Evaluation of New Mixed Oxides for Use as Sulfur Tolerant Exhaust Gas Catalysts **Second Annual Report (1 June 1999 – 30 May 2000)** to ## The Coordinating Research Council, Incorporated from # Julie L. d'Itri University of Pittsburgh ## **Progress Summary** The sulfur tolerance of CeO_2 and CeO_2 - ZrO_2 (75% mole of CeO_2) toward Co oxidation has been investigated. The presence of SO_2 leads to loss of CO oxidation activity of both CeO_2 and CeO_2 - ZrO_2 . However, the deactivation of CeO_2 - ZrO_2 is less severe. Surface characterization of the SO_2 treated oxides revealed that both materials had a lower surface area, presumably due to sulfation, than the samples that were not exposed to SO_2 . XRD results, in agreement with EDX sulfur measurements, indicate that the sulfation of both samples is probably limited to the surface. Morphological changes in CeO_2 resulted from increasing time and temperature of exposure to SO_2 , crystallite size growth were observed. The CeO_2 - ZrO_2 was more resistant to the morphological changes under SO_2 containing medium and maintained its initial crystallite size at higher temperatures. #### Introduction Much attention has been focused recently on the redox behavior of CeO₂ under conditions relevant to the performance of the TWC. Studies have shown that CeO₂ possesses poor thermal stability under redox conditions at temperatures above 1000°C leading to a loss in its OSC.⁽¹⁾ Studies of CeO₂ sulfation in the presence and absence of a noble metal suggest that CeO₂ readily forms sulfate compounds. Both, surface and bulk-like sulfate species have been identified at temperatures above 400°C using IR and Raman spectroscopy.⁽²⁾ Moreover, sulfation is suggested to lead to a drastic change in the redox properties of CeO₂.⁽³⁾ Research has focused on improving the stability of CeO₂ by incorporation of a second oxide, typically ZrO₂, in the CeO₂ lattice. Recent work has shown that CeO₂- ZrO₂ mixed oxides, in general, have improved OSC and thermal stability than pure CeO₂, although the properties of the mixed oxide materials depend strongly on the ZrO₂ concentration and the method of preparation.⁽⁴⁻⁶⁾ The effect of sulfur on the properties of these mixed oxide materials is not well understood. In the present investigation, we have studied the effect of SO_2 on the physical properties and oxidation activity of CeO_2 and CeO_2 - ZrO_2 (3:1) mixed oxide. The influence of sulfate formation on the availability of surface oxygen for the catalytic CO oxidation is compared for the two materials. Further, the "SO₂-induced" destabilization of the crystal structure of both materials is investigated and correlated to the oxidation performance. ### **Experimental** #### Materials Two catalysts, CeO_2 and CeO_2 - ZrO_2 , were used in this investigation. Both CeO_2 (> 99.9%) and CeO_2 - ZrO_2 (with Ce to Zr atom ratio of 3:1) were provided by a commercial source. Both samples were aged by calcination in air at 550 °C for 11 h prior to use and are designated as "fresh" samples in the remainder of the paper. The 4% CO (Liquid Carbonic), 10% O_2 (Praxair), 104 ppm SO_2 (Matheson) in N_2 and N_2 (Praxair, > 99.99%) were used without further purification. ### Characterization The surface area and porosity of the catalyst samples were determined by N_2 physisorption according to the BET method using a volumetric sorption analyzer (model ASAP 2010, Micromeritics). X-ray diffraction (XRD) patterns of the samples were obtained with a Philips XPERT diffractometer using a standard Ni-filtered Cu $K\alpha$ radiation source operating at 40 kV and 30 mA. All measurements were made in the thin film mode with a scan rate of 0.08 $2\theta^{\rm o}/\rm s$ #### Catalytic Experiments The catalytic experiments were conducted at atmospheric pressure in a flow reaction system. The system was constructed of stainless steel tubing equipped with a 4 mm ID quartz U-tube reactor. The reactor contained a 10 mm ID section in which the catalyst was supported on a quartz frit. The reaction gases (CO, O_2 , SO_2 and N_2) were mixed prior to the reactor zone and the desired flow rate of each gas was maintained within \pm 1 cm³/min using mass flow controllers (Brooks model 5850E). An Omega CN 2011 programmable temperature controller was used to maintain the reaction temperature within \pm 1°C, measured by a K-type thermocouple placed inside a quartz thermocouple well (3 mm OD) in direct contact with the catalyst bed. The product stream was analyzed by a Nicolet 560 FT-IR equipped with a 2-meter length gas cell (Nicolet) maintained at 165°C by the means of a temperature controller (DigiSense). The gas phase CO and CO₂ concentrations were measured directly using the OMNIC software after initial calibration. The catalytic CO oxidation with and without SO_2 in the reaction stream was investigated under three different sets of experimental conditions (Table 1). Prior to the CO oxidation reaction, the catalyst samples were pretreated under flowing $10\%~O_2$ or a mixture of $40~ppm~SO_2$ and $6\%~O_2$ (balance N_2 , total flow rate = $30~cm^3/min$) by heating from $25^{\circ}C$ to $600^{\circ}C$ at the rate of $4.8^{\circ}C/min$ and holding at $600^{\circ}C$ for 2 h before cooling to $25^{\circ}C$ in flowing N_2 . For all experiments, 75 mg of catalyst was used and the standard reaction feed (for case 1 and 3) consisted of 1%~CO and $2\%~O_2$ in N_2 with a total flow rate of $112.5~cm^3/min$. For case 2 experiments, 20 ppm SO_2 was added to the feed stream while the total flowrate was held constant. The reaction temperature was varied from 300°C to 600°C at 100°C intervals. After allowing 10 min to reach steady state, 3 effluent samples were analyzed at 17 min intervals at each temperature. The extent of reaction reversibility was checked for all runs after reaching 600°C, by decreasing the reaction temperature stepwise to 300°C and comparing the activity to the activity initially measured. Table 1 Sample pretreatment and reaction conditions for CeO₂ and CeO₂-ZrO₂ samples. | Sample
Type | Pretreatment Conditions | Reaction Conditions | | | |----------------|--|---|--|--| | 1 | 10% O ₂ in N ₂ at 600°C | 1% CO + 2% O ₂ in N ₂ | | | | 2 | 10% O ₂ in N ₂ at 600°C | 1% CO + 2% O_2 + 20 ppm SO_2 in $$N_2$$ | | | | 3 | $40 \text{ ppm SO}_2 + 6\% \text{ O}_2 \text{ in N}_2 \text{ at } 600^{\circ}\text{C}$ | $1\% \text{ CO} + 2\% \text{ O}_2 \text{ in N}_2$ | | | #### **Results** The conversion of CO to CO_2 catalyzed by CeO_2 and CeO_2 - ZrO_2 in the absence of SO_2 (Table 1, case 1) is shown in Figure 1. As seen in Figure 1A, for CeO_2 , the CO conversion was 18% at 300°C, increased to ~ 100% at 500°C and remained a ~ 100% when the temperature was increased to 600° C. Furthermore, the CO oxidation behavior was fully reversible. The measured values of the conversion of CO as the temperature was decreased from 600° C back to 300° C were the same as those measured when the temperature was increased. The behavior of CeO_2 - ZrO_2 was similar to CeO_2 under these conditions (Figure 1B). Conversion of CO reached 100 % at 500° C and was again fully reversible when the temperature was decreased from 600° C to 300° C. Figure 2A shows the CO conversion catalyzed by CeO_2 in the presence of 20 ppm SO_2 (Table 1, case 2). The initial CO conversion at $300^{\circ}C$ was 18% but at temperatures higher than $300^{\circ}C$, CO conversion was lower in comparison to the value measured for the $CO+O_2$ reaction in the absence of SO_2 (see Figure 1A). The CO conversion increased from 18% at $300^{\circ}C$ to 85% at $500^{\circ}C$. However, when the temperature was further increased to $600^{\circ}C$ the CO conversion dropped to $\sim 50\%$. The catalyst deactivation was permanent, as the measured CO conversion values were lower when the reaction temperature was decreased than when the temperature was increased. At a final test temperature of $300^{\circ}C$ the CO conversion was less than 10%. The activity behavior of CeO_2 - ZrO_2 under similar conditions was different than CeO_2 . With the CeO_2 - ZrO_2 , the initial CO conversion increased from 18% at 300°C to 95% at 500°C. Increasing the temperature to 600°C did not result in a substantial decrease in activity as in the case of CeO_2 . The initial CO conversion at 600°C was 95% Figure 1A. CO conversion as a function of temperature for the reaction of 1% CO \pm 2% O_2 over CeO $_2$. Figure 1B. CO conversion as a function of temperature for the reaction of 1% CO \pm 2% O $_2$ over CeO $_2$ -ZrO $_2$. Figure 2A. CO conversion as a function of temperature for the reaction of 1% CO + 2% O_2 + 20 ppm SO_2 over CeO_2 . Figure 2B. CO conversion as a function of temperature for the reaction of 1% CO + 2% O_2 + 20 ppm SO_2 over CeO_2 - ZrO_2 . and decreased to 88% in 40 min. Lowering the temperature revealed that the catalyst irreversibly deactivated; the CO conversion values were $\sim 20\%$ lower when the temperature was decreased as compared to when the temperature was increased. However, this decrease in activity was less than when the CeO_2 catalyst was used. Further information on the SO_2 tolerance of CeO_2 and CeO_2 - ZrO_2 was obtained by pre-sulfation of the samples as described in Table 1, case 3. Even without SO_2 in the reactant stream, the sulfated CeO_2 possessed very low activity for CO oxidation at all temperatures (Figure 3A). The CO conversion was negligible below $500^{\circ}C$ and the maximum CO conversion reached at $600^{\circ}C$ was only 6% (Figure 3A). The CO oxidation activity of CeO_2 - ZrO_2 was also lower compared to the non pre-sulfated samples (Figure 3B). The initial CO conversion at $300^{\circ}C$ for this sample was 3% and an increase in temperature to $600^{\circ}C$ resulted in a maximum CO conversion of 48%. Thus, compared to the pre-sulfated CeO_2 , the pre-sulfated CeO_2 - ZrO_2 is approximately 8 times more active at $600^{\circ}C$. The X-ray diffraction patterns for the CeO_2 catalyst samples after the different treatments are shown in Figure 4A. Fresh CeO_2 (curve a) displayed an XRD pattern that corresponded to the cubic fluorite structure of pure CeO_2 with characteristic intense peaks for the 111, 200, 220 and 311 faces. The XRD peaks were sufficiently broad that it was possible to use the Debye-Scherrer equation to calculate the average crystallite size (Table 2). The peak widths at half maxima for XRD lines at 29° and 48.5° (2?) were used for the calculations. Fresh CeO_2 (curve a in Figure 4A) had an average crystallite size of 9.7 nm. There was no change in the XRD pattern of the sample (Table 1, case 1) after exposure to the $CO+O_2$ oxidation reaction up to $600^\circ C$ (curve b in Figure 4a). However, exposure of the CeO_2 sample to $CO+O_2+SO_2$ reaction (Table 1, case 2) at $600^\circ C$ (curve c, Figure 4A) resulted in a decrease in the X-ray line width for all the major lines, while the band position remained unchanged. The calculated crystallite size for this sample from XRD data was 23.3 nm. A similar narrowing of the XRD lines was observed (curve d, Figure 4A) for the CeO_2 sample after a sulfation pretreatment at $600^\circ C$ (Table 1, case 3) resulting in a crystallite size of 26.7 nm. The XRD patterns of the fresh and reaction-exposed CeO_2 - ZrO_2 are shown in Figure 4B. The fresh CeO_2 - ZrO_2 displayed a pattern similar to CeO_2 (curve a). No additional lines attributable to any phase of ZrO_2 were detected. However, the XRD lines displayed a greater degree of peak asymmetry as compared to pure CeO_2 (Figure 4A, curve a). Treatment of the CeO_2 - ZrO_2 sample with $CO+O_2$ (Figure 4B, curve b) or $CO+O_2+SO_2$ (curve c) did not result in a change in the XRD pattern obtained as compared to the fresh CeO_2 - ZrO_2 . Similarly, pre-sulfation of the CeO_2 - ZrO_2 at $600^{\circ}C$ (curve d) resulted in no significant change in its XRD pattern. The crystallite sizes of the samples as calculated from the XRD data were in the range of 8.7-9.2 nm (Table 2). The surface area, pore size, and pore volume, as measured by N_2 adsorption using the BET method are, shown in Table 2. The surface area of the fresh CeO_2 was 140.7 m²/g and the average pore diameter was 56 Å. Nitrogen adsorption carried out in the pressure range of $1e^{-5} - 0.1$ P/P₀ indicated that all samples used for this study had negligible microporosity. The contribution of pores less than 20Å to the total pore Figure 3A. CO conversion as a function of temperature for the reaction of 1% CO \pm 2% O $_2$ over CeO $_2$ (presulfated at 600°C for 2 h). Figure 3B. CO conversion as a function of temperature for the reaction of 1% CO \pm 2% O $_2$ over CeO $_2$ -ZrO $_2$ (pre-sulfated at 600^{o} C for 2 h). Figure 4A. XRD pattern of fresh CeO_2 (oxidized at $600^{\circ}C$) (a), and following $CO+O_2$ reaction up to $600^{\circ}C$ (b), following $CO+O_2+SO_2$ reaction up to $600^{\circ}C$ (c) and following sulfation in 40 ppm $SO_2+6\%$ O_2 at $600^{\circ}C$ (d). Figure 4B. XRD pattern of fresh CeO_2 - ZrO_2 (oxidized at $600^{\circ}C$) (a), and following $CO+O_2$ reaction up to $600^{\circ}C$ (b), following $CO+O_2+SO_2$ reaction up to $600^{\circ}C$ (c) and following sulfation in 40 ppm $SO_2+6\%$ O_2 at $600^{\circ}C$ (d). Table 2. BET surface area, pore volume, pore diameter and crystallite size for CeO₂ and CeO₂-ZrO₂ samples. | Sample | Pretreatment | | Pore Volume* | Pore | Crystallite | |------------------------------------|---|---------|--------------|----------|-------------| | | | m^2/g | cc/g | Diameter | Size** | | | | | | Å | nm | | | | | | | | | CeO ₂ | None | 140.7 | 0.198 | 56.2 | 9.7 | | - | | | 0.27 | | | | CeO_2 | CO+O ₂ reaction | 138.1 | 0.193 | 56.2 | 10 | | CeO_2 | CO+O ₂ +SO ₂ reaction | 99.4 | 0.17 | 64.4 | 23.3 | | CeO_2 | Sulfation at 600°C | 75.8 | 0.194 | 102.2 | 26.7 | | CeO ₂ -ZrO ₂ | None | 108.9 | 0.282 | 101.2 | 9.2 | | CeO_2 - ZrO_2 | CO+O ₂ reaction | 101.9 | 0.262 | 102.8 | 8.7 | | CeO_2 - ZrO_2 | CO+O ₂ +SO ₂ reaction | 83.7 | 0.118 | 113.8 | 8.8 | | CeO_2 - ZrO_2 | Sulfation at 600°C | 89.6 | 0.261 | 116.4 | 9.1 | | | | | | | | ^{*} Macropore volume calculated from N₂ adsorption data. volume was less than 1% for all samples. The reaction of only $CO+O_2$ at temperatures up to $600^{\circ}C$ (Table 1, case 1) did not change the surface area or pore size of the material. Exposure of the CeO_2 to the CO oxidation reaction in the presence of SO_2 (Table 1, case 2) resulted in a decrease in its surface area by 30% and an increase in the average pore size from 56 Å to 68 Å. Pre-sulfation of the sample by using a SO_2+O_2 mixture at $600^{\circ}C$ (Table 1, case 3) resulted in an even more severe effect on surface area and pore size. The CeO_2 - ZrO_2 showed similar to CeO_2 behavior following the $CO+O_2$ reaction at $600^{\circ}C$. Exposure to SO_2 also resulted in changes in its surface area and pore size. As seen in Table 2, the surface area of the CeO_2 - ZrO_2 samples decreased by 46% and the pore size increased from 56 to 102 Å as a result of the $CO+O_2+SO_2$ reaction at $600^{\circ}C$. A similar effect was observed for CeO_2 - ZrO_2 samples subjected to pre-sulfation at $600^{\circ}C$. Scanning electron micrographs of the CeO_2 and CeO_2 - ZrO_2 samples are shown in Figures 5 and 6. Figure 5A and B shows the morphological difference of the fresh CeO_2 and following sulfation at $600^{\circ}C$. It is evident from the micrograph that crystallite growth takes place confirming the XRD analysis. The crystallite sizes measured from the SEM micrographs were <10 nm for fresh CeO_2 and ~28 nm for sulfated CeO_2 . These values agree well with the calculated XRD crystallite sizes (Table 2). The SEM micrographs of fresh and sulfated CeO_2 - ZrO_2 are shown in Figure 6. Crystallite sizes for ^{**}Average of line broadening data for the 111 and 220 XRD lines using the Scherrer equation. Figure 5A. Scanning electron micrograph showing surface details of a fresh CeO_2 catalyst sample. Figure 5B. Scanning electron micrograph showing surface features of a CeO_2 particle following treatment with a flowing mixture of 40 ppm SO_2 + 6% O_2 at $600^{\circ}C$ for 2 h. Figure 6A. Scanning electron micrograph showing surface details of a fresh $\text{CeO}_2\text{-}\text{ZrO}_2$ catalyst sample. Figure 6B. Scanning electron micrograph showing surface features of a CeO_2 - ZrO_2 particle following treatment with a flowing mixture of 40 ppm SO_2 + 6% O_2 at $600^{\circ}C$ for 2 h. Table 3. Sample compositions determined by EDX (atom percentage calculation excludes concentration of oxygen). | Sample | Pretreatment | Atomic Percent | | | | |------------------------------------|---|----------------|------|-----|--| | | | Ce | Zr | S | | | CeO_2 | CO+O ₂ reaction | 100 | 0 | 0 | | | CeO_2 | CO+O ₂ +SO ₂ reaction | 96.1 | 0 | 3.9 | | | CeO ₂ -ZrO ₂ | CO+O ₂ reaction | 76.4 | 23.6 | 0 | | | CeO ₂ -ZrO ₂ | CO+O ₂ +SO ₂ reaction | 72.2 | 21.9 | 5.9 | | particles in both Figure 6A and B were ~12 nm, again in agreement with the XRD data for CeO₂-ZrO₂. Energy dispersive X-ray analysis (EDX) was employed to determine the sulfur content. Table 3 shows the relative atomic concentrations of Ce, Zr and S for the CeO₂ and CeO₂-ZrO₂ catalysts. The values shown in Table 3 were calculated using an EDAX software that averaged the signal from several thousand particles. After treatment with the sulfating gas mixture at 600°C for 2 h, both CeO₂ and CeO₂-ZrO₂ had sulfur concentrations less than 6% (note oxygen is not included in this estimate) suggesting that most of the sulfate species might be present on the surface. More importantly, the concentration of sulfur in both materials was comparable. Although there is no information regarding the stoichiometry of the sulfate species in the present case, it is reasonable to assume that the extent of sulfation in both materials was similar. Therefore, the sintering of CeO₂ particles on exposure to SO₂ cannot be explained by the extent of sulfation alone. ### **Summary of Results** The presence of SO₂ leads to loss of CO oxidation activity of CeO₂ and CeO₂-ZrO₂. The deactivation of CeO₂-ZrO₂ is less severe compared to that of CeO₂. Surface characterization of the SO₂ treated oxides revealed that both materials were susceptible to surface area loss, presumably due to sulfation. XRD results, in agreement with EDX sulfur measurements, indicate that the sulfation of both samples is probably limited to the surface. Morphological changes in CeO₂ with increasing time and temperature of exposure to SO₂ take place. They are manifested by crystallite size growth caused by grain sintering as shown by SEM. The CeO₂- ZrO₂ resisted morphological changes and maintained the crystallite size at high temperatures in the presence of SO₂. This "sulfur-resistance" of CeO₂- ZrO₂ is probably responsible for its higher CO oxidation activity compared to CeO₂. ## Research Plans for the Year 3 of the Program The investigation will be extended by studying the sulfur tolerance of the Pd/CeO₂ and Pd/CeO₂-ZrO₂ catalysts. Kinetics studies with reaction mixtures modeling real automotive exhausts will be coupled with Infrared and Raman spectroscopic investigations. In specific, we plan to - Evaluate the sulfur tolerance of 1% Pd/CeO₂ and 1% Pd/CeO₂-ZrO₂ catalysts for TWC performance under lean, stoichiometric and cyclic conditions. - Study CO adsorption on CeO₂ and Pd/CeO₂ by Infrared and Raman Spectroscopy for ascertaining the role of metal and oxide species in the redox behavior of CeO₂. - Study in the collaboration with Prof. R. J. Gorte the transformation the surface species of sulfated ceria under conditions of OSC measurements by Raman spectroscopy to evaluate the impact of redox transitions of S atoms on measured OSC of the material. ### References - (1) Ozawa, M., and Loong, C.K., "In-situ X ray and Neutron Powder Diffraction Studies of Redox Behavior in CeO₂-containing Oxide Catalysts," <u>Catalysis Today</u> Vol. 50 (1999), pp. 329-342. - (2) Twu, J., Chuang, C.J., Chang, H.I., Yang, C.H., and Chen, K.H., "Raman Spectroscopic Studies of Ceria Sulfation," <u>Applied Catalysis B: Environmental</u> Vol. 12 (1997), pp. 309-324. - (3) Ziolek, M., Kujawa, J., Saur, O., Aboulayt, A., and Lavalley, J.C., "Influence of Sulfur Dioxide Adsorption on Surface Properties of Metal Oxides," <u>Journal of</u> <u>Molecular Catalysis A: Chemical Vol. 112 (1996)</u>, pp. 125-132. - (4) Jen, H.-W., Graham, G.W., Chun, W., McCabe, R.W., Cuif, J.P., Deutsch S.E., and Touret, O., "Characterization of Model Automotive Exhaust Catalysts: Pd on Ceria and Ceria-Zirconia Supports," <u>Catalysis Today</u> Vol. 50 (1999), pp. 309-328. - (5) Hori, C.E., Brenner, A., Simon Ng, K.Y., Rahmoeller, K.M., and Belton, D., "Studies of the Oxygen Release Reaction in the Platinum-Ceria-Zirconia System," <u>Catalysis Today</u> vol. 50 (1999), pp. 299-308. - Vlaic, G., Di Monte, R., Fornasiero, P., Fonda, E., Kaspar, J., and Graziani M., "The CeO₂-ZrO₂ System: Redox Properties and Structural Relationships," <u>Catalysis and Automotive Pollution Control IV: Studies in Surface Science and Catalysis</u> Vol. 116 (1998), pp. 185-195.