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EPA A brief history of AQ modeling

® Eulerian grid chemical transport models

e Emission, advection, diffusion, chemistry, deposition
® First generation AQ models - e.g. UAM, ROM

e Gas-phase photochemistry
* Single mixed layer with diurnal evolution, another layer aloft
e Meteorology interpolated from observations

® Second generation — e.g. RADM,ADOM, STEM

e Multi-layer terrain following coordinates
e Meteorology from prognostic model (e.g. MM4)
* Include cloud processes — convective transport, aq chem, wet dep

® Third generation — e.g. WRF-Chem,WRF-CMAQ, GEM-MACH

* Integrated or coupled Met — Chem
* Include aerosol with feedback to meteorology



Why Next Gen Model?

®Much of the code dates back to the 1990’.

® Needs thorough redesign for:

® Greater efficiency, less buggy, more flexible, more extensible
® Need global multi scale system

® Need online or coupled Met-Chem system

® Need earth system linkages

® Need AQ-climate linkages

® Multiple configurations for different applications



<vEPA Model Development Needs

® Multi-scale global
® Integrated meteorology — chemistry

® Improved integrated physics

e Cloud processes (resolved and subgrid)
* Land surface, dry deposition, bi-directional flux
» Consistent radiation and photolysis — cloud effects, aerosol effects, surface albedo

® Emission modeling

* Wind-blown dust
e Sea salt
* Biogenics
® Closer integration of gas — aerosol — aqueous - heterogeneous

e Condensed chemical mechanisms derived from detailed mechanisms
* Improved organic aerosol models



Challenges for chemical mechanisms in NGAQM

® Derive mechanisms from a robust, well-documented archive so that different versions of mechanisms are
consistent;i.e. they all “start from the same place.”

e Reconcile the large differences in intermediates
* Improve comparisons between simulations using different mechanisms
* Strive for better consistency from global to regional to urban scales

® Semi-automate the mechanism derivation, condensation, and evaluation process

* Increase the ability of the mechanisms to respond quickly to “new” pollutants from new energy sources,
new technologies, changing state of the atmosphere, new toxics

e Decrease the time between when new scientific information becomes available and when it is reflected in
atmospheric chemistry (i.e. no more 8-year update cycles!).

® Better characterize the direct precursors to SOA formation (research in identifying, MCM to help us create
them) and gas-aerosol-aqueous feedbacks (CAPRAM-type mechs?)

* Increase confidence on the magnitude/direction of PM2.5 due to emission reductions

Courtesy of Deborah Luecken



Example: Ozone predictions by

CBO5 and SAPRC

Fractional Difference, CB05e51-SAPRC07

8-hr daily max, July 3
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EPA Hemi as LBC for CONUS 12 km

WRF-CMAQ max 8-hr average ozone on June 8, 2014

Daily Maximum 8-hr O3 (ppb): 20140608 Daily Maximum 8-hr O3 (ppb): 20140608

Domain size: 289x459, Max=105.4 at (69, 96) Domain size: 299x459, Max=103.8 at (69, 96)

Hourly LBCs from WRF-CMAQ Monthly average LBCs from GEOS-Chem
Hemispheric run

Using 108 km hemispheric WRF-CMAQ improves ozone simulation especially in Texas and
Canada compared to monthly average static LBCs derived from global model (GEOS-Chem)



\eIEPA Global Multiscale model

® Need AQ modeling at Global to Continental to Regional to Urban scales

e Seamless multi-scale grid refinement (e.g OLAM, MPAS)
e Minimize interpolation errors in transition from coarse to fine resolution

® Tighter AQ standards require global modeling:

* Inter-continental transport (Ozone and PM)
 Stratospheric ozone
* Marine chemistry

® Earth system Linkages

e Greenhouse gases

* Nitrogen, carbon cycling

e AQ — Climate interactions
* Eco, hydro linkages

OLAM-Chem



eIEPA Need for online Met-Chem model

® Growing trend toward integrated Met-Chem modeling

e Improve NWP — radiative feedbacks and satellite data assimilation
* Regional climate-chemistry modeling including SLCF
e Improve AQ modeling

® Chem affects Met which affects AQ

e Aerosol direct effects
* Reduced SW ground = reduces PBL = greater concentrations
e Aerosol indirect effects
 Effects cloud cover, COD, radiative forcing, precipitation
 Effects propagate through AQ
Gaseous direct effects on LW
Ozone, methane, N,O, etc
* AQ effects on land surface
Ozone damages stomatal function which affects:
* Transpiration, CO, uptake, dry deposition
CO, changes, including regulatory controls, affect stomatal conductance

Surface Solar Radiation (M)/m?)
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Integrated Met-Chem modeling

® High temporal coupling (data exchange frequency > once per hour)

e Better resolve high-frequency meteorological dynamics
* WS, WD changes, PBL height variations, cloud formation, rainfall

e Affects chemical transport, transformation, and removal at high spatial resolution
® More consistent dynamical, physical, and numerical modeling

e More constant cloud convective transport of chemistry and met
e Closer integration of cloud microphysics and aqueous chemistry
* More consistent advection and diffusion

® On-line chemistry necessary for global models with non-uniform, refining grid meshes (e.g.
OLAM, MPAS)

e Advection and horizontal diffusion must be integrated in dynamics solver



\elEPA Vision for Next Generation Model

Extend to global scales
 Single global mesh with seamless refinement to local scales
* Integrated chemistry, dynamics, physics

Three configurations of flexible systems:

* On-line global variable grid (e.g. MPAS, OLAM)
e Online regional (WRF-AQ or limited area MPAS)
e Offline regional (redesigned CMAQ)

Interoperability of as much model code as possible

e |-D AQ component coupled to met model
e Gas, aerosol, aqueous in modular box
e Modules for biogenic emissions, dry dep/bidi, wind-blown dust, photolysis, etc

Transport in met models for online systems (adv, diffusion)

e Ensure mass conservation
e Consistency with met parameters
e Minimize numerical diffusion and dispersion

MPAS



vEPA Example of OLAM-Chem

CcO

Note the coarse resolution in South America and much finer

resolution in North America Courtesy of Martin Otte



SEPA . MPAS

\ Mode for Prediction Across Scales

e Fully-compressible, non-hydrostatic dynamics

e Finite volume discretization on centroidal Voronoi (nominally hexagonal) grids
e Single global mesh with seamless refinement to local scales

e Latest version: MPAS 4.0 (released May 22, 2015)

MPAS uniform mesh (240 km) MPAS non-uniform mesh (92km — 25km)
Refinement over CONUS
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<#EPA . Evaluation of the transport in MPAS

* Implementation of several passive tracers in MPAS -
Hosein Foroutan
* Testing for global conservation of mass and tracers
* Test case:
— Simulations starting on September 17, 2013
— Uniform mesh (240 km)
— 41 vertical layers
— YSU PBL
— Noah LSM
— RRTMG radiation
— Kain-Fritsch convective clouds

— Tracerl : uniform initial distribution

tracer2

— Tracer2 : 2% of water vapor as an initial distribution . .
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Evaluation of the transport in MPAS

Change wrt the initial condition (%)
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Uniform mesh (240 km)

Change wrt the initial condition (%)

Non-uniform mesh (92 km — 25 km)
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Similar test case with non-uniform mesh
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<ZEPA Evaluation of the transport in MPAS
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Summary

® The Next Generation model will be a 1-D AQ component coupled to meteorology models

e Chemical tracers to be transported in meteorology model
e Meteorology models will include global model with grid refinement and limited area model

* Development need for integrated physics
e Off-line AQ model probably also needed

® Development of model science and algorithms will continue

e Master Chemical Mechanism
e Organic aerosols
e Emission process modeling — (dust, biogenic, bidirectional flux)

¢ Continue support and updates to CMAQ until NGAQM in ready
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