

Towards the next generation integrated meteorology and atmospheric chemistry model

Jonathan Pleim Atmospheric Model Development Branch USEPA

> **2016 Air Quality Modeling Research Needs Workshop** February 9-10, 2016

A brief history of AQ modeling

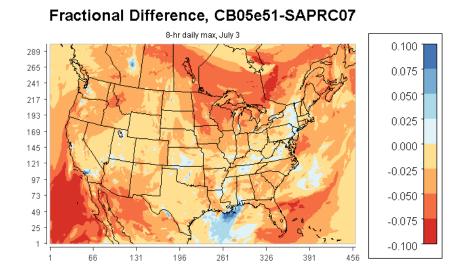
- Eulerian grid chemical transport models
 - Emission, advection, diffusion, chemistry, deposition
- First generation AQ models e.g. UAM, ROM
 - Gas-phase photochemistry
 - Single mixed layer with diurnal evolution, another layer aloft
 - Meteorology interpolated from observations
- Second generation e.g. RADM, ADOM, STEM
 - Multi-layer terrain following coordinates
 - Meteorology from prognostic model (e.g. MM4)
 - Include cloud processes convective transport, aq chem, wet dep
- Third generation e.g. WRF-Chem, WRF-CMAQ, GEM-MACH
 - Integrated or coupled Met Chem
 - Include aerosol with feedback to meteorology

⇒EPA

Why Next Gen Model?

- Much of the code dates back to the 1990's.
- Needs thorough redesign for:
- Greater efficiency, less buggy, more flexible, more extensible
- Need global multi scale system
- Need online or coupled Met-Chem system
- Need earth system linkages
- Need AQ-climate linkages
- Multiple configurations for different applications

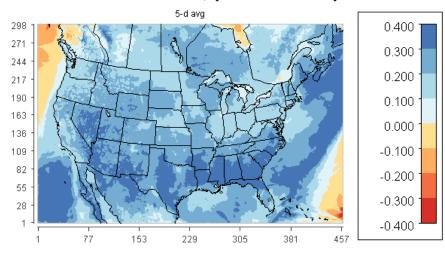
Model Development Needs

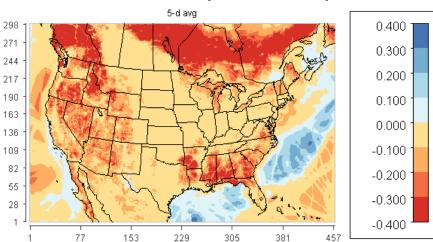

- Multi-scale global
- Integrated meteorology chemistry
- Improved integrated physics
 - Cloud processes (resolved and subgrid)
 - Land surface, dry deposition, bi-directional flux
 - Consistent radiation and photolysis cloud effects, aerosol effects, surface albedo
- Emission modeling
 - Wind-blown dust
 - Sea salt
 - Biogenics
- Closer integration of gas aerosol aqueous heterogeneous
 - Condensed chemical mechanisms derived from detailed mechanisms
 - Improved organic aerosol models

⇒EPA

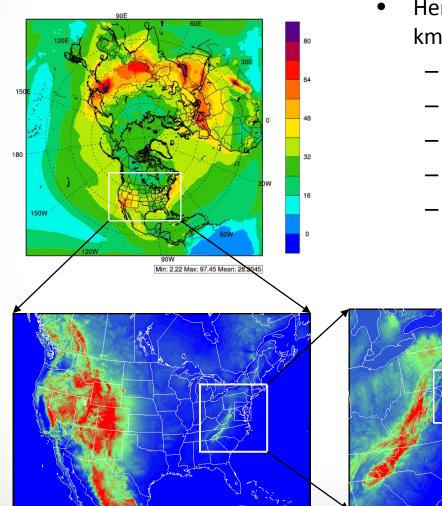
Challenges for chemical mechanisms in NGAQM

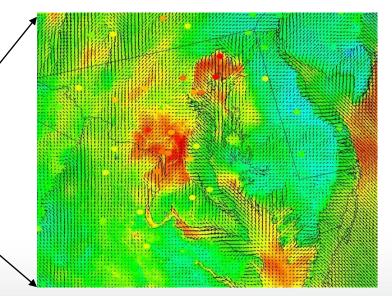
- Derive mechanisms from a robust, well-documented archive so that different versions of mechanisms are consistent; i.e. they all "start from the same place."
 - Reconcile the large differences in intermediates
 - Improve comparisons between simulations using different mechanisms
 - Strive for better consistency from global to regional to urban scales
- Semi-automate the mechanism derivation, condensation, and evaluation process
 - Increase the ability of the mechanisms to respond quickly to "new" pollutants from new energy sources, new technologies, changing state of the atmosphere, new toxics
 - Decrease the time between when new scientific information becomes available and when it is reflected in atmospheric chemistry (i.e. no more 8-year update cycles!).
- Better characterize the direct precursors to SOA formation (research in identifying, MCM to help us create them) and gas-aerosol-aqueous feedbacks (CAPRAM-type mechs?)
 - Increase confidence on the magnitude/direction of PM2.5 due to emission reductions


Example: Ozone predictions by CB05 and SAPRC


Similar ozone but large differences in intermediate species

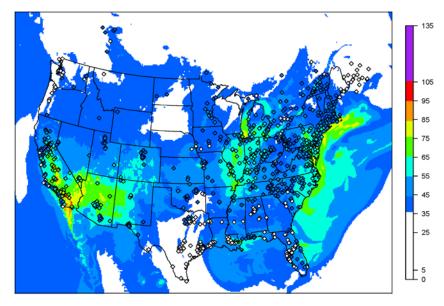
Courtesy of Deborah Luecken


Fractional diff NOz; (CB05-SAPRC)

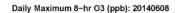

Fractional diff NOx; (CB05-SAPRC)

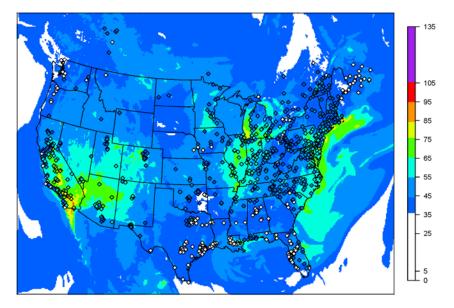
Current Multi-scale Modeling System

- Hemispheric model at 108 km provides LBCs for 12 km CONUS with nests to 4 km and 1 km
 - Multi-step process
 - Many opportunities for user mistakes
 - Interpolation errors on boundaries
 - Resolution discontinuities
 - No upscale feedback



Hemi as LBC for CONUS 12 km


WRF-CMAQ max 8-hr average ozone on June 8, 2014

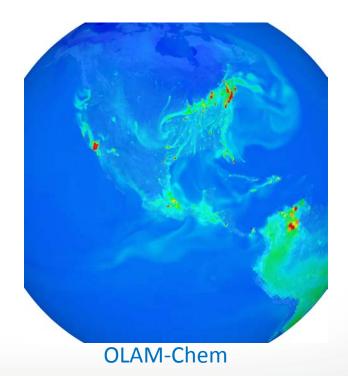

Daily Maximum 8-hr O3 (ppb): 20140608

EPA

Domain size: 299x459, Max=105.4 at (69, 96)

Domain size: 299x459, Max=103.8 at (69, 96)

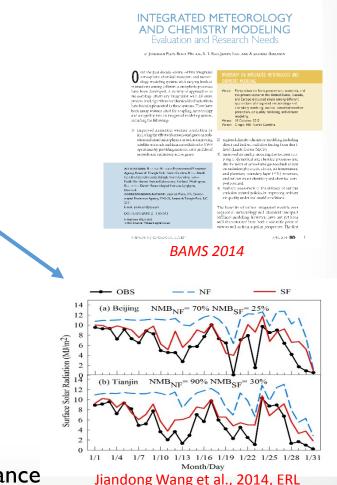
Hourly LBCs from WRF-CMAQ Hemispheric run


Monthly average LBCs from GEOS-Chem

Using 108 km hemispheric WRF-CMAQ improves ozone simulation especially in Texas and Canada compared to monthly average static LBCs derived from global model (GEOS-Chem)

Global Multiscale model

- Need AQ modeling at Global to Continental to Regional to Urban scales
 - Seamless multi-scale grid refinement (e.g OLAM, MPAS)
 - Minimize interpolation errors in transition from coarse to fine resolution
- Tighter AQ standards require global modeling:
 - Inter-continental transport (Ozone and PM)
 - Stratospheric ozone
 - Marine chemistry
- Earth system Linkages
 - Greenhouse gases
 - Nitrogen, carbon cycling
 - AQ Climate interactions
 - Eco, hydro linkages



Need for online Met-Chem model

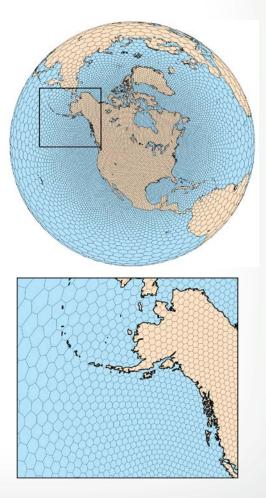
- Growing trend toward integrated Met-Chem modeling
 - Improve NWP radiative feedbacks and satellite data assimilation
 - Regional climate-chemistry modeling including SLCF
 - Improve AQ modeling

Sepa

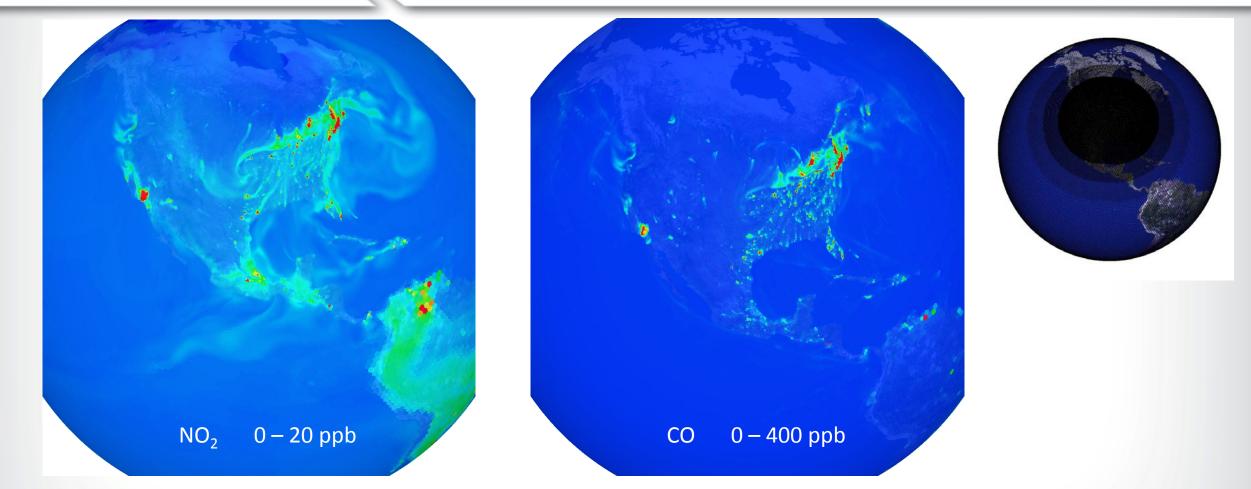
- Chem affects Met which affects AQ
 - Aerosol direct effects
 - Reduced SW ground \rightarrow reduces PBL \rightarrow greater concentrations
 - Aerosol indirect effects
 - Effects cloud cover, COD, radiative forcing, precipitation
 - Effects propagate through AQ
 - Gaseous direct effects on LW
 - Ozone, methane, N₂O, etc
 - AQ effects on land surface
 - Ozone damages stomatal function which affects:
 - Transpiration, CO₂ uptake, dry deposition
 - CO₂ changes, including regulatory controls, affect stomatal conductance

SEPA

Integrated Met-Chem modeling


High temporal coupling (data exchange frequency > once per hour)

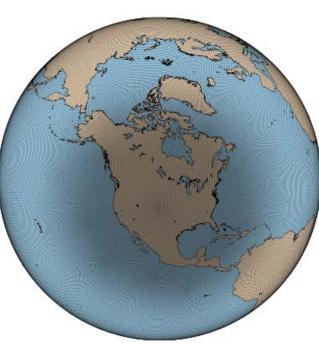
- Better resolve high-frequency meteorological dynamics
 - WS,WD changes, PBL height variations, cloud formation, rainfall
- Affects chemical transport, transformation, and removal at high spatial resolution
- More consistent dynamical, physical, and numerical modeling
 - More constant cloud convective transport of chemistry and met
 - Closer integration of cloud microphysics and aqueous chemistry
 - More consistent advection and diffusion
- On-line chemistry necessary for global models with non-uniform, refining grid meshes (e.g. OLAM, MPAS)
 - Advection and horizontal diffusion must be integrated in dynamics solver

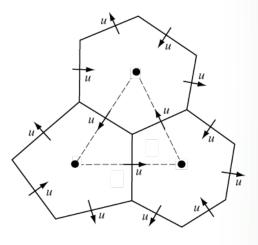

Vision for Next Generation Model

- Extend to global scales
 - Single global mesh with seamless refinement to local scales
 - Integrated chemistry, dynamics, physics
- Three configurations of flexible systems:
 - On-line global variable grid (e.g. MPAS, OLAM)
 - Online regional (WRF-AQ or limited area MPAS)
 - Offline regional (redesigned CMAQ)
- Interoperability of as much model code as possible
 - I-D AQ component coupled to met model
 - Gas, aerosol, aqueous in modular box
 - Modules for biogenic emissions, dry dep/bidi, wind-blown dust, photolysis, etc
- Transport in met models for online systems (adv, diffusion)
 - Ensure mass conservation
 - Consistency with met parameters
 - Minimize numerical diffusion and dispersion

MPAS

Example of OLAM-Chem

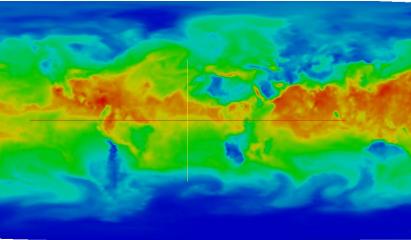

 Note the coarse resolution in South America and much finer resolution in North America
Courtesy of Martin Otte


€PA

- Fully-compressible, non-hydrostatic dynamics
- Finite volume discretization on centroidal Voronoi (nominally hexagonal) grids
- Single global mesh with seamless refinement to local scales
- Latest version: MPAS 4.0 (released May 22, 2015)

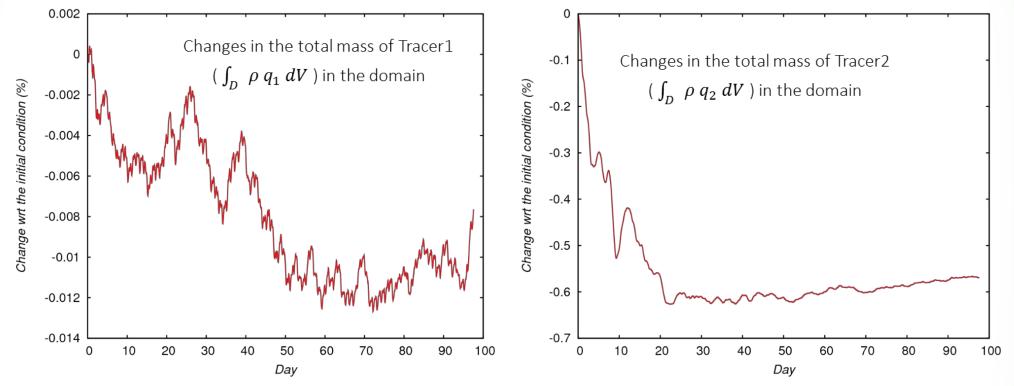
MPAS uniform mesh (240 km)

MPAS non-uniform mesh (92km – 25km) Refinement over CONUS


Evaluation of the transport in MPAS

- Implementation of several passive tracers in MPAS *Hosein Foroutan*
- Testing for global conservation of mass and tracers
- Test case:
 - Simulations starting on September 17, 2013
 - Uniform mesh (240 km)
 - 41 vertical layers
 - YSU PBL

EPA

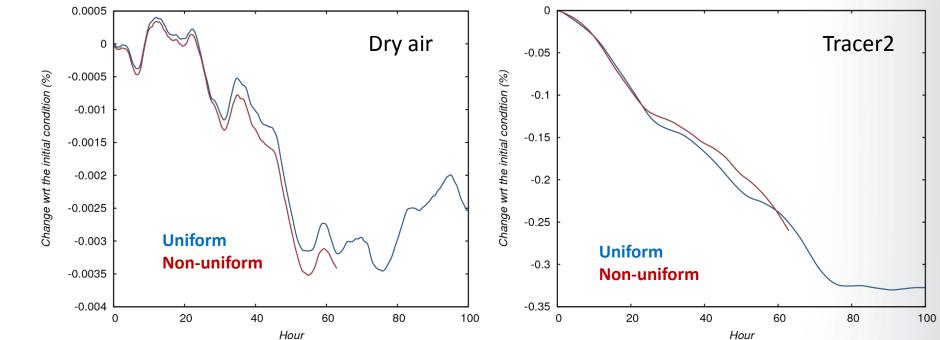

- Noah LSM
- RRTMG radiation
- Kain-Fritsch convective clouds
- Tracer1 : uniform initial distribution
- Tracer2 : 2% of water vapor as an initial distribution

tracer2

Evaluation of the transport in MPAS

• Change in tracer 1 is identical to total mass of dry air

SEPA

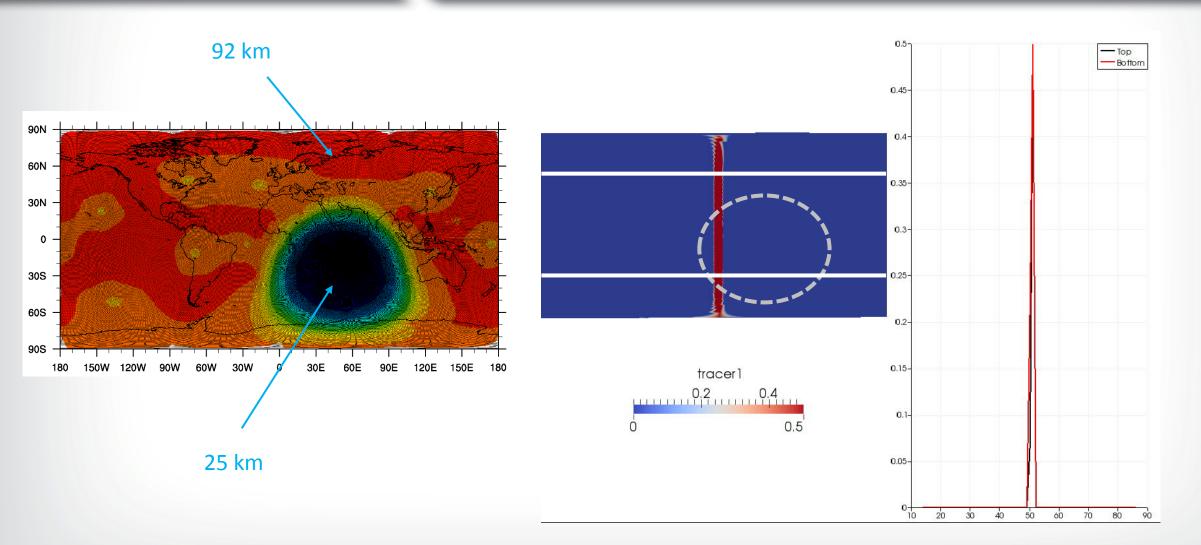

- Consistency between transport of the dry air and tracers
- Acceptable conservation of mass of the dry air and tracers

(Implemented different schemes for horizontal transport but no improvement was seen)

Set EPA

Evaluation of the transport in MPAS

• Similar test case with non-uniform mesh



Uniform mesh (240 km)

Non-uniform mesh (92 km – 25 km)

Evaluation of the transport in MPAS

Set EPA

€PA

Summary

- The Next Generation model will be a I-D AQ component coupled to meteorology models
 - Chemical tracers to be transported in meteorology model
 - Meteorology models will include global model with grid refinement and limited area model
 - Development need for integrated physics
 - Off-line AQ model probably also needed
- Development of model science and algorithms will continue
 - Master Chemical Mechanism
 - Organic aerosols
 - Emission process modeling (dust, biogenic, bidirectional flux)
- Continue support and updates to CMAQ until NGAQM in ready