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Background 

• Light-duty vehicles generate 17% 
of U.S. greenhouse gas emissions 
– 991 x 109 kg CO2 in 2014 

• Efficiency of spark-ignition engines 
is limited by knock 
– Higher-octane fuels are more 

resistant to knock 
– Refining high-octane fuels requires 

more energy and produces more 
GHG emissions 

• Majority of lifecycle CO2 emissions 
occur during vehicle operations 

• Would increasing the octane 
rating of gasoline result in a net 
emissions decrease? 
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Knock & Octane Rat ings 

• Occurrence of knock depends on a 
combination of fuel properties, 
engine design, and operating 
conditions 

• Knock resistance of fuels 
characterized using two tests: 
– Research Octane Number (RON): 

600 rpm, inlet air heated to 50° C 
– Motor Octane Number (MON): 

900 rpm, fuel/ air mixture heated 
to 150° C 

– RON test includes effects of fuel 
vaporization; MON test does not 

• Changes in engine design have 
shifted relevance of the tests 
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Mittal & Heywood, 2008 



Potent ial of Higher-octane Gasoline 

• Higher-octane fuels will allow for more efficient vehicles 
– How much more efficient? 

• Refining high-octane fuels requires more energy and 
produces more GHG emissions 
– How much more energy? 
– Ethanol blending reduces demand for high-octane petroleum 

blendstock, leaving refineries with spare capacity 
– Increasing fuel economy leads to lower gasoline consumption and 

spare capacity 
– Targeting RON only would increase refinery flexibility 

• Interested in finding the octane standard that maximizes 
societal benefit (combination of reduced costs and reduced 
GHG emissions) 
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Effect  of Octane Rat ing on Efficiency 

• RON vs. compression ratio (rc): 
– Increasing rc by 1 requires 4–6 RON increase1 

• Compression ratio vs. efficiency: 
– Increasing rc by 1 gives a relative engine efficiency gain of 2.4% for 

naturally aspirated engines2 and 3.9% for turbocharged engines 

• Increasing rc allows engine downsizing, which increases fuel 
economy further 

• Fuel economy increase for a 6 point increase in RON: 
– 3.0–4.5% for naturally aspirated vehicles 
– 4.9–7.1% for turbocharged vehicles 
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1: Russ, 1996; Okamoto, 2003; Kalghatgi, 2005; Duleep 2012 
2: Nakata, 2007; Munoz, 2005; Chow 2014 



Proposed Scenario 

• Replace current octane specifications with 92 RON regular, 
98 RON premium 

• Adoption timeline: 
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2015 
• Current day 

2020 
• Manufacturers start introducing engines 

designed for higher-octane gasoline 

2030 
• 100% of the vehicle sales are of the higher-

octane version 

2040 
• Examine fleet at a point where most on-

road vehicles utilize high-octane gasoline 



Fleet  Model 

• Describes the evolving characteristics of the future vehicle 
fleet: composition, size, vehicle kilometers traveled, fuel 
economy 
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Light-duty Vehicle Fleet  Model 

8 

• High-octane (HO) vehicles 
in each class gradually 
displace standard 
engines 

• HO vehicles become 
majority in 2034 

• 75% in-use vehicles use 
high-RON fuel in 2040 



Evolut ion of Gasoline Consumpt ion 

• Gasoline consumption based 
on vehicle and fleet modeling 

• Current market is 
approximately 10% premium 

• Baseline: overall consumption 
reduced by 27% in 2040 

• With higher-RON gasoline, 
consumption in 2040 
decreases by 3.0–4.4%  

• Growth in HO vehicles 
requires shifting production 
to 80% high octane in 2040 
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US Gasoline Consumption 



Refinery Model 

• Linear programming (LP) approach 
– Linearized process model with process and product property 

constraints 
– Determine refinery product slate to maximize profit 
– Solved using Aspen PIMS (Process Industry Modeling System) 

• Using modified Aspen “Gulf Coast” refinery model 
– Fixed crude slate, capacity set to 100,000 barrels /  day 
– Added 10% ethanol blending for all gasoline grades 
– Prices set using EIA estimates for 2040 
– Additional modifications considered in sensitivity analysis 

• Compute results for 2040, comparing two cases: 
– Reference case: 90% regular, 10% premium 
– “high octane”:  20% regular, 80% premium 
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Environmental Analysis 

• Well-to-wheels CO2 emissions 
– Consider a system consisting of the refinery and the consumers of all 

the refinery’s products 
– Changes in the refinery product slate are balanced by displacing 

imports or exports of other fuels 
– Include the upstream emissions associated with these fuels 

• Use social cost of carbon to monetize CO2 emissions 
– Current estimate for emissions in 2040: $66 per ton 

• Equivalent to $0.59 per gallon of gasoline 

• Evaluate total impact for the U.S. 
– Attribute all changes in emissions and costs to the octane change 
– Scale single-refinery results to match U.S. gasoline consumption 

• 2040 baseline consumption: 7.2 million barrels per day 
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Baseline Scenario Results 

• Reduction in CO2 emissions: 17 – 33 million tons /  year 
• Social cost of carbon: $1.2 – 2.2 billion saved 
• Direct annual economic impact: between $1.1 billion cost 

and $5.1 billion savings 
• Total value: $0.1 – 7.3 billion savings (Up to $37 per driver, 

per year) 
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Sensit ivity: Octane Specificat ion 
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• Increasing RON of premium results in a net societal loss 
• Keeping current octane standards (AKI) results in a net 

societal loss, and lower CO2 emissions reduction 
 



Sensit ivity: Ethanol Content  & Octane Rat ing 
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Advanced Refinery /  Increased Capacity 

• Refinery upgrades to allow production of additional high-RON 
gasoline: 
–  Relax capacity constraints: 

• Coker 
• Alkylation unit 
• Hydrocracker 

– Additional process units 
• Propylene dimerization 

• Higher GHG emissions associated with additional processing 
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Advanced Refinery Sensit ivit ies 
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Summary 

• Higher-octane gasoline can give a modest boost to vehicle 
fuel economy 

• Refineries should be able to produce more high-octane 
gasoline without significantly increasing GHG emissions 
– Increasing ethanol blending to 15% would reduce changes to 

refinery operations and provide additional CO2 reduction 
– Small refinery capacity expansions could make up for reduction in 

gasoline production 
• Realizing a significant economic benefit from high-octane 

gasoline requires switching from AKI to RON 
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Quest ions for Future Work 

• How would the costs and benefits be distributed? 
– Consumers (better fuel economy, but extra cost of premium 

currently exceeds fuel economy benefit) 
– Refiners (high-octane fuel costs more to produce, but price of 

premium reflects other factors) 
– Car manufacturers (high-octane fuel makes CAFE easier to 

meet, but vehicles may be more expensive to manufacture) 
• What is the actual relationship between RON and fuel 

economy? 
• How will differently-configured refineries behave? 
• How would non-CO2 emissions change? 
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Sensit ivity to Product  Prices 
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Sensit ivity to Refinery Configurat ion 
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Refinery Inputs & Outputs 

Base rate 
kbbl / day 

Change 
kbbl / day 

% Change 

Crude Oil 100.0 - - 

Gasoline 55.0 -3.80 -6.9% 

Ethanol 5.5 -0.25 -4.5% 

Diesel 30.4 +0.89 +2.9% 

Jet Fuel 9.8 -0.26 -2.6% 

LPG 1.1 +0.48 +44.8% 

Fuel Oil 5.3 -0.23 -4.4% 

Light Naphtha 0.0 +1.52 - 

Coke (BOE) 3.8 -0.0 -0.1% 

Fuel Gas (BOE) 1.4 +0.01 +1.0% 

Total (liquids) 96.1 -1020 -1.1% 
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Gasoline Blending Components 
 
Component 

10% Premium 80% Premium 

vol. % RON vol. % RON 

Reformate 24.3 94.6 24.4 102 

Alkylate 12.7 94.5 13.7 94.5 

FCC Naphtha 10.8 93.7 16.7 93.8 

Hydrotreated FCC Naphtha 26.4 90.7 22.1 90.8 

Light Straight Run 7.7 66.2 0.0 - 

Isomerate 0.0 - 5.3 76.9 

Hydrocracked Naphtha 3.7 80.5 3.9 80.5 

Coker Naphtha 3.0 65 2.1 65 

Iso-butane 1.4 98.6 1.7 98.6 

Ethanol 10.0 129 10.0 129 
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 Need RON increase of 4.2 points 
 Baseline giveaway: 0.8 points 
 Pool RON increased by 3.4 points 

 

 Increased reformer severity: 1.8 points 
 Isomerization of LSR: 0.6 points 
 Exclusion of light naphtha: 0.7 points 
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