fuel L has the lowest energy consumption, K is the second lowest, and G, H, I, and J are higher.
Although fuel L consistently provided the lowest energy consumption of the 102-RON fuels the results
for all the 102-RON fuels do not present a consistent trend with respect to ethanol content. Thus, while
ethanol content is perhaps a contributing factor in the energy consumption results of the study fuels, it is
not the only fuel formulation characteristic that determines energy consumption for all the cycles.

Ethanol content does have a consistently strong influence on the fuel economy results for all cycles and
all fuels. Among the fuels of a nominal RON level, increasing ethanol content consistently lowers fuel
economy, with the 30% ethanol fuels always providing the lowest fuel economy for a given RON level.
However, in some cases the energy consumption improvement allows the 30% ethanol fuels to match the
fuel economy of the ethanol-free fuel P. These observations underscore the importance of both engine
efficiency and fuel volumetric energy content on vehicle fuel economy.

Similarly, there was no consistent trend in the projected energy consumption results for differences in fuel
T90 for all fuels and cycles. Fuel economy projections did show a consistent trend, with the higher T90
fuel providing slightly greater fuel economy when compared to the low T90 fuel of the same ethanol
content. The observed trends were consistent with differences in the heating value of the fuels.

The 102-RON fuels provided reduced energy consumption and greater fuel economy for the advanced
engine on all drive cycles. The engine compression ratio of 11.5 was higher than would typically be used
in a turbocharged engine when 92-RON fuel use is expected. Hence, the engine experiences more
efficiency degradation from knock avoidance when using the 92-RON fuels. This degradation causes the
fuel economy results for the 92-RON fuels to be lower than those for the 102-RON fuels.

Increasing final boiling point increased fuel economy at fixed ethanol content when the 102-RON fuels
were used. This trend is a result of differences in the volumetric energy content of the fuels and the
projected energy consumption values for the fuels. In the case of the 102-RON fuels, increasing final
boiling point also resulted in an increase in the energy content of the fuel. There was not a consistent
trend between the energy content and final boiling point for the 92-RON fuels at fixed ethanol content.
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2.3 REDUCTION OF PETROLEUM CONSUMPTION

A goal of this project was to reduce petroleum consumption by 25%. This objective is most likely to be
achieved when the energy consumption for all four cycles is reduced significantly in combination with a
substantial biofuel blending. The lower the energy consumption for the cycle can be, the less biofuel
blending is needed to achieve the goal, and vice versa. Because the larger displacement advanced engine
has higher energy consumption than the baseline engine when similar fuels are used, reductions in
petroleum consumption are driven primarily by biofuel blending. Virtually all real-world driving
combines aspects of the cycles studied. An approximation of the EPA 5-cycle weighting was used to
combine the results of all cycles studied to a single petroleum reduction estimate. The approximation of
the 5-cycle weighting used the UDDS results in place of all FTP, Cold CO, and SCO3 results as was the
case in a related study.® Figure 18 shows the projected impacts to petroleum consumption for all of the
study fuels. Fuels E and F achieve 10% or greater reduction in petroleum consumption, with fuels K and
O achieving greater than a 20% reduction. Fuel L achieves greater than 25% reduction, meeting the
petroleum reduction target of the project. All of the fuels that achieve 10% or greater reduction in
petroleum consumption are 30% ethanol blends.
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Figure 18. Projected impacts to petroleum consumption for the study fuels. Results are based on a weighted average of the drive
cycle results that approximates the EPA 5-cycle weighting method.

8 C. Scott Sluder, David E. Smith, James E. Anderson, Thomas G. Leon, and Michael H. Shelby, “U.S. DRIVE Fuels
Working Group Engine and Vehicle Modeling Study to Support Life-Cycle Analysis of High-Octane Fuels,” February
2019. Available on the web at https://www.energy.gov/eere/vehicles/downloads/us-drive-fuels-working-group-
high-octane-reports
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3. CONCLUSIONS

Data collected from calibration of an advanced engine at IAV for a matrix of fuels
were used in an Autonomie simulation to project energy consumption and fuel
economy results for an industry-average mid-size sedan.

Use of the larger displacement (2.35L) advanced engine caused the energy
consumption of the mid-size sedan to increase relative to the baseline (2.0L)
engine on all driving cycles.

A number of the study fuels enabled reductions in energy consumption for the
advanced engine on one or more of the drive cycles compared to the use of Fuel
P, which was similar to the EEE fuel used in the baseline engine.

A 102-RON 30% ethanol blend, fuel L, was projected to provide the lowest energy
consumption on all driving cycles. Fuel L does not provide the highest fuel
economy, however, because it has a reduced energy content resulting from its
30% ethanol content.

While high levels of ethanol blending often correlated with improvements in
energy consumption for the drive cycles studied, the data do not reveal a
consistent trend in this regard.

The 102-RON fuels consistently provided the lowest energy consumption and the
highest fuel economy values for the advanced engine on all four cycles.
Increasing the final boiling point of the fuel at 102-RON resulted in fuel
formulations that had increased energy content and thus improved fuel economy
relative to fuels with lower final boiling point at the same ethanol content. This
trend was not consistent for the 92-RON fuels.

25% reduction in petroleum consumption is projected to be achievable with the
advanced engine and fuel L, a 102-RON 30% ethanol fuel, in mixed driving using
a combination of the four drive cycles evaluated in this study.
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1 List of Acronyms and Abbreviations

ATDC After Top Dead Center

AVFL Advanced Vehicle Fuel Lubricants Committee of the Coordinating Research Council
BMEP Brake Mean Effective Pressure

BSFC Brake Specific Fuel Consumption

BSNOXx Brake Specific Nitrogen Oxide

BTDC Before Top Dead Center

BTE Brake Thermal Efficiency

BTU British Thermal Units

CA50 Crank Angle Location of 50% Mass Fraction Burned
CAD Crank Angle Degrees

CAFE Corporate Average Fuel Economy

CAC Charge Air Cooler

cov Coefficient of Variation

CEGR Externally Cooled Exhaust Gas Recirculation
CR Compression Ratio

df Degree of Freedom

E10 10% Ethanol Content Fuel

E25 25% Ethanol Content Fuel

ECU Engine Control Unit

EGR Exhaust Gas Recirculation

EtOH Ethanol

EOI End of Injection

EOI2_diff End of Injection Difference Angle

FST Fuel System Treatment

HC Hydrocarbon

HP High Pressure

IAV Ingenieurgesellschaft fur Automobil und Verkehr
iIEGR Internal Exhaust Gas Recirculation

IMEP Indicated Mean Effective Pressure

Kl Knock Intensity

L Liter

LBP Low Boiling Point
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LCV General Motors Corporation 2.5L Engine

LP Low Pressure

LTG General Motors Corporation 2.0L Turbocharged Engine
MBT Maximum Brake Torque

Mdp Modified Double Pass

MEP Mean Effective Pressure

MON Motor Octane Number

N_ACT Actual Engine Speed

OEM Original Equipment Manufacturer

ON Octane Number

P85 Knock intensity threshold based on the 85 % quantile for knocking cylinder pressure
Pmax Maximum Cylinder Pressure

Peff Power Effective

PSI Pound per square inch

RON Research Octane Number

RPM Revolutions per Minute

SOl Start of Injection

Split Factor ~ Ratio between Primary and Secondary Fuel Injection Mass
STDEV Standard Deviation

t-cric t-Critical Value

TtIVol Total Volume percent of oxygenates

TtIWt Total Weight percent of oxygen

TWC Three-way Catalytic Converter
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2 Executive Summary

The automotive industry has taken numerous steps to improve overall vehicle fuel efficiency, such as
the adoption of downsized turbocharged engines. Downsizing together with other engine technologies
like increased compression ratio, sequential boosting, cooled exhaust gas recirculation and multiple
injection together with fuel property improvements are enablers to meet future demands of increased
fuel efficiency and lower emissions.

The project’s objective was to quantify the effects of different fuel properties on the fuel consumption,
performance and emissions of a modified engine with calibrations that were specifically optimized for
each fuel. The test engine wasa GM LTG 2.0 L turbocharged direct injected engine that was modified
by GM with the following changes. The GM LTG crankshaft was replaced with a production GM LCV
crankshaft which increased the stroke from 86 mm to 101 mm resulting in a displacement increase from
2.0 L to 2.35 L. The geometric compression ratio was increased from 9.5 to 11.5 using stock LTG
pistons. A low pressure cooled external EGR system was added and the turbocharger system changed
from a single turbo to a two stage sequential. The aforementioned changes although directionally
correct for improved engine efficiency, should not be considered optimized as a system. There is a
potential that a fully optimized 11.5 CR combustion system with an appropriately matched turbocharger
could show better BSFC, BTE and emissions values than in this report. However, the engine as tested
is still representative of the general population of down-sized boosted engines and the trends in the data
remain valid.

The modified GM LTG engine was calibrated at IAV Automotive Engineering located in Northville,
Michigan. Calibration was carried out at steady state conditions at the following speeds; 1000 RPM,
1500 RPM, 2000 RPM, 2500 RPM, 4000 RPM and 5000 RPM. At each speed, engine load was stepped
by 2 bar BMEP (equivalent to 37.4 Nm) increments, starting at 2 bar up to a maximum load limited by
spark knock, exhaust gas temperature, peak cylinder pressure or engine software. At each steady state
point the calibration was optimized to provide the lowest BSFC while maintaining emissions consistent
with other production engines of similar displacement and performance. All calibrations were carried
out under stoichiometric homogeneous combustion operation.

Variations in RON, ethanol content and boiling point were investigated, forming a fuels matrix
comprised of 15 fuel variants (reference Figure 1). The matrix covers three levels of RON; 92, 98 and
102, four levels of ethanol content by percent volume; 0 %, 10 %, 15 % and 30 %, and a high and low
final boiling point range of 380-420 °F and 360-385 °F respectively.

Results show that under stoichiometric homogeneous combustion at steady state engine speeds,
increased RON decreases the engine’s knocking tendency and thus significantly expanding its
performance limit to higher loads. With 92 RON fuels the maximum achievable load is limited to 12
bar BMEP due to spark knock from 1500-4000 RPM and exhaust gas temperature limits above 4000
RPM. 98 RON fuels are limited to a peak performance of 16 bar BMEP at 2000 RPM. As engine speed
increases from 2000-4000 RPM the performance decreases due to a combination of both spark knock
and exhaust gas temperature limits. 102 RON fuels are limited to 16 bar BMEP due to spark knock
below 4000 RPM and exhaust gas temperature limits above 4000 RPM. Below 2000 RPM there is a
software limitation that does not permit 100% throttle opening under boosted operation, this affects all
fuels.

In general the lowest BSFC is attained with EO fuels where a minimum BSFC ranging from 216-224
g/kWh is obtained from 1500-2000 RPM and 8-10 bar BMEP. This translates to an equivalent
maximum BTE range of 37.6-39.3 % in the same map area.
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The highest BTE is attained with 102 RON E30 fuels where efficiencies greater than 39.0 0% BTE are
achieved in a broad map area ranging from 1500-2500 RPM and from 8 bar BMEP up to the maximum
load limit of 16 bar BMEP. Results show that increasing the ethanol content at a fixed RON level
increases BSFC by about 4% for each 15% increase in ethanol. This BSFC increase is at a lower rate
than the 5% loss in overall fuel energy for each 15% increase in ethanol, thus resulting in improved
BTE. As well, increasing RON level decreases knocking tendency thus significantly expands the map
area of best efficiency to higher loads and higher speeds.

Octane RON

{0 % 10 %
Ethanol %

Figure 1: Fuel Matrix

3 Calibration Results

3.1 Effects of Ethanol Content

The lowest BSFC is possible with EO fuels where a minimum BSFC ranging from 216-224 g/kWh is
measured equating to BTE of 37.6-39.3 %. However, engine efficiency is highest with E30 fuels where
the increased ethanol content improves combustion efficiency through improved charge cooling and a
decrease in burn duration allowing for increased EGR dilution while maintaining spark timing close to
MBT.

Taking the example at the mid-RON level of 98 RON to quantify the effects of ethanol on BSFC and
BTE. It can be shown that increasing the ethanol content results in a corresponding increase in BSFC.
On average each 15% increase in ethanol results in an increase of 4.3% in BSFC at the engine’s most
efficient operating points. However, increasing ethanol also reduces the energy density of the fuel,
where a 15% ethanol increase equates to approximately a 6% decrease in heating value (reference Table
1). The loss in energy density that results from increasing ethanol is much greater than the increase in
fuel consumption. As a result the area in which the engine operates most efficiently (i.e. area of highest
BTE) increases with increasing ethanol content. (Reference Figure 2 and Figure 3).
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Fuel O Fuel M Fuel P
98RON E30 98RON E15 98RON EO
Gross Heating Value
(MJ/kg) 41.34 43.80 46.32
% Heating Value Difference -6.0%
(Fuel O - Fuel M)/(Fuel O) =70
% Heating Value Difference 5. 8%
(Fuel M - Fuel P)/(Fuel M) 070
Lowest BSFC (g/kW*h) 242 231 221
% BSFC Difference 4.5%
(Fuel O - Fuel M)/(Fuel O) 70
% BSFC Difference 4.3%
(Fuel M - Fuel P)/(Fuel M) ‘

Table 1: Heating Value and BSFC For 98 RON Fuel

Octane RON

0 .1:’ ......... G WL20 F
= &
2 @ fc} 360,385 F

0% 10% R L
Ethannl *

Figure 2: Fuel Matrix with Ethanol Fuel Comparison Highlighted
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Effects of Ethanol at 98RON on BSFC and BTE
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___22] g/kWh

!

14

1000 1500 2000 2500 3000 3500 4000 4S00 5000 1000 1500 2000 2500 3000 3500 4000 4500 S000
Engine Speed [1/min) Engine Speed [1/min]
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Engine Speed [1/min)

1000 1500 2000 2500 3000 800 4000 450D  S000
Engine Speed [1/min]

Figure 3: Effects of Ethanol on BSFC and BTE

3.2 Effects of RON

Increasing RON increases the engine’s knock threshold. This makes it possible to maintain MBT timing
at higher loads and speeds. The engine’s maximum efficiency is not changed, however the area of best
efficiency is greatly expanded. For example a change in RON from 92 to 98 to 102 RON increases the
upper efficiency load “limit” from 11 bar to 14 bar to 16 bar respectively (reference Figure 4 and
Figure 5).

Spark knock with 92 RON fuel starts at 8 bar BMEP, at which point the 102 RON fuel is already 3-10
o/kWh BSFC lower. At 10 bar BMEP the difference is even greater with the 102 RON fuel being 10-
50 g/kWh BSFC lower. 92 RON has its best efficiency from 8-10 bar BMEP with a maximum BMEP
of 12 bar. 98 RON has its best efficiency at 10-12 bar BMEP with a maximum BMEP of 16 bar. 102
RON reaches its best efficiency around 10 bar BMEP with a maximum BMEP of 16 bar BMEP.
Because 102 RON fuel is less knock prone the engine can run closer to maximum brake torque (MBT)
timing across most of the map. Therefore, the optimum BSFC “island” extends from 6 bar BMEP to
its maximum load limit of 16 bar BMEP. This can be seen in Figure 5, where the map area that BTE
is above 37% increases from 10% for 92 RON to 30% for 98 RON and then to 40 % for 102 RON.
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Figure 4: Fuel Matrix With RON Fuel Comparison Highlighted
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Figure 5: Effects of RON on BSFC and BTE
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Fuels were grouped into two boiling point ranges. The high boiling point fuels had a final boiling point
temperature ranging from 380-420 °F and the low boiling point fuels had a temperature ranging from
360-385 °F. In the area of the engine map from 8-16 bar BMEP and 1500-4000 RPM where the engine
operates the most efficiently and BSFC measurement accuracy is the highest, the low boiling point fuels
are on average 2 g/kWh lower in BSFC than the comparative high boiling point fuels at 0 % and 10 %

ethanol. At 30 % ethanol the difference in BSFC between the two boiling point ranges is negligible
(reference Figure 7).

3.3  Effects of Boiling Point Range

Octane RON

/3
N
»

B
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. 10 W
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Ethanol *

Figure 6: Fuel Matrix with Boiling Point Range Comparison Highlighted
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Figure 7: Effects of Boiling Point at 102 RON on BSFC and BTE

3.4 Operation Limits

iclU

The engine map in Figure 8 summarizes the map area that can be reached with each level of RON fuel.
In this study there are four factors that can affect the engine’s maximum performance limit; software
limiting throttle, spark knock, exhaust gas temperature and turbocharger flow limit. At operating
conditions limited by spark knock, sparking timing was retarded from MBT until limited by one of the
following; maximum exhaust gas temperature, an inability to maintain torque or combustion stability
exceeds 3% COV of IMEP. Cooled external EGR which lowers combustion temperature was also
maximized with further increases constrained by an increase in combustion burn duration resulting in
combustion stability exceeding 3% COV of IMEP and/or limitations of the compressor efficiency due
to the increased mass flow.

5/7/2020
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Overall, higher RON fuels increase the engine’s load limit which could translate to vehicle performance
benefits or the possibility of further engine downsizing which improves fuel efficiency. These
limitations are further discussed in the following sections.

) [

Additional area reachable with 98RON

14—

Area reachable with 92RON

1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]

Figure 8: Reachable Area per RON

3.4.1 Limitations with 102 RON Fuel

At low speeds and high loads, the production GM software does not permit 100% throttle opening in
the boosted region below 1500 RPM. This limitation is highest at 1000 RPM where it is believed to be
software related, a result of the increased displacement of the modified engine leading to incorrect air
mass calculation in the engine controller. Since a relatively small area of the map is affected and the
majority of the region would be knock limited it was mutually agreed to omit this area. The throttle
limited area is shaded blue in Figure 9.

From 1500-4000 RPM, the engine is primarily knock limited. Additional factors influencing the
maximum load potential in this speed range include boost system limitation due to the compressor
sizing being unable to efficiently flow more air and cEGR, as well as the coarse 2 bar BMEP load
increment.

Above 4000 RPM the engine is limited by exhaust gas temperature at the high pressure turbocharger
inlet (set at 920 °C). Fuel enrichment would lower the exhaust gas temperature, but at the expense of
significantly increased BSFC and emissions, therefore enrichment was omitted.

For 102 RON fuels there is no significant effect on maximum engine performance when varying the
levels of ethanol content. This may be due to the relatively coarse load step of 2 bar BMEP increments.

5/7/2020 14
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Figure 9: Engine Operational Limit with 102 RON Fuel

3.4.2 Limitations with 98 RON Fuel

The operation limits with 98 RON fuel is shown in Figure 10. From 1000-1500 RPM, maximum
performance is limited by engine software affecting the throttle as noted above. Maximum performance
between 2000-4000 RPM is limited by spark knock, however since retarding ignition timing to lessen
spark knock also has the effect of increasing exhaust gas temperatures, both could be considered
limiting factors for operation. Above 4000 RPM further load is limited by maximum exhaust gas
temperatures.

18

16

14 = < —

12
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1000 1500 2@0 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]

Figure 10: Engine Operational Limit with 98 RON Fuel
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3.4.3 Limitations with 92 RON Fuel

From 1000-1500 RPM, maximum performance is limited by the engine software affecting the throttle.
From 1000-4000 RPM performance is limited by spark knock. The addition of cEGR reduces the
severity of spark knock but has the counter effect of slowing the burn rate which reduces combustion
efficiency. Since the engine is operated as homogeneous stoichiometric combustion the load potential
at 4000 RPM and above is limited by exhaust gas temperatures.

Similar to 102 RON fuels, there were no measurable effects from the ethanol content on operation
limits, due to the coarse 2 bar BMEP load step.

18

o | | ; ‘ A |
1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]

Figure 11: Engine Operational Limit with 92 RON Fuel

3.5 Spark Efficiency

At a given air-fuel ratio there exists an optimal ignition or spark timing that result in the maximum
brake torque (MBT) and corresponding best engine efficiency. To determine MBT timing the engine
was subjected to spark sweeps at multiple speed and loads. While keeping other calibration values
constant, spark timing was adjusted in a range around the estimated MBT timing. Plotting torque in
BMEP and engine efficiency in BSFC, shows that optimal engine efficiency is achieved at a CA50 of
approximately 8 CAD ATDC. Figure 12 shows an example at 2000 RPM and 8 bar BMEP.
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Figure 12: Spark Efficiency

3.6 Spark Efficiency Limitation

Figure 13 outlines the area of the map in which MBT timing can be maintained. The portions of the
map where MBT timing can be maintained increases with RON. In addition to increasing the torque
potential, higher RON fuels shifts the optimal map area towards the lower speed. This benefits
applications that make use of the drivability and efficiency gains that come from higher torque at low
speeds.

14

BMEP [bar]

1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]

Figure 13: Area of MBT Operation
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3.6.1 Spark Efficiency Limitation with 102 RON Fuel

With 102 RON fuel a CA50 of 8 CAD ATDC can be maintained up to 14 bar BMEP. Above 14 bar
BMEP a CA50 of 8 CAD ATDC is not achievable due to increasing spark knock. Higher cEGR %
would help reduce spark knock severity, however below 2500 RPM the boost system is unable to meet
the required charge filling with higher levels of cEGR. Above 2500 RPM there is a lower pressure
differential across the low pressure cEGR system that results in reduced cEGR flow.

190124_Fuelg_102Ron_EO0_LBP|

1w-{CAS50 Average [deg]|

- 4

1 1 T T t t t T +
1000 1500 2000 2500 3000 3500 4000 4500 5000
Engne Speed [1min]

Figure 14: Combustion Efficiency 102 RON

3.6.2 Spark Efficiency Limitation with 92 RON Fuel

The spark timing for 92 RON fuel is mostly limited by knock. The entire boosted region above 10 bar
BMEP with 92 RON fuel is spark limited by knock, so MBT timing can only be achieved in the naturally
aspirated regions. Increased levels of EGR (externally cooled and internal) does help provide knock
relief, but also decreases combustion burn rate. This results in longer burn durations, thus increasing
combustion instability which was constrained to 3% maximum CQOV of IMEP.
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Figure 15: Combustion Efficiency 92 RON

3.6.3 Spark Efficiency Limitation with 98 RON Fuel

4500

iclU

The spark timing for 98 RON fuel is mostly limited by knock in the boosted region. As is the case with
92 RON and 102 RON, additional cEGR helps but is either limited by COV of IMEP below 14 bar
BMEP, or the ability to achieve the required boost pressure at maximum load.

10{CAS0 Average [deg]} ‘ s 1 =
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Figure 16: Combustion Efficiency 98 RON
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3.7 EGR

Two means of exhaust gas recirculation (EGR) were used with this testing: Internal EGR (iEGR) via
increased intake and exhaust cam overlap to trap residual gases and cooled external EGR (CEGR) via a
low pressure system that pulls from midpoint of the catalyst, through a cooler and valve before feeding
back into the induction system upstream of the compressor. Both iEGR and cEGR have their benefits
and disadvantages. Internal iEGR has benefits at low load where the increased charge temperature
improves breathing efficiency. External cEGR has the most benefits in the knock limited region where
the reduced combustion temperatures provide knock relief. The main disadvantage for both iEGR and
CEGR is the increase in the burn duration which lowers combustion efficiency or in severe cases
increases combustion instability above the limit of 3 % COV of IMEP. Because low pressure cEGR
systems feed EGR through the compressor, high load performance can also be negatively impacted
because of the additional mass flow.

In general for all the fuels, iEGR at light loads is attained with approximately 25 deg of cam overlap.
Additional iIEGR is capped because of its negative impact on COV of IMEP. At the mid load range
cam overlap increases to 40-45 deg, tapering off to 25 deg at loads above 10 bar BMEP.

When EGR % is stated, it refers to cEGR (reference Figure 17). At 2 bar BMEP combustion stability
limits of 3% COV of IMEP negates the use of cEGR. However, at these low loads iEGR is more
effective because the increased heat helps fuel vaporization as well as higher air charge temperatures
aids breathing efficiency by reducing throttling losses. From there, cEGR levels increase to a maximum
at the BSFC ““island”, where 15-20% cEGR can be achieved. As load is further increased cEGR % then
decreases as the engine struggles to meet power demands due to the increased mass flow through the
compressor. Although cEGR reduces combustion temperatures which provides spark knock relief, this
needs to be balanced with increased burn duration resulting in reduced combustion efficiency.

VOOEAT_FuA_G0RON_ED_LaP| T 130_Fusll_102R0n_EX_HEP.
{External EGR (%] {External EGR (%] 1

Figure 17: Fuel A and Fuel L EGR %

3.8 Brake Specific NOx Results

Overall engine-out brake specific nitrogen oxide (BSNOXx) across the map is lower than comparable
displacement, turbo-charged, direct injection, production engines. The use of “high” levels of iEGR
and cEGR helps in this regard by lowering combustion temperatures.

The highest BSNOXx is measured with 102 RON E30 fuel since it achieves both the highest engine load
and the highest exhaust gas temperatures. For 102 RON E30 fuel, BSNOx below 10 bar BMEP and
3000 RPM ranges from 2-5 g/kWh. The highest levels are measured at 5000 RPM where BSNOXx
averages 10 g/kWh with maximum of 17 g/kWh measured at the highest speed and load point. With
92 and 98 RON fuels, BSNOx is on average below 10 g/kWh throughout the map except at the
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maximum speed of 5000 RPM. An example of BSNOx with 102 RON E30 and 92 RON EO fuels are
shown in Figure 18.

o : o v 2 o
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Figure 18: Fuel L HBP and Fuel A LBP BSNox Comparison

3.9 Soot

Engine-out soot is lowest at the low load and low speed region of the map for all fuels. Soot density
then increases with increasing engine load and engine speed.

To compare soot differences between low boiling point (LBP) and high boiling point (HBP), fuel pairs
I and J as well as K and L were compared. Both fuel pairs were tested before there were issues with
engine aging.

Fuels I and J are 102 RON E10 fuels where below 10 bar BMEP and 4000 RPM the LBP Fuel | soot
levels are 10-50% of the levels of the HBP Fuel J. As loads and speeds are increased, the differences
are reduced. Overall, the LBP fuel is lower in soot than the comparable HBP fuel (reference Figure
19).

Fuels K and L are 102 RON E30 fuels where for most of the map the LBP fuel K is on average 50-80
% of the levels of the HBP fuel L. The difference in soot level between is not as pronounced as seen
with the lower ethanol 102 RON E10 fuel (reference Figure 20).
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Figure 19: Boiling Point Soot Comparison | and J
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Figure 20: Boiling Point Soot Comparison K and L

Details of engine aging and the corresponding changes in soot are discussed further in section 5.6.

4 Instrumentation

4.1 General Instrumentation
The Engine was instrumented with the following channels:

4.1.1 Temperatures

Temperature Coolant Water Engine Out
Temperature Coolant Water Engine In
Temperature Throttle In

Temperature Intake Manifold
Temperature Air HP Compressor In
Temperature Air HP Compressor Out
Temperature Air LP Compressor In
Temperature Air LP Compressor Out
Temperature Fuel Engine In
Temperature Combustion Air
Temperature Oil Sump

Temperature Oil Gallery

Temperature Coolant Water CAC In
Temperature Coolant Water CAC Out
Temperature Exhaust Catalyst In
Temperature Exhaust Tailpipe Out
Temperature Exhaust HP Turbine In
Temperature Exhaust HP Turbine Out
Temperature Exhaust LP Turbine In
Temperature Exhaust LP Turbine Out
Temperature Oil Heat Exchanger Engine Out

5/7/2020
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Temperature Qil Turbo In

Temperature Oil Heat Exchanger In
Temperature Exhaust Gas EGR Cooler In
Temperature Exhaust Gas EGR Cooler Out
Temperature Coolant EGR Cooler In
Temperature Coolant EGR Cooler Out
Temperature Exhaust Manifold

Exhaust Gas Temp Cylinder 1

Exhaust Gas Temp Cylinder 2

Exhaust Gas Temp Cylinder 3

Exhaust Gas Temp Cylinder 4

Test Cell Air Temperature

4.1.2 Pressures

Pressure in Air Filter

Pressure Fuel Supply

Pressure CAC Water In

Pressure CAC Water Out

Pressure Coolant System (bottle)
Pressure Coolant Water Engine In
Pressure Coolant Water Engine Out
Pressure Turbo Oil Feed Return
Pressure Oil Gallery

Pressure Turbo Oil Feed In

Pressure HP Compressor 1 Inlet
Pressure HP Compressor 1 Outlet
Pressure LP Compressor 1 Inlet
Pressure LP Compressor 1 Outlet
Exhaust Pressure after HP Turbine
Exhaust Pressure before HP Turbine
Exhaust Pressure after LP Turbine
Exhaust Pressure before LP Turbine
Throttle Body Inlet Pressure (Turbine)
COMB Air IN_ABS (Kiel Probe) from Vaisala
Intake Manifold Pressure

Pressure Exhaust after TWC
Pressure before EGR cooler
Pressure EGR valve in

Pressure EGR valve out

Crankcase Pressure
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Test Cell Air Pressure

In Cylinder Pressure Cylinder 1
In Cylinder Pressure Cylinder 2
In Cylinder Pressure Cylinder 3
In Cylinder Pressure Cylinder 4

4.1.3 Speeds
Engine speed
High Pressure Turbo speed (Compressor)

Low Pressure Turbo speed (Compressor)
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Figure 21: Instrumentation Setup

4.2 Knock Indication System
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Due to the nature of testing fuels with different RON ratings, an accurate knock detection system was
needed to prevent engine damage when calibrating spark advance. KIS4 which is an IAV combustion
analysis system was selected for knock detection. KI1S4 relies on the measured cylinder pressure data
compared against a calculated P85 value to calculate knock intensity. During engine commissioning
KIS4 knock intensity results were compared to GM’s production knock detection and found to correlate
very well. TAV’s KIS4 system was also used to capture all combustion metrics.

The first step in determining the knock limit is the measurement of the knock intensity (KI) via the

method shown in Figure 22.
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Knock Detection using cylinder pressure evaluation

Window Rectifier Knock
[ L lntensnty

AN dp = MAX [4BS(p.: p, )]

Pressure signal
(voltage)

Figure 22: Knock Intensity

Since knock is a stochastic phenomenon, corresponding cycles have different values of knock intensity,
making a statistical evaluation of knock intensity necessary. This is what is represented in IAV’s P85
value where the knock frequency (or rate) at a given pressure value is not considered, but the pressure
value is determined at a given frequency. This is a significant advantage, since this pressure value is
easy to determine while the reliable determination of frequencies requires the evaluation of a large
number of events. Since the frequency is fixed and the pressure value is variable, the outcome is one
continuous characteristic value, which can also be graphically represented by its influencing variables
(e.g. ignition angle).
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Figure 23: P85 Determination
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Using IAV’s proprietary P85 knock index curve (reference Figure 24), KIS4 was set up to detect knock
severity once the P85 value had been crossed.

P85 Knock Index
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Figure 24: P85 Knock Index
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5 Engine Health

5.1 102 RON Health Check

To ensure engine and data consistency and accuracy, the health of the engine was checked during the
study at four intervals during the testing; before the start of testing, after the 6" fuel, after the 12 fuel
and at the end of test. Health checks were conducted using a 102 RON E25 fuel at predefined speed
and load as well as fixed calibration settings shown in Table 2. The health check is split into three test
points, R1 at 2000 RPM 2 bar BMEP, R2 at 3000 RPM 10 bar BMEP, and R3 at 2500 RPM 10 bar
BMEP. At each test point the calibration values were set and three data points taken with a recording
time of 60 secs each. The three points were then averaged and compared to the prior health check.

Test Points R1 R2 R3
Variable Unit 2000/2Bar | 3000/10Bar | 2500/15Bar
SOl °BTDC 276 310 310
EOI °BTDC - 270 260
Exhaust Cam ° 5 0 5
Intake Cam ° 25 32 14
Rail Pressure MPa 4 10 10
Split - 0 0.1 0.1
Wastegate B % 0 0 86
EGR Valve - 1 1 1
Spark Timing | °BTDC 36.5 23 13
CA50 °’ATDC 8 8 12

Table 2: 102 RON Checkpoint Calibration Values

The comparison of the four check points is shown in Table 3. Variability in BSFC is very low at the
mid and high load conditions of R2 and R3 respectively. Results at the low load R1 2000 RPM 2 bar
condition shows high BSFC variation, which is a result of small deviations in engine operation being
magnified by the low load condition.

Gaseous emissions including CO2, CO, NOx, and HC are consistent for all of the four health check
points. Note that the emission data for the first health check was unavailable due to an emission’s bench
error. Soot level shows a large increase after health check 3, which is in line with the data from section
5.6.

5/7/2020 27



&}
automotive I <
engineering

Point Date PME Engine BSFC PMEP AFR CA50 Soot CO2 CO HC NOx TCl1 AirMass P8 COV
Speed Exh Knock

Bar _rev/min g/k. W-h _Bar A °A_ _mg/m3 g/kW.h g/kW.h g/kW.h g/kW.h °C kg/h %
Health Check 1 R1 10/17/2018 2.0 2000 361.2 -0.60 0.991 7.55 0.000 1186 30.0 NA NA 458 39.0 358 133
Health Check 2 R1  1/23/2019 2.0 2000 368.6 -0.60 0.988 7.96 0.007 1200 275 451 4.96 443 39.2 38.6 146
Health Check 3 R1  3/12/2019 2.0 1999 374.7 -0.61 0.988 8.29 0.006 1210 28.7 6.15 5.05 449 39.6 340 1.63
Health Check 4 R1  3/27/2019 2.0 2000 376.7 -0.61 0.993 7.92 0.008 1233 259 598 510 458 39.3 345 1.25
Health Check 1 R2 10/17/2018 10.2 3000 245.0 -0.18 0.997 857 0.004 803 178 NA NA 714 192.1 397.8  0.84
Health Check 2 R2  1/23/2019 10.0 3000 246.4 -0.19 0.997 823 0.039 800 193 1.34 1498 720 189.6 395.1 0.78
Health Check 3 R2  3/12/2019 10.2 3000 2459 -0.19 0.997 825 0131 800 19.2 1.81 1522 719 192.4 367.4 0.80
Health Check 4 R2  3/27/2019 10.1 3000 246.7 -0.18 0.996 8.16 1159 806 189 1.83 15.16 734 191.3 375.2  0.84
Health Check 1 R3 10/17/2018 15.1 2500 239.3 -0.16 0.997 12.06 0.069 780 205 NA NA 740 232.2 4125 0.96
Health Check 2 R3  1/23/2019 15.0 2500 239.7 -0.14 0.997 11.96 0.18 774 219 145 1558 748 230.3 400.3  0.90
Health Check 3 R3  3/12/2019 149 2500 241.6 -0.15 0.996 12.27 0428 780 220 176 1555 756 231.4 400.7  0.92

Health Check 4 R3  3/27/2019 15.1 2500 240.5 -0.12 0.996 12.13 0.597 780 22 1.60 15.28 763 235 461 1

Table 3;: 102 RON Health Check Data

5.2 Data Consistency

5.2.1 ECU controlled engine parameters

Some engine actuators were not controlled but left to their default values. This included the oil pump
as well as the Lambda control and fuel trim. The production oil pump for the LTG engine is a dual
stage pump with a high and low mode. The production setting keeps the pump in low pressure mode
in low speed and low load areas and switches to higher pressure at higher speeds and loads. Since the
speed, load as well as temperature were tightly controlled during testing, it is not expected to impact
test results. All test points of different fuels have comparable oil pressures.

The production closed loop fuel control was left in place to allow most efficient engine operation. The
production control accuracy was confirmed with a secondary wideband O, sensor.

The throttle was controlled via pedal input and a specific dynamometer calibration that mapped pedal
input directly to throttle input. Due to the underlying air mass calculation there was an area where the
engine did not allow the throttle to open fully. Only a small region of the map at 1000 and 1500 RPM
was effected.

The original vehicle water pump was used with coolant thermostat blocked in the open position. This
allowed the coolant temperature to be directly controlled to a specified outlet temperature via the test
cell controller. Similarly, the engine oil temperature was controlled via an external heat exchanger.

Intake charge temperature after the charge air cooler was controlled via a water-to-air intercooler setup.
A test cell controller was set up to control the outlet temperature of the charge air cooler replicating a
vehicle setup. The temperature map was based on vehicle data from a production LTG engine that
considered charge air cooler inlet temperature as well as charge air mass flow.

5.2.2 BSFC Repeatability

The t-distribution confidence interval for the BSFC results from the 102 RON health check data is
shown in Table 4. At the 10 and 15 bar BMEP load points the 90% confidence interval for BSFC is +/-
1.0 g/kWh. At the low load point of 2 bar BMEP there was a larger variation of +/- 2.3 g/lkWh. The
larger variation at the low load point is a result of variations in engine operation having a higher impact
on BSFC at low BMEP operating points (small fuel variation divided by a low torque value). The 2000
RPM 2 bar point had been corrected for BSFC deviations based on the method outlined in section 6.1.
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t-distribution

90% Confidence Interval

Data #1 365.4 244.89 239.4
Data #2 366.1 244.82 239.29
Data #3 365.3 245.32 239.27
Data #4 368.9 246.2 239.78
Data #5 373.1 246.6 239.63
Data #6 370.5 246.4 239.57
Data #7 375.3 245.4 241.43
Data #8 373.3 246.13 241.84
Data #9 375.4 246.28 2415
Data #10 374.0 241.47 238.17
Data #11 377.3 249.68 238.91
Data #12 377.5 243.76 24457
Average 371.8 245.6 240.3
STDEV 4.50 1.93 1.76
Ccov 0.01 0.01 0.01
Sample Size 12 12 12
df = 11 11 11
t cric 1.80 1.80 1.80
Est STD for mean 13 0.6 0.5
One side interval 2.3 1.0 0.9
Upper Limit 374.2 246.6 241.2
Lower Limit 369.5 244.6 239.4

Table 4: BSFC Confidence Interval

5.2.3 BMEP Control Accuracy
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The ability to control the engine to a set load in the test cell is shown in Table 5. As can be seen, the
control is extremely accurate with a maximum deviation of less than +/- 0.05 bar BMEP at all load

conditions.

t-distribution

90% Confidence Interval

Data #1 2.02 10.17 15.10
Data #2 2.03 10.17 15.13
Data #3 2.03 10.17 15.12
Data #4 2.01 10.03 14.97
Data #5 2.02 10.02 14.98

5/7/2020

29



[&]
automotive I c
engineering

Data #6 2.00 10.02 14.99

Data #7 2.01 10.20 14.92

Data #8 2.01 10.20 14.92

Data #9 2.00 10.17 14.94

Data #10 2.00 9.96 15.10

Data #11 2.01 9.96 15.09

Data #12 2.00 9.98 15.10

Ave 2.01 10.09 15.03

STD 0.01 0.10 0.08

cov 0.01 0.01 0.01
Sample Size 12 12 12
dfi= 11 11 11

t cric 1.80 1.80 1.80

Est STD for mean 0.00 0.03 0.02

One side interval 0.01 0.05 0.04

Upper Limit 2.02 10.14 15.07

Lower Limit 2.01 10.04 14.99

Table 5: BMEP Confidence Interval

5.24 Repeatability of Emissions

There is good repeatability of the emissions result for all but microsoot concentration. Test to test
variation of brake specific CO2 and CO is less than 1% of the average as shown in Table 6 and Table
7 respectively. Variation in brake specific HC emission is less than 8% of the average as shown in
Table 8 and for brake specific NOx it’s less than 1.2% of the average as shown in Table 9. Microsoot
concentration show the highest test to test variation, as much as 68% of the average as shown in Table
10. The microsoot emissions and to a certain degree the HC emissions have a larger test to test variation
due to the increased blow-by as the engine ages.

Note that for all emission measurements, data #1-3 which are from the first test are unavailable due to
an error with the emission bench.

t-distribution

90% Confidence Interval

Data #1 n/a n/a n/a
Data #2 n/a n/a n/a
Data #3 n/a n/a nla
Data #4 1198.65 798.68 774.67
Data #5 1196.84 800.76 773.63
Data #6 1203.32 799.82 773.28
Data #7 1206.65 798.39 779.73
Data #8 1215.14 800.40 780.99
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Data #9 1208.87 802.35 779.35
Data #10 1225.74 790.94 770.41
Data #11 1233.40 818.10 775.68
Data #12 1240.60 798.85 793.63
Ave 1214.36 800.92 777.93
stdev 15.60 7.19 6.83
cov 0.01 0.01 0.01
Sample Size 9 9 9
df = 8 8 8
t cric 1.86 1.86 1.86
Est STD for mean 5.20 2.40 2.28
One side interval 9.67 4.46 4.24
Upper Limit 1224.03 805.38 782.17
Lower Limit 1204.68 796.46 773.69

Table 6: Brake Specific CO2 Confidence Interval

t-distribution

90% Confidence Interval

Data #1 n/a n/a n/a
Data #2 n/a n/a n/a
Data #3 n/a n/a n/a
Data #4 26.77 19.25 21.94
Data #5 27.97 19.43 21.94
Data #6 271.72 19.26 21.80
Data #7 29.05 19.31 22.13
Data #8 28.97 19.22 21.91
Data #9 28.14 19.17 21.85
Data #10 27.14 17.31 21.96
Data #11 26.10 17.97 22.09
Data #12 24.57 17.51 22.38
Ave 27.38 18.71 22.00
stdev 1.43 0.86 0.18
cov 0.05 0.05 0.01
Sample Size 12 12 12
df = 11 11 11
t cric 1.86 1.86 1.86
Est STD for mean 041 0.25 0.05
One side interval 0.77 0.46 0.09
Upper Limit 28.15 19.17 22.09
Lower Limit 26.61 18.25 21.90

Table 7: Brake Specific CO Confidence Interval
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t-distribution

Data #1 n/a n/a n/a
Data #2 n/a n/a n/a
Data #3 n/a nia na
Data #4 4.52 1.33 1.46
Data #5 4.48 1.33 147
Data #6 4.55 1.35 1.43
Data #7 6.19 1.79 1.77
Data #8 6.15 1.81 1.76
Data #9 6.11 1.81 1.76
Data #10 5.90 1.84 1.60
Data #11 6.01 1.91 1.58
Data #12 6.05 1.81 1.61
Ave 5.55 1.67 1.60
stdev 0.78 0.25 0.13
cov 0.14 0.15 0.08
Sample Size 12 12 12
df = 11 11 11
t cric 1.86 1.86 1.86
Est STD for mean 0.23 0.07 0.04
One side interval 0.42 0.13 0.07
Upper Limit 5.97 1.80 1.68
Lower Limit 513 153 153

Table 8: Brake Specific HC Confidence Interval

t-distribution

90% Confidence Interval

Data #1 n/a nla n/a
Data #2 n/a n/a n/a
Data #3 n/a n/a n/a
Data #4 5.06 15.01 15.65
Data #5 4.95 14.97 15.54
Data #6 4.88 14.96 15.53
Data #7 5.19 15.19 15.49
Data #8 4.95 15.21 15.59
5/7/2020
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Data #9 5.02 15.26 15.58
Data #10 4.97 14.86 15.08
Data #11 5.18 15.34 15.22
Data #12 5.15 15.02 15.53

Ave 5.04 15.09 15.47

stdev 0.11 0.16 0.19

Cov 0.02 0.01 0.01
Sample Size 12 12 12
df = 11 11 11

t cric 1.86 1.86 1.86

Est STD for mean 0.03 0.05 0.05

One side interval 0.06 0.09 0.10

Upper Limit 5.10 15.18 15.57

Lower Limit 4.98 15.00 15.37

Table 9: Brake Specific NOx Confidence Interval

t-distribution

90% Confidence Interval

Data #1 n/a n/a n/a
Data #2 n/a n/a n/a
Data #3 n/a n/a n/a
Data #4 0.009 0.032 0.199
Data #5 0.006 0.040 0.174
Data #6 0.007 0.046 0.186
Data #7 0.006 0.156 0.528
Data #8 0.006 0.124 0.406
Data #9 0.007 0.112 0.349
Data #10 0.006 0.987 0.569
Data #11 0.008 1.330 0.634
Data #12 0.009 0.948 0.589
Ave 0.007 0.419 0.404
stdev 0.001 0.514 0.185
cov 0.178 1.226 0.459
Sample Size 12 12 12
df = 11 11 11
t cric 1.860 1.860 1.860
Est STD for mean 0.000 0.148 0.054
One side interval 0.001 0.276 0.100
Upper Limit 0.008 0.696 0.503
Lower Limit 0.006 0.143 0.304
Table 10: Microsoot Confidence Interval
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At the start of the testing for this project, the engine had 391 hours of run time from a prior calibration
study.

5.3 Engine History

A notable event during the project was the catalyst failure on 10/22/2018. This was the result of an
engine communication software issue and did not affect any of the calibration test results. The catalyst
was replaced on 10/29/2018 with new substrate packed into the original can. To ensure consistent
engine operation after the catalyst replacement, exhaust backpressure at multiple locations and engine
conditions were matched to the original operating settings.

Another notable change was the PCV system adjustment made on 12/13/2018, when an external oil
catch can was installed and the PCV rerouted through an AVL 442 blow-by meter. This resulted in a
minor change in the crank case pressure.

The complete testing history including changes to the engine setup is summarized in the table below.

Event Engine Hours Date
102 RON Checkl 391 10/17/2018
Fuel C 392 10/18/2018
Catalyst Change 397 10/22/18-10/29/18

Fuel H 464 11/20/2018

Fuel | 481 12/6/2018
PCV System Change 479 12/13/2019
Fuel J 501 12/17/2018

Fuel K 521 1/8/2019

Fuel B 536.4 1/16/2019

102 RON Check 2 553 1/23/2019
Fuel G 560.2 1/24/2019

Fuel L 572.6 1/30/2019

Fuel O 607.1 2/14/2019

Fuel E 616 2/18/2019

Fuel A 640 2/27/2019

Fuel M 660 3/5/2019

102 RON Check 3 673 3/08/2019
Fuel P 686 3/15/2019

Fuel D 698 3/19/2019

Fuel F 712 3/22/2019

102 RON Check 4 726 3/27/2019
End of Test 726.4 3/27/2019

Table 11: Engine History
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Figure 25: Engine History

5.4 Injector Baseline

To define the injector baseline cleanliness the engine was ran at a 3000 RPM 10 bar BMEP point with
a fixed calibration setting that included no cEGR. The baseline test was ran in six steps as shown in the
table below. An engine-out soot density threshold of 0.04 mg/m® was used to define the acceptable
injector cleanliness level, and served as the baseline for subsequent injection cleaning.

Step Run Time Description Data
hrs
1 1 E25 102 Ron at 3000rpm/10bar (optimized calibration, no cegr) 1 minute intervals, 30 second average
2 1 98 RON Top Tier BIPO fuel at 3000rpm/10bar (optimized calibration without cEGR) i1 minute intervals, 30 second average
3 10 98 RON Top Tier BIPO fuel with ACDelco FST Plus at 3000rpm/10bar 1 minute intervals, 30 second average
4 NA Oil and Filter Change
5 1 E25 102 RON at 3000rpm/10bar (optimized calibration without cEGR) 1 minute intervals, 30 second average
6 NA Oil and Filter Change

Table 12: Injector Cleaning Baseline Test
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Injector Cleaning Baseline - Step 3 - 88RON+ FST Plus - 3000rpm/10bar
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Figure 26: Injector Cleaning Baseline

5.5 Routine Maintenance

A number of steps were followed to ensure consistent engine condition at the start of calibration of each
fuel. Between each calibration fuel, the engine went through a two-step cleaning process involving GM
specified AC Delco Top Engine Cleaner (Part Number: AC-DELCO 10-3015) followed by running
with fuel dosed with AC Delco Fuel System Treatment (Part Number: AC-DELCO 10-3004).

The initial cleaning step was with the Top Engine Cleaner. Using the GM specified tool, two bottles of
AC Delco Top Engine Cleaner were applied through the intake while the engine was ran at 2000 RPM
5 bar BMEP with 98 RON Top Tier fuel. This was followed by an oil and filter change. The next step
was running the injector cleaning, whereby the engine was ran at 3000 RPM 10 bar BMEP for an hour
with 98 RON Top Tier fuel dosed with AC Delco Fuel System Treatment. During both the top engine
cleaning and the injector cleaning steps the engine runs at a predefined calibration setting as shown
below in Table 13. After the injector cleaning was completed another oil and filter change was done
before running the next test fuel. The target value for injector cleaning was to have less than 0.04 mg/m?3
of soot density.

Intake Cam Exhuast Cam o]] EOlI  Spark Advance Split Wasgate EgrValve Fuel Pressure CA50
. . . . . ) % % Bar o
2000/5 Bar 25 15 310 - 31.5 0 0 1 7 12
3000/10 Bar 32 0 310 270 22.5 0.1 0 1 10 12

Table 13: Maintenance Calibration Values
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5.6  Soot Levels

It was noticed during testing that over time the injector cleaning was taking much more time than the
expected one hour to achieve soot levels below the targeted 0.04 mg/m?soot density. During the third
102 RON health check point, the engine was inspected for abnormal wear which included a compression
check and a leak down test performed on all cylinders. The compression test on cylinder 4 revealed a
drop in compression from 210 PSI to 190 PSI on a cold engine and the leak down was shown to be 19%
higher than the average of the other cylinders, this is summarized in Table 14. By listening for air
leakage at exit points of the cylinder, it was determined during the leak down that air was leaking past
the piston rings, indicating a worn bore or damaged ring. Using a borescope, pictures were taken of the
bore and included below in Figure 27. The borescope pictures show vertical scratches along the
cylinder wall. These scratches allow oil and air past the rings causing increase oil consumption and a
drop in compression. It is believed that repeated top engine cleaning may have caused damage to the
bores as the high consumption of the cleaning solvent can wash the bores of the oil film allowing debris
to scratch the surface.

Engine Inspection- 673.30 hour

Test\Cylinder Cylinder Cylinder Cylinder Cylinder
1 2 3 4
Compresson Test 210 PSI 210 PSI 210 PSI 190 PSI
Leak Down Test 15.00% 12.00% 15% 35%

Table 14: Engine Inspection

Figure 27: Wear on Cylinder Four

To verify consistency of data, the 102 RON checkpoint was compared to previous data. It showed
higher soot than expected as seen in Table 3 above in section 5.4. Because the BSFC at the checkpoint
was well within the expected values and combustion metrics showed the engine to be healthy, the soot
difference became the main concern.

To see the effect of engine wear on soot over time, measured soot density was plotted for the first 60
points of each injector cleaning since the start of testing. This is shown in Figure 28 where the level
of soot during injector cleaning starts to become an issue around the time of Fuel E. After Fuel E the
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injector cleaning process could no consistently bring soot levels down to the targeted level of 0.04
mg/m? (reference Figure 29 and Figure 30).
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Figure 28: Injector Cleaning Soot
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Figure 29: Injector Cleaning After Fuel E
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Figure 30: Standard Injector Cleaning

5.6.1 Fuel K Verification

To further investigate the soot issue, Fuel K was reran at specific load and speed points and results
compared with earlier data (reference Table 15 and Table 16). The results show a significant increase
in soot of 500-1200 % (Figure 31). Increases in BSHC was much less at approximately 10% (Figure
32). Importantly, BSFC and BSNOx had not changed and remained consistent with the original data
(Figure 33 and Figure 34).

pME "8M  BorC PMEP AFR CASO CAI0-90 SparkAdvance Soot €02 €O HC  Nox  CrEXMUaSt i viass cov

Speed Temp Inlet
Bar 1/min g/k.\W-h bar - °A °A °A mg/m3 g/kW.h g/kW.h g/kW.h g/kW.h °C kg/h %
Fuel K Soot Check | 6.0 | 2000 | 265.8 |-0.24 0.993. 8.15 | 33.7 375 | 0222 890 | 232 | 357 | 542 5534 | 814 150
Fuel K Soot Check | 10.0| 2500 250.6 |-0.17.0.995 7.96 | 32.9 2775 11229 ( 843 | 192 | 398 7.4 6462 | 1554 10.92
Fuel K Soot Check | 13.8| 2500 | 244.1 |-0.13 0.995.9.90 318 2175 10815 ( 822 | 176 | 315 897 6909 | 2084 119
Fuel K Soot Check : 10.0| 4000 | 265.5 1-0.76:0.995: 7.92 | 34.6 25.5 1013 {898 | 164 | 3.02 | 1227 7678 265.6 1.10

Table 15: New Fuel K Data

pME 8" Borc PMEP AFR CASO CA10-90 SparkAdvance Soot €02 €O HC  Nox | CEXMUESt i hiass cov

Speed Temp Inlet
Bar 1/min g/k.W-h bar - °A °A °A mg/m3 g/kW.h g/kW.h g/kW.h g/kwW.h °C kg/h %
FuelKOriginal | 6.1 2001 | 267.0 |-0.28 0,992 8.41 | 32.37 38 0.019 | 898 | 242 | 313 | 5.24 5471 | 813 1154
FuelKOriginal _ :10.0, 2500 | 250.3  -0.16 0.996: 8.15 32.39 28 0.098 | 845 | 189 | 343 | 6.93 6402 | 1531 11.00
Fuel KOriginal  :14.0/ 2500 | 244.0 |-0.1310.996:9.09 | 31.37 23 0368 | 826 | 182 i 273 | 9.27 687.8 2104 10.85
Fuel K Original _ 110.0| 4000 | 265.4 |-0.760.996; 8.00 | 34.59 28.25 0270 | 904 | 163 ;| 2.86 | 10.24 | 7487 262.4 |1.06

Table 16: Original Fuel K Data
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Figure 31: Fuel K Soot Comparison
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Figure 32: Fuel K HC Comparison
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Figure 33: Fuel K BSFC Comparison
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Figure 34: Fuel K NOx Comparison

6 Correction of Low Speed Points

6.1 BSFC Correction

Due to the nature of the study, low speed and low load points are very important because of their primary
use in test cycles. The engine is less consistent at the low speed/load points. This instability makes it
difficult for the dynamometer control to target the low load points to the precision required. To correct
for small errors in load, data was gathered using 0.1 bar BMEP increments around the targeted loads
keeping all calibration values the same. This created a trend on how small changes in load effect BSFC.
Best fit trend lines were then fitted to the BSFC data using polynomial trend lines. This data was then
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normalized using the expected BSFC at each test point giving a correction factor. This was deemed
only necessary for the 2 bar and 4 bar load points due the effect small changes in load have at these
points.

2 Bar Correction Curve
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Figure 35: Normalized BSFC Correction Curve
4 Bar Correction Curve
108 y =-0,0103x% + 0,1635x + 0.5113
1.04 R?=0.9685 '
. § :
§ 1.02 g § 4
8 ¢
(VI 1 °
5 8
% 0.98 L 3 8
5 b4 8 °
§0.96 § 3
0.84 ¢
0.92
3.5 3.6 3.7 38 3.9 4 4.1 4.2 43 44 45
BMEP (bar)

Figure 36: Normalized BSFC Correction Curve
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The same process used above was done for the Brake Thermal Efficiency to correct for small load
changes.

6.2 BTE Correction

2 Bar Correction Curve
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Figure 37: Normalized BTE Correction Curve
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Figure 38: Normalized BTE Correction Curve
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6.3 Fuel Flow Correction

iclU

This method was also applied to the fuel flow using data from the fuel flow bench in the data channel
Fuel _MS. This correction factor is shown in the figures below.
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Figure 39: Normalized Fuel Flow Correction Curve
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Figure 40: Normalized Fuel Flow Correction Curve
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APPENDIX A: Fuel Specifications

ProjName ODDB ODDB OoDDB ODDB ODDB ODDB
LabNum 33784 33785 33786 33787 33788 33789
Sample Code A B C D E F
D5191 RVP psi 8.08 8.06 7.82 8.21 8.07 7.98
Ptot psi 8.81 8.79 8.54 8.95 8.80 8.71
DVPE psi 7.95 7.93 7.69 8.09 7.94 7.86
CARVP psi 7.85 7.83 7.59 7.98 7.84 7.75
D1319 Aromatic % 21.2 22.1 23.8 31.0 121 173
Olefins % 7.7 8.5 6.3 8.5 36.2 32.6
Saturate % 71.1 69.4 69.9 60.5 51.7 50.1
CorrArom % 21.48 28.05 8.53 12.20
CorrOlef % 5.69 7.69 25.51 22.99
CorrSat % 63.10 54.74 36.44 35.33
D2699Mdp RON ON 91.9 92 92.6 92.3 92.5 924
D2700Mdp MON ON 84.8 84.8 85.0 84.0 83.9 83.6
D4052 API@60°F 60.8 60.2 57.8 56.5 57.7 55.6
SPGr@60°F 0.7360 0.7380 0.7473 0.7528 0.7478 0.7561
Dens@15°C| g/ml 0.7358 0.7378 0.7471 0.7526 0.7476 0.7559
D4809 Net| BTUHeat |BTU/lb 18742 18720 17886 17858 16494 16435
MJHeat MJ/kg 43.594 43.542 41.602 41.538 38.365 38.228
CALHeat cal/g 10412.2 10399.9 9936.6 9921.1 9163.3 9130.6
D5291 CH Carbon wt% 86.08 86.3 82.74 82.95 74.86 74.98
Hydrogen wt% 14.10 14.14 13.78 13.63 13.87 13.50
D5453 Sulfur ppmw 13 1.5 0.9 0.7 0.8 0.9
SulfurWtPct % 0.00013 0.00015 0.00009 0.00007 0.00008 0.00009
D5599 EtOHVol Vol% 9.73 9.52 29.52 29.48
EtOHWt Wt% 10.34 10.04 31.34 30.96
TtIVol Vol% 9.73 9.52 29.52 29.48
TtIWt Wt% 3.59 3.48 10.88 10.74
PMI Calculation 1.096093357 2.47112591 1.29657742 2.607811152 0.761355814 1.865918608
D86 IBP degF 98.9 94.5 104.0 100.9 102.0 104.7
Evap_5 degF 123.8 122.0 126.3 1235 127.1 128.0
Evap_10 degF 133.8 131.7 133.0 130.6 136.9 137.5
Evap_15 | degF 1413 138.8 137.0 135.1 142.2 143.7
Evap_20 degF 148.2 1455 141.0 139.6 147.3 148.2
Evap_30 degF 162.1 158.7 148.0 147.7 153.7 154.9
Evap_40 | degF 177.9 1739 153.8 154.6 158.9 160.4
Evap_50 degF 198.2 1933 201.9 206.8 163.3 165.0
Evap_60 degF 222.8 217.4 235.1 245.8 167.5 168.8
Evap_70 | degF 2455 2423 259.6 270.2 170.9 173.5
Evap_80 degF 269.0 271.7 276.8 297.3 276.9 2984
Evap_90 degF 307.7 350.1 301.2 342.7 303.7 339.1
Evap_95 | degF 330.0 385.1 3235 376.7 330.4 371.0
FBP degF 365.6 430.6 3734 427.1 362.7 4235
Recoverd % 98.5 98.3 98.5 98.5 98.2 97.8
Residue % 0.7 0.9 0.9 0.8 0.8 1.0
Loss % 0.8 0.8 0.6 0.7 1.0 1.2




ProjName ODDB ODDB ODDB ODDB ODDB oDDB
LabNum 33790 33791 33792 33793 33794 33795
Sample Code G H | J K L
D5191 RVP psi 7.86 7.76 7.81 7.58 8.47 8.74
Ptot psi 8.58 8.48 8.53 8.29 9.22 9.5
DVPE psi 7.73 7.64 7.68 7.45 8.35 8.62
CARVP psi 7.62 7.53 7.58 7.34 8.25 8.52
D1319 Aromatic % 38.1 39.9 26.8 30.5 24.3 22.7
Olefins % 24 1.6 4.2 3.7 3.8 3.5
Saturate % 59.5 58.5 69.0 65.8 719 73.8
CorrArom % 24.22 27.57 17.14 15.96
CorrOlef % 3.80 3.34 2.68 2.46
CorrSat % 62.35 59.48 50.72 51.87
D2699Mdp RON ON 102.6 102.7 102.6 102.7 102.7 102.6
D2700Mdp MON ON 90.7 90.4 90.6 90.4 89.9 90.2
D4052 API@60°F 55.6 53.6 58.1 55.8 54.2 53.9
SPGr@60°F 0.7563 0.7645 0.7464 0.7553 0.7621 0.7633
Dens@15°C | g/ml 0.756 0.7643 0.7462 0.755 0.7619 0.7631
D4809 Net| BTUHeat |BTU/lb 18524 18418 17840 17858 16390 16400
MIJHeat MJ/kg 43.087 42.839 41.495 41.537 38.123 38.147
CALHeat cal/g 10291.1 10231.9 9910.8 9920.8 9105.5 9111.2
D5291 CH Carbon wt% 87.22 87.36 82.90 82.72 75.23 75.20
Hydrogen wt% 13.03 13.04 13.74 13.58 13.28 13.34
D5453 Sulfur ppmw 0.4 0.4 0.9 1.0 1.1 1.5
SulfurWtPct % 0.00004 0.00004 0.00009 0.0001 0.00011 0.00015
D5599 EtOHVol Vol% 9.64 9.61 29.46 29.71
EtOHWt Wt% 10.26 10.10 30.69 30.90
TtiVol Vol% 9.64 9.61 29.46 29.71
Ttiwt Wt% 3.56 3.51 10.65 10.73
PMI Calculation 1.539649883 2.899802203 1.180477076 2.682385448 0.958133898 2.160810812
D86 IBP degF 92.6 93.9 105.0 104.4 103.2 99.1
Evap_5 degF 118.8 118.8 128.5 128.5 129.7 122.9
Evap_10 degF 132.8 132.1 135.6 136.3 142.1 138.6
Evap_15 degF 144.1 143.2 140.4 140.9 150.4 147.3
Evap_20 degF 154.9 154.5 144.7 146.2 155.9 153.7
Evap_30 degF 180.2 179.3 151.8 153.9 162.7 160.9
Evap_40 degF 206.2 205.4 161.2 167.6 166.2 164.8
Evap_50 degF 224.4 226.3 205.6 212.8 168.6 167.3
Evap_60 degF 236.3 239.4 216.4 230.4 170.2 169.5
Evap_70 degF 247.5 256.1 233.0 245.5 243.3 241.2
Evap_80 degF 267.7 290.7 255.4 280.6 270.6 287.6
Evap_90 degF 307.3 346.9 304.4 345.2 304.2 341.8
Evap_95 degF 335.3 373.8 331.8 377.2 331.2 371.2
FBP degF 370.8 427.2 367.2 438.0 371.4 4225
Recoverd % 98.3 98.3 98.5 97.9 98.4 97.2
Residue % 0.5 0.7 0.6 0.6 0.5 1.0
Loss % 1.2 1.0 0.9 1.5 11 1.8




ProjName OoDDB ODDB ODDB
LabNum 33796 33797 33798
Sample Code M (0} P
D5191 RVP psi 7.57 7.78 8
Ptot psi 8.28 8.5 8.73
DVPE psi 7.44 7.65 7.88
CARVP psi 7.33 7.55 7.77
D1319 Aromatic % 25 19.2 29.2
Olefins % 5.7 19.1 5.5
Saturate % 69.3 61.7 65.3
CorrArom % 21.24 13.46
CorrOlef % 4.84 13.39
CorrSat % 58.88 43.26
D2699Mdp RON inch-lbs 98.0 98.2 97.9
D2700Mdp MON Inch-lbs 87.9 87.0 88.0
D4052 API@60F 56.5 55.9 58.7
SPGr@60F 0.7525 0.7552 0.7441
Dens@15C | g/ml 0.7522 0.7549 0.7438
D4809 Net| BTUHeat |BTU/lb 17456 16387 18553
MJHeat | MJ/kg 40.603 38.117 43.155
CALHeat cal/g 9697.9 9104.1 10307.3
D5291 CH Carbon wt% 80.58 74.84 86.78
Hydrogen wt% 13.50 13.65 13.56
D5453 Sulfur ppm 2.2 1.2 0.7
SulfurWtPct % 0.00022 0.00012 0.00007
D5599 EtOHVol Vol% 15.03 29.88
EtOHWt Wt% 15.86 31.41
TtiVol Vol% 15.03 29.88
Ttiwt Wit% 5.5 10.9
PMI Calculation 1.45827104 1.305691079 1.634877658
D86 IBP deg F 102.0 103.3 94.9
Evap_5 degF 130.1 129.0 119.3
Evap_10 | degF 139.2 140.0 131.2
Evap_15 degF 144.6 146.3 140.1
Evap_20 degF 148.8 150.8 148.4
Evap_30 degF 155.6 157.3 165.3
Evap_40 degF 160.6 161.6 184.0
Evap_50 | degF 180.1 165.2 203.8
Evap_60 degF 233.6 168.0 222.7
Evap_70 degF 2443 171.2 236.9
Evap_80 degF 266.9 271.3 254.7
Evap_90 degF 306.6 312.1 295.5
Evap_95 degF 343.9 344.8 3334
FBP degF 399.7 396.7 397.0
Recoverd mL 98.1 97.8 98.1
Residue mL 1.0 1.0 0.8
Loss mL 0.9 1.2 1.1




Notes.

Mdp - Modified Double Pass
TtlVol — Total Volume percent of oxygenates in the sample.
TtIWt — Total Weight percent of the oxygen in the sample, calculated from the individual
oxygenates oxygen weight %.
D1319 reports out the results in volume %. The CorrArom, CorrOlef, and CorrSat are the
volume percent of the hydrocarbon type corrected for the ethanol content. In the FIA method,
the oxygenated components are separated from the rest of the sample so the hydrocarbon
types measured are on an oxygenate free basis. The correction is done to present the
hydrocarbon types on a total samples basis. TtlVol + CorrArom+CorrOlef+CorrSat = 100
volume %
The prefix “Corr” indicates the sample has been corrected for ethanol, since oxygenates are
not accounted for in the analysis technique. For the other fuel property measurements, the
oxygenates are taken in to account so no correction is needed.
D5191
i. RVP is the vapor pressure calculated from the Ptot using the EPA equation cited in 40
CFR §80.46(c)
ii. Ptotis the total measured pressure
iii. DVPE is the vapor pressure calculated from the Ptot using the ASTM equation found in
D5191
iv. CARVP is the vapor pressure calculated from the Ptot using the equation cited by the
California Air Resources Board.
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Figure 1: Brake Specific Fuel Consumption
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Figure 2: Brake Thermal Efficiency
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Figure 3: Spark Advance
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Figure 4: CA50 Average of Cylinders 1-4
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Figure 5: CA10 Average of Cylinders 1-4
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Figure 6: CA10-90 Average of Cylinders 1-4
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Figure 7: Coefficient of Variation Average of Cylinders 1-4
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Figure 8: External EGR Percent of Intake Air



EMEP [bar]

BMEP [ber]

1

el
|

{Intake Phaser Position [Cam Deg]l

16

14

T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]

Figure 9: Intake Camshaft Phaser Position
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Figure 10: Exhaust Camshaft Phaser Position
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Figure 11: Camshaft Overlap
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Figure 12: Brake Specific NOx Emissions
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Figure 13: Brake Specific Carbon Monoxide Emissions
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Figure 14: Brake Specific Carbon Dioxide Emissions
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Figure 15: Brake Specific Hydrocarbon Emissions
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Figure 16: Particulate Soot Emissions
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Figure 17: Start of Injection
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Figure 18: End of Injection
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Figure 19: Injection Split Factor
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Figure 20: Fuel Flow
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Figure 21: Fuel Rail Pressure

14

12

—
[l

o5}
1

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000

Engine Speed[1/min]

Figure 22: Lambda
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Figure 23: Low Pressure Turbocharger Speed
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Figure 24: High Pressure Turbocharge Speed
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Figure 25: P85 Knock Limit
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Figure 26: Averaged P85 Knock Index
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Figure 27: Averaged Max Pressure for Cylinders 1-4
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Figure 2: Brake Thermal Efficiency
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Figure 4: CA50 Average of Cylinders 1-4
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Figure 7: Coefficient of Variation Average of Cylinders 1-4
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Figure 10: Exhaust Camshaft Position
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Figure 12: Brake Specific NOx Emissions
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Figure 13: Brake Specific Carbon Monoxide Emissions
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Figure 14: Brake Specific Carbon Dioxide Emissions
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Figure 16: Particulate Soot Emissions
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Figure 20: Fuel Flow
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Figure 21: Fuel Rail Pressure
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Figure 23: Low Pressure Turbocharger Speed
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Figure 24: High Pressure Turbocharge Speed
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161{P85 Knock Index [mbarl]|

16

14

235.0 146.5 197.0 525.3

12

10

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]

Figure 26: Averaged P85 Knock Index
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Figure 30: Calculated Volumetric Efficiency
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Figure 33: Gallery Oil Pressure
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Figure 36: Low Pressure Turbocharger out Exhaust Pressure
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Figure 2: Brake Thermal Efficiency
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Figure 4. CA50 Average of Cylinders 1-4
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Figure 6: CA10-90 Average of Cylinders 1-4
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Figure 12: Brake Specific NOx Emissions
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Figure 13: Brake Specific Carbon Monoxide Emissions
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Figure 14: Brake Specific Carbon Dioxide Emissions
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Figure 15: Brake Specific Hydrocarbon Emissions
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Figure 16: Particulate Soot Emissions
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Figure 22: Lambda
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Figure 23: Low Pressure Turbocharger Speed
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Figure 24: High Pressure Turbocharge Speed
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Figure 28: Indicated Mean Effective Pressure
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Figure 30: Calculated Volumetric Efficiency
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Figure 32: Intake Manifold Pressure
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Figure 38: Exhaust Temperature Low Pressure Turbocharger In



18—~{Tem perature LP-TC Out [°C]}

Fuel C 92 RON E10 LBP

BMEP [bar]

—Temperature Intake Manifold Air [*C]|

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]

Figure 39: Exhaust Temperature Low Pressure Turbocharger Out
Fuel C 92 RON E10 LBP

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]

Figure 40: Intake Manifold Air Temperature
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Figure 2: Brake Thermal Efficiency



1s71Spark Advance [deg BTDC]]
16
14
7 13
12
= 10
43 37ﬁ—
5 ® i
4_ 4'} 4
2_
0} T T T

T T
3000 3500 4000 4500 5000
Engine Speed [1/min]

Figure 3: Spark Advance

T T
2000 2500

12 7{CA50 Average [deg ATDC]|

T T T T T T
1500 2000 2500 3000 3500 4000
Engine Speed [1/min]
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Figure 6: CA10-90 Average of Cylinders 1-4
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Figure 15: Brake Specific Hydrocarbon Emissions
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Figure 16: Particulate Soot Emissions
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Figure 18: End of Injection
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Figure 19: Injection Split Factor
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Figure 20: Fuel Flow
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Figure 21: Fuel Rail Pressure

T
2500

T T T
4000 4500 5000

T
1200

T
1000

T
2000

T T
3000 3500

Engine Speed [1/min]

Figure 22: Lambda

T
2500

T
4000



181-TC1 Speed [1/min]

BMEP [bar]

T T T T T T T
1000 1500 2000 2500 3000 3500 4000
Engine Speed [1/min]

Figure 23: Low Pressure Turbocharger Speed
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Figure 24: High Pressure Turbocharge Speed
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Figure 27: Averaged Max Pressure for Cylinders 1-4
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Figure 28: Indicated Mean Effective Pressure
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Figure 30: Calculated Volumetric Efficiency
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Figure 31: Throttle Position
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Figure 32: Intake Manifold Pressure
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Figure 38: Exhaust Temperature Low Pressure Turbocharger In
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Figure 40: Intake Manifold Air Temperature
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Figure 42: Charge Air Cooler Inlet Air Temperature
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Figure 26: Averaged P85 Knock Index
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Figure 27: Averaged Max Pressure for Cylinders 1-4
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Figure 30: Calculated Volumetric Efficiency
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Figure 38: Exhaust Temperature Low Pressure Turbocharger In



BMEP [par]

BMEP [bar]

Fuel D 92 RON E10 HBP

18—~{Temperature LP-TC Out [OC]I

T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500
Engine Speed [1/min]
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Figure 2: Brake Thermal Efficiency
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Figure 6: CA10-90 Average of Cylinders 1-4
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Figure 7: Coefficient of Variation Average of Cylinders 1-4
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Figure 8: External EGR Percent of Intake Air
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Figure 13: Brake Specific Carbon Monoxide Emissions
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Figure 14: Brake Specific Carbon Dioxide Emissions
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Figure 15: Brake Specific Hydrocarbon Emissions
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Figure 16: Particulate Soot Emissions
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Figure 18: End of Injection
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Figure 21: Fuel Rail Pressure
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Figure 22: Lambda
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Figure 23: Low Pressure Turbocharger Speed
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Figure 24: High Pressure Turbocharge Speed
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Figure 25: P85 Knock Limit
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Figure 26: Averaged P85 Knock Index
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Figure 27: Averaged Max Pressure for Cylinders 1-4
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Figure 28: Indicated Mean Effective Pressure
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Figure 29: Pumping Mean Effective Pressure
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Figure 30: Calculated Volumetric Efficiency
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Figure 31: Throttle Position
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Figure 2: Brake Thermal Efficiency
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Figure 7: Coefficient of Variation Average of Cylinders 1-4

ie7-{External EGR [%]

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]
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Figure 13: Brake Specific Carbon Monoxide Emissions
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Figure 14: Brake Specific Carbon Dioxide Emissions
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Figure 15: Brake Specific Hydrocarbon Emissions
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Figure 16: Particulate Soot Emissions
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Figure 18: End of Injection



BMEF [bar]

BMEP [bar]

18—{Split Factor
] 0.4 0.3 01 01
18 !
A
14
0.3 0.
12 /
] 0
10 0
0 4]
8_
0 0
6_
0 0
4,
0 0
2_
0 T T T T T T T T T
1000 1800 2000 2500 3000 3500 4000 4500 5000

Engine Speed [1/min]

Figure 19: Injection Split Factor
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Figure 20: Fuel Flow
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Figure 22: Lambda
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Figure 23: Low Pressure Turbocharger Speed
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Figure 24: High Pressure Turbocharge Speed
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Figure 26: Averaged P85 Knock Index



BMEF [bar]

Fuel G 102 RON EQ LBP|

18—{ PMax Average [bar]l

167

14

12

10

e e % e ——au

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]
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Figure 28: Indicated Mean Effective Pressure
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Figure 30: Calculated Volumetric Efficiency
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Figure 31: Throttle Position
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Figure 32: Intake Manifold Pressure
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Figure 33: Gallery Oil Pressure
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Figure 36: Low Pressure Turbocharger out Exhaust Pressure
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Figure 40: Intake Manifold Air Temperature
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Figure 2: Brake Thermal Efficiency
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Figure 6: CA10-90 Average of Cylinders 1-4
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Figure 7: Coefficient of Variation Average of Cylinders 1-4
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Figure 8: External EGR Percent of Intake Air
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Figure 12: Brake Specific NOx Emissions
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Figure 13: Brake Specific Carbon Monoxide Emissions
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Figure 6: CA10-90 Average of Cylinders 1-4
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Figure 10: Exhaust Camshaft Phaser Position
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Figure 12: Brake Specific NOx Emissions

1000



151 Brake Specific CO [g/kWh]]

Fuel J 102 RON E10 HBP

20.8
17.7 11.0 15.9

BMEP [bar]

T T T T T T T
1500 2000 2500 3000 3500 4000 4500
Engine Speed [1/min]
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Figure 23: Low Pressure Turbocharger Speed
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Figure 24: High Pressure Turbocharge Speed
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Figure 2: Brake Thermal Efficiency
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Figure 4: CA50 Average of Cylinders 1-4
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Figure 6: CA10-90 Average of Cylinders 1-4
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Figure 7: Coefficient of Variation Average of Cylinders 1-4

T T T T
1000 1500 2000 2500

18 4External EGR [%]}

BMWEP [par]

T T T
4000 4500 5000

T T T T T
1500 2000 2500 2000 3500

T
1000
Engine Speed [1/min]

Figure 8: External EGR Percent of Intake Air
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Figure 11: Camshaft Overlap

Fuel K 102 RON E30 LBP|

T T T
4000 4500 5000

T T T T T
1500 2000 2500 3000 3500
Engine Speed [1/min]

Figure 12: Brake Specific NOx Emissions

1000



BMEP [bar]

BMWEP [par]

Fuel K 102 RON E30 LBP

151 Brake Specific CO [g/kWh]]

T T T T T T T
1500 2000 2500 3000 3500 4000 4500
Engine Speed [1/min]
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Figure 17: Start of Injection
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Figure 18: End of Injection
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Figure 23: Low Pressure Turbocharger Speed
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Figure 24: High Pressure Turbocharge Speed

T T T
1000 1500 2000



BMEP [bar]

BMWEP [par]

161{P85 Knock Limit [mbar] i
7 565.1

413.7 49&;_9
0]

16
/43.7 498.9 565.1
14 ® ' e

413.8 498.9 565.1
® ]

12 L]
292/3 413.7 498.9 565.1
10+ ® [} ®
292.3 413.7 498.9 565.1
34— @ ® Y [
292.6 413.7 498.9 565.1
f—® ® L] ®

292.6 413.7 498.9 565.1
® ® ®

292.3 413.7 498.7 565.1

| [ [ I
1] T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000

Engine Speed [1/min]

Figure 25: P85 Knock Limit
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Figure 26: Averaged P85 Knock Index
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Figure 27: Averaged Max Pressure for Cylinders 1-4
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Figure 28: Indicated Mean Effective Pressure
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Figure 29: Pumping Mean Effective Pressure
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Figure 30: Calculated Volumetric Efficiency
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Figure 31: Throttle Position
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Figure 32: Intake Manifold Pressure
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Figure 33: Gallery Oil Pressure
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Figure 39: Exhaust Temperature Low Pressure Turbocharger Out
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Figure 40: Intake Manifold Air Temperature
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Figure 20: Fuel Flow
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Figure 23: Low Pressure Turbocharger Speed
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Figure 24: High Pressure Turbocharge Speed
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Figure 30: Calculated Volumetric Efficiency
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Figure 17: Start of Injection

—EOI [deg BTDC]]

I

|

T
1000

T T T T T T
1500 2000 2500 3000 3800 4000
Engine Speed [1/min]

Figure 18: End of Injection

T
4500

T
5000




BWEP [par]

187{Split Factor
] 0.3
6 0.3
0.4
14 0.1
0.3 0.
12
/ 0.0
=10 o
o
o 0 0
£ g
0 0
6_
0 0
4_
0 0
2_
O T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000

Engine Speed [1/min]
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Figure 20: Fuel Flow
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Figure 1: Brake Specific Fuel Consumption
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Figure 2: Brake Thermal Efficiency



1e71Spark Advance [deg BTDC]|

41

T

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]
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Figure 18: End of Injection
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Figure 20: Fuel Flow
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Figure 23: Low Pressure Turbocharger Speed
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Figure 24: High Pressure Turbocharge Speed
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Figure 25: P85 Knock Limit
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Figure 26: Averaged P85 Knock Index
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Figure 27: Averaged Max Pressure for Cylinders 1-4
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Figure 28: Indicated Mean Effective Pressure
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Figure 30: Calculated Volumetric Efficiency



151 Throttle Position [%]

I I

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]

Figure 31: Throttle Position
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Figure 32: Intake Manifold Pressure
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Figure 36: Low Pressure Turbocharger out Exhaust Pressure
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Figure 40: Intake Manifold Air Temperature
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Figure 2: Brake Thermal Efficiency
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Figure 4: CA50 Average of Cylinders 1-4
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Figure 5: CA10 Average of Cylinders 1-4
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Figure 6: CA10-90 Average of Cylinders 1-4
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Figure 7: Coefficient of Variation Average of Cylinders 1-4
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Figure 8: External EGR Percent of Intake Air
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Figure 9: Intake Camshaft Phaser Position
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Figure 10: Exhaust Camshaft Phaser Position
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Figure 11: Camshaft Overlap
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Figure 12: Brake Specific NOx Emissions
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Figure 13: Brake Specific Carbon Monoxide Emissions
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Figure 14: Brake Specific Carbon Dioxide Emissions
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Figure 15: Brake Specific Hydrocarbon Emissions
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Figure 16: Particulate Soot Emissions
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Figure 17: Start of Injection
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Figure 18: End of Injection
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Figure 19: Injection Split Factor
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Figure 20: Fuel Flow

T T T
1000 1500 2000



EMEP [her]

BMVEP [ber]

1

el
|

#Fuel Pressure [M Pa]}

T T T T T T T T T
1000 1500 2000 2500 3000 3500 4000 4500 5000
Engine Speed [1/min]

Figure 21: Fuel Rail Pressure
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Figure 22: Lambda
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Figure 23: Low Pressure Turbocharger Speed
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Figure 25: P85 Knock Limit
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Figure 26: Averaged P85 Knock Index
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Figure 27: Averaged Max Pressure for Cylinders 1-4
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Figure 28: Indicated Mean Effective Pressure
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Figure 29: Pumping Mean Effective Pressure
[Fuel P 98 RON EO MBP)]
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Figure 30: Calculated Volumetric Efficiency
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Figure 31: Throttle Position
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Figure 32: Intake Manifold Pressure
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Figure 33: Gallery Oil Pressure
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Figure 34: Exhaust Pressure High Pressure Turbocharger In



EMEP [her]

BMVEP [ber]

1

el
|

{ Exhaust Pressure LP-TC [mbar]

1

oo

15

T
1000

T
1500

T
2000

T
2500

T
3000
Engine Speed [1/min]

T
3500

T
4000

T
4500

Figure 35: Exhaust Pressure Low Pressure Turbocharger In
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Figure 37: Exhaust Pressure Catalyst Out
[Fuel P 98 RON EO MBP)]
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Figure 38: Exhaust Temperature Low Pressure Turbocharger In
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Figure 39: Exhaust Temperature Low Pressure Turbocharger Out
[Fuel P 98 RON EO MBP)]
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Figure 40: Intake Manifold Air Temperature
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Figure 41: EGR Valve Out Temperature
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Figure 42: Charge Air Cooler Inlet Air Temperature



EMEP [her]

1

el

—{Air Temperature Charge Air Cooler Out [*C]]

T T T T T T T
2000 2500 3000 3500 4000 4500 5000

T T
1000 1500
Engine Speed [1/min]

Figure 43: Charge Air Cooler Outlet Air Temperature
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