
Regional Modeling Breakout Discussion Summary

Process & Outcome

Convergence

More Convergence to 7 topics

Brainstorming

EVAL / Analysis/Interp Ensemble + Mald Intercomparison Earor Attribucion+ Uncertainty Andros Thend analysis - Accorrectory; - Eval: of Senstimitics - Dynamic + - Network Desyn Eval: for Intended Use

the frame weakly

Voting

Outcome: Convergence to Big Picture Topics

- 1. Emissions
- 2. Transport and Dynamics
- 3. Chemical Mechanisms and Aerosol Processes
- 4. Numerics
- 5. Scale Interactions
- 6. Evaluation/Analysis/Interpretation of Model Results
- 7. Measurement Needs

4-6 "projects" identified within each of these topics that were then voted on

Inputs Process Representation

 Structural aspects

• Model use

1. Trend Analysis

- Emissions trends
 - Consistent methodology
 - Trends in sensitivity to emissions
- Accountability: Policy changes -> Emission changes → changes in ambient pollutant levels
 - Evaluation of past modeling projections
- Attribution: what drives these trends?
 - Changes in LRT contributions
 - Meteorological-adjusted trends (isolate trend signal from interannual variability)
- Modeling: extrapolation of trends for future policy directives

2. PBL

- Stable boundary Layer
- Convective Boundary Layer
- Boundary layer evolution and interaction w/ emissions
 - If a larger fraction of the emissions were to be allocated to the convectionactive periods would that change bias characteristics?
- Cold pools

3. Spatial/Temporal Allocation of Emissions

- On-road and non-road emissions
 - Use of emerging data to improve space-time emissions characterization
 - Speed distributions, age distributions
 - "Event" specific Traffic information
 - How to categorize construction vehicles, recreational vehicles, and temporal grouping based on use – activity; emission rates (spatial and temporal categorization)
 - Better characterization during exceedance episodes
 - Data is available transferability to OUR models (MOVES to air quality model)
 - Will require fine resolutions (~1 km) model calculations resolving hotspots
 - Characterization of emission biases

4. Evaluation for Intended Use

- Measuring effectiveness of model's utility for decision-making
 - How to measure reliability/confidence in models
 - Success of models for regulatory metrics (i.e. RRFs, ozone & PM design values)
 - Exposure assessment
 - Air Quality Forecasting
 - Linking with ecological models
 - Linking with hydrological models
 - Flexible protocols for differing uses of models danger of protocol permanence

5. Condensation Rules for Chemical Mechanisms

- Current tools do not support easy updates to mechanisms current approach is inefficient
- Condensing from explicit mechanisms to ones suitable for practical use/purpose (i.e. regional modeling)
 - Model applications will dictate how complex the mechanism needs to be (e.g., regulatory vs forecasting applications)
 - AQF application with data assimilation may not require detailed representation
 - Ability to incorporate new information/chemical understanding

NOx cycling

Nighttime

Marine

- Automated updating of chemical mechanisms on IUPAC or JPL
- Linked gas-aqueous-aerosol phase chemistry
 - Integration with SOA & heterogeneous chemistry

6. Air-Surface Interactions

- Bi-directional surface flux
- Dry deposition an important sink
 - solubility
- Land use uncertainty: surface categorization (land use, vegetation, albedo, snow cover, SST, soil moisture, linking with biosphere/land surface models; parameterization AND models
 - Recent examples of coupling Regional ocean model with atmospheric models for SST
- Land/sea breeze
- Air-sea exchange
 - Deposition to water surfaces
 - Marine halogen emissions

7. Ensemble Modeling & Model Inter-comparison

- Appropriate methods for ensemble generation
- Detailed inter-comparison of models at process-levels
 - Process-level error attribution
- Deriving probabilistic estimates from ensemble results for policymaking
 - Uncertainty characterization
- Policy implications of using different models
- Ensemble forecasting

8. Vertical Profile Measurements

- For advancing model evaluation and network design
 - Aircraft
 - Tethersonde
 - Lidars
 - Celiometer
 - Solar Occultation Flux (SOF): estimating VOC emission flux
 - Tall structures
 - Profiles within/above canopies

9. Fires : wild + prescribed

- Emissions magnitude
- Spatial and temporal allocation
- Plume rise
- Speciation
- Fuel types & burning stage
- Prediction using soil moisture, satellite data and weather
- in-plume chemistry
- Interaction of fire emissions with other sources (e.g., fires near roadways)

10. Use of Satellite Observations

- Fire detection
- Trends
- Emission evaluation
- Uncertainty in Satellite data
- Data assimilation; use in exposure assessment
- Near-real time emission data
- Evaluation for appropriate use

Pros: spatial coverage

Cons: accuracy, level of quantitative agreement relative to models?

Conclusions

- Great discussions !
- Some worthy projects even outside the Top 10
 - Most can help evolve Regional Modeling over the next 5 years.

Statement

- 1. Project title
- 2. Problem statement (1 paragraph)
 - Why this research is needed
 - Background information on the science deficiency
- 3. Proposed research (1 paragraph)