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The GREET® (Greenhouse gases, Regulated Emissions, and
Energy use in Transportation) model

VEHICLE CYCLE
(GREET 2 Series)

(Available at www.greet.es.anl.gov) |

=

Stochastic Carbon Calculator for Land Use
Simulation Tool Change from Biofuels (CCLUB)

8poW ¢ 13340

GREET 1 model:
Fuel-cycle (or well-to-wheels, WTW) modeling of
vehicle/fuel systems
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GREET outputs include energy use, greenhouse gases, criteria
pollutants and water consumption for vehicle and energy systems

d Energy use
»> Total energy: fossil energy and renewable energy
» Fossil energy: petroleum, natural gas, and coal (they are estimated separately)
* Renewable energy: biomass, nuclear energy, hydro-power, wind power, and
solar energy

d Greenhouse gases (GHGS)
» CO, CH, N,O, black carbon, and albedo
» CO,, of tAhe ﬁve (with their global warming potentials)

O Air pollutants
» VOC, CO, NO, PM,, PM, . and SO,
» They are estimated separately for
« Total (emissions everywhere)
« Urban (a subset of the total)

O Water consumption




GREET System Boundary for Biofuel LCA: Direct Activities and

Indirect Effects are Included
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Trend of Estimated LUC GHG Emissions for Corn and Sugarcane
Ethanol

Critical factors for LUC GHG emissions:
v Land intensification vs. extensification
» Crop yields: existing cropland vs. new cropland; global yield differences and potentials
e Double cropping on existing land

100 » Extension to new land types: cropland, grassland, forestland, wetland, etc.
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Carbon Calculator for Land Use Change from Biofuels (CCLUB)

Module in GREET
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Interaction between CCLUB module and main GREET model

GREET GHG

emissions




SOC modeling and CCLUB development are based on
collaborations/interactions with other teams

Colorado

State U.

Purdue U.

~~ GTAP

e.g., modified yield
inputs, added model
parameterizations/
calibration

Surrogate CENTURY

Kwon et al. 2017
Use of inverse modeling to evaiuate
CENTURY-predictions for soil carbon
sequestration in US rain-fed corn production
systems
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M. Wander®
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Production: A Comprehensive Analysis®
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CCLUB contains NINE cases for biofuels production

GTAP modeling BGl/year

Increase in corn ethanol production from its 2004 level (3.41 billion

1) Corn Ethanol 2011 gallons [BG]) to 15 BG 11.59
Increase of ethanol from corn stover (i.e. AdvfE-Stover) by 9 BG, on top

2) Stover Ethanol of 15 BG corn ethanol (continuous corn) 8.97
Increase of ethanol from miscanthus (i.e. AdvfE-Misc) by 7 BG, on top of

3) Miscanthus Ethanol 15 BG corn ethanol 7.03
Increase of of ethanol from switchgrass (i.e. AdvfE-Swit) by 7 BG, on top

4) Switchgrass Ethanol of 15 BG corn ethanol 7.03
Increase in corn ethanol production from its 2004 level (3.41 BG) to 15

5) Corn Ethanol 2013 BG, with GTAP calibrated land transformation parameters 11.59

6) Soy Biodiesel CARB Increase in soy biodiesel production by 0.812 BG, using California Air

case 8 Resources Board (CARB) case 8 0.812

7) Soy Biodiesel CARB Increase in soy biodiesel production by 0.812 BG, using California Air

Average Proxy Resources Board (CARB) average of 30 cases 0.812
Increase in soy biodiesel production by 0.8 BG, using GTAP with land

8) Soy Biodiesel _GTAP 2004 intensification, 2004 database 0.8

Increase in soy biodiesel production by 0.5 BG, using GTAP with land
9) Soy Biodiesel GTAP 2011 intensification, 2011 database 0.5
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Production of bioenergy feedstocks can cause land-use change

and/or land management change
Land Use Change

Land types Forest, grassland, cropland, cropland-pasture Cropland

Land : - : .
Conventional, reduced and no Till Cover crop, manure application

Management

Feedstock C(‘)Vrn \ 4 \ 4 \ 4 \ 4 \ 4 Cgrn

Options grain Soy| | Switchgrass | |Miscanthus| | Willow | | Poplar stover

10



Soil organic carbon modeling is a key tool in evaluating potential
SOC changes under LUC/LMC

= Capture site- or region-specific soil
and climate conditions

= Examine influence of agricultural
practices

= Control variables that influence SOC
systematically

= [ncorporate different time horizons

. Cre_dit:‘ J. B Dunn
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Soil carbon change upon land transitions/ land management
depends on many factors
= |_and use history (to SOC status)
" Yield
= Climate
= Soil depth for measurement and simulation
= Management practices

(. Credit: Ken Goddard
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Soil carbon modeling with a surrogate CENTURY model
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Soil organic carbon changes upon land transition vary spatially
and by feedstock type
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Nationwide SOC changes upon LUC and LMC have been rolled
Into CCLUB to estimate SOC impacts on GHG emissions
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LUC and resulted SOC change influence biofuel’s life-cycle GHG
emissions

Gasohne

94
I N ---

20% Reduction (&) LCAW/0 LUC

(d) LCAw/ LUC
(b)biogeochemical (SOC)
and (c) biogeophysical
(albedo) impacts

50% Reduction
60% Reduction

C: Corn
100% Reduction S: SWitChgrass
M: Miscanthus

GHG emissions (g CO,e MJ")

*The range reflects
variable LUC/SOC
scenarios.

Qin et al., AGU Book, 2017
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A recent Argonne study on corn/corn stover ethanol looked into
specific management practices: stover removal, tillage, cover crop,
manure

[Year 1 [Year 2 [Year 3 [Year 4 [Year 5 [Year 6

Rotation

Yield scenarios Soybean Soybean Soybean ...
Tillage

CT,RT, NT
Stover Harvest

0, 30%, 60% 1st 2nd 3rd
Organic Matter Input

Cover crop Rye Rye Rye

Manure 1st application 2nd application

17

Qin et al., ANL/ESD-15/26, 2015



SOC level reduces with corn stover removal, but may maintain or
even improve with additional soil amendments applied

45°

(a) Without soil amendments
(b) With cover crop
(c) With manure application
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SOC change upon land management may dramatically affect corn
stover ethanol life-cycle GHG emissions

GHG Emissions (g-CO,e/MJ-Ethanol)
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25 . 60% Reductlon
0
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SR SR+CC SR+MN SR SR+CC SR+MN SR+CC SR+MN
Conventional Till Reduced Till No Till
m Other Operations m Fertilizers (Energy and N ,0) = LMC (N,O Emissions)
LMC (Energy and Chemical Inputs) mLMC (SOC Changes) ® Net Emissions
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SOC Impacts

SR: stover removal
MN: manure
CC: cover crop



SOC change simulation, esp. for LMC, is still uncertain and
limited in many ways

LMCs in practice vs. in simulation

Multiple LMCs occur at the same time/field: integrated
vs. additive effects

Land management counterfactual scenarios: what
biofuel production causes?

Enough evidence to support process-based LMC-SOC
relationship?

A SOC database w/ nationwide experimental
observation data (especially long-term) can be helpful
to validate process-based models

N,O emission simulations are based on mass balance
of N input and removal; need N cycle dynamics and N
inputs/removal ratios for soill

rgonne =
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Summary

O Biomass feedstocks production can result in land use
change and land management change

d Land use & management change both have significant
SOC effects which eventually impact on biofuel’s life-
cycle GHG emissions

1 Field observation network/database to assist SOC
modeling (esp. with management practices) are
Important to validate and improve SOC modeling for
biofuel LCA
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