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This Briefing Draws on Insights from a Few of Our
Recent Journal Papers
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We assess Ihe economic value of iiecyde sir emissions and oil
. vehicles
(N v nnq—m 'vyhndelmnt Vehides (PHEVE, and battery elecric

icles in the US. We find that plugin vehiles may reduce or
increase externality costs relative to grid-independent HEVS, de-
pending largely on greenhouse gas and SO emissions produced
i future marginal damages from emissions of hanery and elecoi-
city production drop dramatically, the damage reduction potential
of plug-in vehides remains small compared to ownership cost. As
such, to offer a sodilly efficient approach to emissions and ol
consumption reduction, lifetime cost of plug-in vehides must be
competitive with HEVs. Current subsidies intended to encourage
sales of plugin vehicles with large capacity battery packs exceed
our externality estimates considerably, and taxes that optimally
comect for extemality dsmages would not dose the gap in owner-
ship cost. In contrast. HEVs and PHEVs with small battery packs

% ol N

lifetime. Although large battery packs allow vehides to travel
longer distances using electricity instead of gasoline, large packs
aremore expensive, heavier, and more emissions intensive o pro-
duce, with lower utilization factors, greater charging infrastructure
requirements, and life-cycle implications that are more sensitive to
uncertain, time-sersitive, and location-specific factors. To reduce
air emission and oil dependency impacts from passenger vehidles,
strategies to promote adoption of HEVs and PHEVS with small
battery packs offer more social benefits per dallar spent.

e electrification of passenger vehicles has the potential to
address three of the most critical challenges of our time
plug-in vehicles may (i) produce fewer greenhous gas (GHG)
emissions when powered by electricity imnstead of gasoline, de-
pending on the electricity source; (i) rc.hkc tailpipe cmissions,
which impact people and the environment; a reduce gaso-
lin consumpten, helping 1o dmirish dependency on imported
oil. Recognizing these benefits, US poliymakers have provided
federal tax credits of up to $7.500 per vehicle to encourage elec-
trified transportation, with additional supporting policies enacted
in many states (1, 2). Ideally, these policies would compensate
for the externalities of energy se, such as damages to human
health and to resources caused by emissons o oil consumption.
Because such externality damages are not priced explicily in the
marketplace, they are not adequately accounted for in decision
making, and users consume and emit more than they would have
if they had born the full costs (3). Policymakers understand the
impossbility of eliminating all externality damages; instead, laws
favor determining which externality-reducing me asures are worth
paying for and which approaches reduce externality damages
most efficiently.

In this study we assess, under a wide range of scenarios, how
much externality damage eduction plug-in vehicks can offer in
the US and at what cost. To answer this question, we gathered
data on (i) the quantity and location of emissions relcased from
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tailpipes and from upstream processes to produce and operate
vehides, (i) the externality costs of damages caused by the re-
lease of these emissions, and (i) estimates of externalities and
other costs to the US associated with oil consumption. We com-
pare extemality and oil consumption costs to the costs of owning
and operating these vehicles and to subsidics designed to encou-
rage their adoption. S Tex provides a detailed review of relevant
literature.

Results

Emisions Damage Reduction Potential. We estimate life-cycle emis-
sions damages for comparable new midsize vehicles, including
a comventional vehicle (CV), a hybrid<lectric wehicle (HEV),
plugein hybrid-electric vehicks (PHEV) with battery packs sized
for storing 20 km (PHEV20) or 60 km (PHEV60) of grid elec-
tricity (with the remainder powered by gasoline), and a battery
cledric vehide (BEV) with a 240-km pack (and no gasoline
engine). We estimate location-spedific externality damages for
releases of CO, nitrogen oxides (NO, ), particulate matter (PM),
SO, and volatile organic compounds (VOCs) using data from a
2010 National Research Council (NRC) study (3, 4) with their $6
million estimate for value of statistical life, and we examine a
range of estimates for damages from GHG emissions (3, 5). We
combine these externality values with data on US driving patterns
from the 2009 National Household Travel Survey (NHTS) (6)
and data on manufacturing, fuel ycle, and operation emissions
from Argonne National Laboratory (ANL) (7. §) to estimate US
life<ycle damages for cach vehicle. Fig. 1 summarizes the results.
In our hase case, we assume average US values for emissions and
damage valuation of electricity generation, oil refining. vehicle
and battery production, driving location, and upstream supply
chain emissions, we use a medium global valuation for GHG
emissions, and we assume the battery will last the life of the
vehicle. Although gasoline production and combustion produce
significant emissions, battery and electricity production emissions
are also substantial. We find that, in the base case, plug-in vehi-
cles (PHEVs and BEVs) may produce more damage on average
than today's HEVs. This factis due in large part to SO, and GHG
emissions from coal-fired power plants.
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This Briefing Continues the Discussion on Some
Critical LCA Issues

* What are some outstanding * Figuring out what matters
and emerging issues for and establishing consistency
electricity LCA? for policymakers

* Are current modeling
methods sufficient?

* What are the key LCA inputs
needed in the next year or
two ?
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Electricity LCAs Have Varying Levels of Importance
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Emerging Issues Will Be Defining Baselines,
Boundaries, and Acceptable Uncertainty Ranges

* Two separate and challenging tasks:

* Understand electricity generation impacts for a functional unit

* Understand electricity fuel cycle impacts for that case
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Emerging Issues Will Be Defining Baselines,
Boundaries, and Acceptable Uncertainty Ranges
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Emerging Issues Will Be Defining Baselines,
Boundaries, and Acceptable Uncertainty Ranges
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Emerging Issues Will Be Defining Baselines,
Boundaries, and Acceptable Uncertainty Ranges
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Emerging Issues Will Be Defining Baselines,
Boundaries, and Acceptable Uncertainty Ranges

<0.10 mm <-0.20
0.11-0.20 mm-0.19--0.10 :
——
0.21-0.30 -0.09-0.00 '
g 0.31-040 001-0.10
mm 041-050 s 0.11-0.20
> 0.51 > 0.21

Source: Weber, C., Jaramillo, P., Marriott, J., Samaras, C., 2010. Life cycle assessment of grid electricity: What do we know and what
can we know? Environmental Science and Technology, 44(6) 1895-1901.
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Emerging Issues Will Be Defining Baselines,
Boundaries, and Acceptable Uncertainty Ranges

* Two separate and challenging tasks:
* Understand electricity generation impacts for a functional unit
* Understand electricity fuel cycle impacts for that case

* Use of state or eGrid subregions omits life cycle impacts and
results in “winners” and “losers”

* Right now, an entity can choose the most favorable
boundaries and baselines for purchased electricity impacts

* Arguments for and against marginal electricity impacts and
consequential electricity LCAs will intensify

* How do we sort out the “good” LCAs and how can the and
their inherent uncertainty be best utilized by policymakers?
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This Briefing Continues the Discussion on Some
Critical LCA Issues

* What are some outstanding *
and emerging issues for
electricity LCA?

* Are current modeling * Need to make decisions
methods sufficient? under uncertainty but need
transparent inputs

* What are the key LCA inputs
needed in the next year or
two ?

S A LCA
RAND ""Slide-11 19 Oct 11



Current Modeling Methods Are Helpful But Subject to
Model, Data, and Scenario Uncertainty

We can use or edit GREET, or attempt to append eGrid with
upstream impacts

We can develop our own process-based, input-output, or hybrid
models

We can parameterize and use bounding analysis

We can conduct grid dispatch analyses in certain areas
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Example: Lifetime Emissions Damages Could be
Higher With Evs

* Emissions damage reduction potential of plug-in vehicles
— Optimistic: $1000 damage reduction over the life
— Pessimistic: $6000 damage increase over the life
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Source: Michalek, J.J., Chester, M., Jaramillo, P., Samaras, C., Shiau, C-S.,N., Lave, L.B. 2011. Samaras Argonne LCA
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ensitivity Analyses Essential, But Complexity Can

Get Overwhelming
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Source: Michalek, J.J., Chester, M., Jaramillo, P., Samaras, C., Shiau, C-S.,N., Lave, L.B. 2011.
Valuation of Plug-in Vehicle Life Cycle Air Emissions and Oil Displacement Benefits. Proceedings of
the National Academies of the USA. 108(40) 16554-16558.
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The Most Useful Models Are Transparent,
Documented, Peer-Reviewed and Revised Regularly
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m Diagram - Calculating Uncertainty in Biomass Emissions
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The Calculating Uncertainty in
Biomass Emissions (CUBE) model:
* A tool for analyzing the life cycle
inventory of emissions from
biomass production

* Includes seven feedstocks:

— switchgrass, mixed prairie
biomass, corn grain, corn
stover, hybrid poplar, forest
residue, mill residue

* Impacts examined across region,
feedstock and prior land use

* Based on literature and consultation
with biomass-energy experts

* Publicly available at:
www.rand.org/ise/projects/

bioemissions.html
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This Briefing Continues the Discussion on Some
Critical LCA Issues

« What are some outstanding * Figuring out what matters
and emerging issues for and establishing consistency
electricity LCA? for policymakers

* Are current modeling * Need to make decisions
methods sufficient? under uncertainty but need

transparent inputs

* What are the key LCA inputs ¢ Capture impacts from
needed in the next year or evolving grid and important
two ? upstream processes and

think about long-term
evolution of current tools
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Key Near-term Data Will be How Grid Changes and
Upstream Natural Gas Impacts

* As the electricity fleet continues to evolve, eGrid and GREET
should have frequent updates

* What if GREET evolved into a documented, peer reviewed, and
crowd sourced model that is updated every three years? What
if eGrid and GREET were coupled? What if they used
electricity balancing areas rather than subregions?

* This would allow satisficing for large policy questions and
allow individual researchers to use components for
individual analyses and checks

* As more shale gas comes online and is used for electricity
production, we need an understanding of how this affects life
cycle electricity GHGs from electricity

Samaras Argonne LCA
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Summary

* What are some outstanding  * Figuring out what matters
and emerging issues for and establishing consistency
electricity LCA? for policymakers

* Are current modeling * Need to make decisions
methods sufficient? under uncertainty but need

transparent inputs

* What are the key LCA inputs ¢ Capture impacts from
needed in the next year or evolving grid and important
two ? upstream processes and

think about long-term
evolution of current tools
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