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Background:
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• Energy policy incentivizing the development of 
renewable/low carbon fuels in the US:
– Policy incentivizing R&D of “drop-in” fuels
– LCA is used to measure the environmental performance 

of new transport fuels under development
– TEA is used to measure economic metrics

• Major Challenges and CRC Workshop Goals:
– Lack of data; uncertainty; unknowns; policy actions

• Multiple Product System:
– Fuels, chemicals, materials
– The need for Prospective LCA
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LCA/TEA for early-stage technology
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• Two challenges when undertaking environmental 
and economic evaluation of new technology

– Building life cycle assessment (LCA) models in 
the absence of data: thermodynamic

– Estimating cost of investing in new technology
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Pathways for Converting Biomass

L. Yarris, 2010

Bio-molecular

Thermo-Chemical
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- Fermentation of sugars

- Fuels (energy)
- Chemicals
- Materials
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BIO-OIL CRUDE

Zhang et al. Scientific Reports 2013: 3, 1120 Furimsky, E. Applied Catalysis A: General 2000:199,147–190
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BIO-OIL CRUDE

Acidic
Viscous
Reactive
Corrosive

Zhang et al. Scientific Reports 2013: 3, 1120

D. Elliott, PNNL, 2014.

INTRODUCTION | DEOX | ELECTRO DEOX | DFT | IMPLICATIONS | 7

PNNL-SA-120471



(HYDRO)DEOXYGENATION

Saidi et al. Energy & 
Environ Sci 2014: 7(1), 103-29

UNWANTED
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HDO

Dehydration

Decarboxylation

HydrogenationHydrogenolysis

Hydrocracking



Pyrolysis Oil Upgrading
• (Hydro)deoxygenation (HDO), TEA (Jones et al.)
• LCA studies:

– Hsu, 2012
– Zhang, 2013

• Other means of upgrading:
– Improved deoxygenation at the pyrolysis stage + mild 

hydrotreating
• Catalytic pyrolysis; Tail gas reactive pyrolysis; others

– Electrochemical deoxygenation (EDOx)
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ELECTROCHEMICAL DEOXYGENATION

• In-situ generation of H2 by electrolysis of bio-oil water 
(cathode)

• Deoxygenation of bio-oil at catalytic membrane by H2
(cathode)

• O2- transport to ceramic, catalytic membrane,
resulting in pure O2 flow (anode)
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ELECTROCHEMICAL DEOXYGENATION
• Process integration, no reheating + no external H2

EDOx OXYGEN



 EDOX (300MTPD) and HDO 
(2000MTPD) locations

 Forest residue available within 
<20mi radius of EDOx facility 
proposed locations

 EDOx locations near petroleum 
refineries (red dot) show 
opportunity for improving 
intermediate product 
transport/logistics in relation to 
final upgrading

Stable pyrolysis oils can serve as densification 
hubs for biorefineries

Sorunmu et al. 2017



Building LCI’s without commercial data
• Usual tools and databases: GREET, GHGenius, Ecoinvent,.. lack 

of data
• Simulate data from bottom-up: chemical process modeling and 

simulation (Aspen Plus, Superpro, FactSage)

Lack of thermodynamic 
data! 13



BIO-OIL CRUDE

Zhang et al. Scientific Reports 2013: 3, 1120 Furimsky, E. Applied Catalysis A: General 2000:199,147–190
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MODEL COMPOUND: SYRINGOL

1 mol 
Syringol

1 mol 
liquid

8 mol C
3 mol O
10 mol H

6.23 mol C
1 mol O
6.46 mol H

1.27 mol 
gas

1.77 mol C
1.55 mol O
2.45 mol H

0.45 mol 
O2

1.1 mol H

H2
methane
CO
CO2
ethene
ethane
propane

phenol
o-cresol
2,6-xylenol
2-ethylphenol

Electric 
current (A)

78% 
Carbon 
Efficiency

67% 
deoxygenation

OH

CH3

Work with bottom-up data
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ENERGY BALANCE

• Calculation methods
o Reaction Enthalpy

• Via Enthalpies of Formation
ΔHr = Σ Hf(prod) - Σ Hf(react)
Hf from NIST Chemistry Webbook
No Cp for many molecules

• Via Bond Dissociation Energies
ΔHr = Σ BDE(bonds formed) - Σ BDE(bonds broken)
Data from e.g. Blanksby and Ellison 2003, Ruscic 2015

o Gibbs Free Energy
Data on Sf, Cp too limited 
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BOND DISSOCIATION ENERGY

Bond dissociation energies give an idea about reaction sequence

101 kcal/mol101 kcal/mol

5.1 kcal/mol (x2)

OH

HH
-112.9 kcal/mol

-112.9 kcal/mol

H3C
OH H

-104.6 kcal/mol (x2)

H
H

H
H

104.2 kcal/mol (x2)

H3C
OH H

Furimsky, E. Applied Catalysis A: General 2000:199,147–190

17



BOND DISSOCIATION 
ENERGY

• BDE of functional groups 
dependent on other functional 
groups (±)

• Generalizable calculation 
strategy (overcome lacking 
formation enthalpy data)

Prasomsri et al. Energy Environ. Sci. 2014: 7, 2660 18



Density Functional Theory (DFT)
Computational quantum mechanical modelling method to investigate the 
electronic structure (principally the ground state) of atoms, molecules, and condensed phases

Prospective LCA: 
1. Prediction of reaction pathways, e.g. projection of upgraded oil products
 Yields required operating conditions and utilities (H2) consumption

2. Prediction of thermodynamic data, e.g. G, for compounds involved
 Yields energy balances (of known reactions/conversions)

Yoon , Y., et al. J. Am. Chem. Soc. 2014, 136, 10287−10298

With P. Billen, M. Santosa, R. Rousseau, VA Glezakou
19
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9.6 V electrochemical deoxygenation of guaiacol in a 6-cell membrane stack at 550 °C
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Saidi, M., et al. Energy & Environmental Science 2014:7,103-129.

Ni-CATALYZED (HYDRO)DEOXYGENATION
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ELECTROCHEMICAL DEOXYGENATION - HYPOTHESIS

PLANAR adsorption
Ni<111>

VERTICAL adsorption
Ni<111>
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HYDROGEN LOADING - THERMAL

Guaiacol/cluster interactions 
decrease by ~30%
(2-3 Å from cluster)

Guaiacol does not bind on 
full H-coverage cluster (~4-5 
Å from metal cluster)
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C-O BOND Dissociation as a Function of H coverage and charge
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H Coverage:  0ML ~0.5ML ~1ML

PNNL-SA-120471

H Coverage BDE (no charge) 
(in Kcal/mol)

BDE (charged)
(Kcal/mol)

0 -2 0
0.5 24 0
1.0 32 34



Consequences of H coverage and Charge on C-O dissociation
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• The orientation of organic with respect to the surface changes from 
planar to angled (almost vertical). Surface/organic contact is needed 
for effective C-O dissociation

• The Bond Dissociation Energy (BDE) becomes endothermic as the 
coverage increases

• Charged surface helps dissociation by stabilizing the organic, as 
long as there is contact

– At high coverage, the benefit of charged surface becomes irrelevant because the 
organic/surface orientation/contact are unfavorable

– H is also stabilized on the surface.

PNNL-SA-120471



ELECTROCHEMICAL DEOXYGENATION
PROCESS UNDERSTANDING

• In-situ generation of H2 by electrolysis of bio-oil water
• Role of electricity:

• Stabilize intermediates
• Alter the adsorption, reduce hydrogen (energy) consumption
• Increase local hydrogen loading

• To be investigated: ring hydrogenation? direct electric 
decarboxylation?
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IMPLICATIONS FOR LCA
CH3

O

OH

• + 3 moles of H2

• 2 moles of H2 
deoxygenation

• 2 moles of H2 
deoxygenation

• Less H2 consumption, less energy
• More versatile (valuable) deoxygenation products (aim for 

phenols or BTEX)
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Implications for Prospective LCA
CH3

O

OH

• Can use DfT in 2 ways:

• A priori: simulations are tested to drive 
the desired reactions (optimizing 
valuable compounds; reducing H and 
energy input) prior to experimentation

• A posteriori: simulate to understand the 
possible reaction mechanisms from 
products generated from experiments 
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(Prospective) Life Cycle Design

IDEA DESIGN EXPERIM
ENTS

LCA
TEA

SCALE-
UP

IDEA DESIGN EXPERIM
ENTS

LCA
TEA

SCALE-
UP

Traditional

Prospective
endpoint

Predictive models
Optimized environmental impact

Facilitated scale-up
Immediate benchmark

Lowered experimental efforts

NSF CMMI-1550723
EAGER: Spherical Porous Reactive Aggregates from Coal Bottom Ash
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RELEVANCE

Engineering = decision making 

O

O

?
H3C OH

O

LCA
TEAC + EI 

C + EI 

C + EI 

C + EI 

C + EI 
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EI = Environmental Impact
C = Cost 
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General EDOx Reaction Mechanism

Cathode :

Steam electrolysis: 2H2O  2H2 + O2

Deox rxn: R-CH2OH + H2  R-CH3 + H2O

Anode:
Oxygen exits from the anode side
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 US map showing EDOX and HDO locations
 GHG intensity (CO2 eq.) varies by electricity 

grid
 Forest residue availability is in billion dry tons 

per year (bdtpy)
 Map shows more possibilities of EDOx 

locations than HDO
 EDOx locations near petroleum refineries (red 

dot) show opportunity for improving 
intermediate product transport/logistics in 
relation to final upgrading

How many EDOx and HDO units can be sited?
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