Final Report:

The Effect of Fuel Sulfur on NH₃ and Other Emissions from 2000-2001 Model Year Vehicles

CRC Project No. E-60

Prepared for:

Coordinating Research Council 3650 Mansell Road, Suite 140 Alpharetta, GA 30022

and

CONCAWE

(the oil companies' european organization for environment, health, and safety)

Submitted: May 2003

Thomas D. Durbin, Principal Investigator J. Wayne Miller, Co-Investigator John T. Pisano Theodore Younglove Claudia G. Sauer Sam H. Rhee Tao Huai College of Engineering-Center for Environmental Research and Technology University of California Riverside, CA 92521 (909) 781-5797 (909) 781-5790 fax Gervase I. MacKay, Collaborator UNISEARCH Associates Inc. 96 Bradwick Drive Concord, Ontario, Canada, L4K 1K8

02-VE-59971-E60-04

Table of Contents

Exec	cutive S	ummary	vi
1.	Intro		
2.	Expe	erimental Procedures	
	2.1	Test Vehicles	
	2.2	Fuels and Lubricants	
	2.3	Catalyst and Oxygen Sensor Aging	
	2.4	Test Sequence	
	2.5	Vehicle Emissions Measurements	
	2.6	Statistical Analysis	9
3.	Resu	ılts	
	3.1	FTP Emissions Results	
	3.2	US06 Emissions Results	
	3.3	European Vehicle Emissions Results	
4.	Sum	mary and Conclusions	
5.		nowledgments	
6.		rences	

Appendices

- Appendix A. Properties of the Test Fuel
- Appendix B. Description of Catalyst Aging
- Appendix C. Sulfur Removal Protocol
- Appendix D. Processing of the TDL Signal
- Appendix E. Detailed FTP Emission Results
- Appendix F. FTP Statistical Analysis Results
- Appendix G. THC Emissions Results
- Appendix H. Detailed US06 Emission Results
- Appendix I. US06 Statistical Analysis Results
- Appendix J. Detailed NEDC Emission Results

List of Figures

Figure 1. Flowchart for CRC Project No. E-60	4
Figure 2. Configuration of the TDL Sampling System	7
Figure 3. Comparison of FTIR and TDL NH ₃ Measurements	10
Figure 4. Fleet Average FTP Emissions	15
Figure 5. FTP Individual Vehicle NH ₃ Emissions	16
Figure 6. NH ₃ Interaction Plot for Vehicle by Catalyst Effects	17
Figure 7. NH ₃ Emissions by Bag	18
Figure 8. Real-Time NH ₃ Emissions over the FTP for a ULEV Light-Duty Truck	19
Figure 9. FTP Individual Vehicle NMHC Emissions	21
Figure 10. NMHC Emissions by Bag	22
Figure 11. FTP Individual Vehicle CO Emissions	24
Figure 12. CO Emissions by Bag	25
Figure 13. FTP Individual Vehicle NO _x Emissions	27
Figure 14. NO _x Emissions by Bag	28
Figure 15. FTP Individual Vehicle N ₂ O Emissions	31
Figure 16. N ₂ O Emissions by Bag	32
Figure 17. Real-Time N ₂ O Emissions over the FTP for a ULEV Light-Duty Truck	33
Figure 18. Fleet Average US06 Emissions	35
Figure 19. Real-Time NH ₃ Emissions over the US06 for a ULEV Light-Duty Truck	36
Figure 20. US06 Individual Vehicle NH ₃ Emissions	37
Figure 21. US06 Individual Vehicle NMHC Emissions	39
Figure 22. US06 Individual Vehicle CO Emissions	41
Figure 23. US06 Individual Vehicle NO _x Emissions	43
Figure 24. US06 Individual Vehicle N ₂ O Emissions	45
Figure 25. Renault Megane NEDC Emissions Results	47
Figure 26. VW Bora NEDC Emissions Results	48
Figure 27. Renault Megane ECE Emissions Results	49
Figure 28. VW Bora ECE Emissions Results	50
Figure 29. Renault Megane EUDC Emissions Results	51
Figure 30. VW Bora EUDC Emissions Results	52

List of Tables

Table 1. Description of Test Vehicles	2
Table 2. FTP NH3 Emissions Results	12
Table 3. FTP NH ₃ Emissions Results for Individual Bags	13
Table 4. FTP NMHC Emissions Results	20
Table 5. FTP NMHC Emissions Results for Individual Bags	20
Table 6. FTP CO Emissions Results	23
Table 7. FTP CO Emissions Results for Individual Bags	23
Table 8. FTP NOx Emissions Results	26
Table 9. FTP NOx Emissions Results for Individual Bags	26
Table 10. FTP N2O Emissions Results	29
Table 11. FTP N ₂ O Emissions Results for Individual Bags	30
Table 12. US06 NH3 Emissions Results	34
Table 13. US06 NMHC Emissions Results	38
Table 14. US06 CO Emissions Results	40
Table 15. US06 NOx Emissions Results	42
Table 16. US06 N2O Emissions Results	44
Table 17. FTP Emissions Results Including European Vehicles	53
Table 18. US06 Emissions Results Including European Vehicles	53

List of Appendices

Appendix A. Properties of the Test Fuel	
Appendix B. Description of Catalyst Aging	
Appendix C. Sulfur Removal Protocol	
Appendix D. Processing of the TDL Signal	
Appendix E. Detailed FTP Emission Results	69
Appendix F. FTP Statistical Analysis Results	
Appendix G. THC Emissions Results	91
Appendix H. Detailed US06 Emissions Results	
Appendix I. US06 Statistical Analysis Results	
Appendix J. Detailed NEDC Emissions Results	

Disclaimer

This report was prepared by the University of California-Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) as an account of work sponsored by the Coordinating Research Council (CRC) and CONCAWE. Neither the CRC, members of the CRC, CONCAWE, CE-CERT, nor any person acting on their behalf: (1) makes any warranty, express or implied, with respect to the use of any information, apparatus, method, or process disclosed in this report, or (2) assumes any liabilities with respect to use of, inability to use, or damages resulting from the use or inability to use, any information, apparatus, method, or process disclosed in this report.

Executive Summary

The reduction of fuel sulfur levels in gasoline is considered to be an important factor in attaining present and future vehicle emissions standards and air quality goals. Numerous studies have shown that sulfur reduces the efficiency of the catalytic converter and increases regulated emissions. Although catalysts reduce most emissions, some pollutants, such as ammonia (NH₃), can be formed over the catalyst surface. Since NH₃ is primarily formed on the catalyst surface, it has been suggested that sulfur could inhibit NH₃ formation on the catalyst by inhibiting reaction sites for NH₃ formation, leading to increases in NH₃ emissions as fuel sulfur levels are decreased.

To date, information about the effects on fuel sulfur on emissions such as NH₃ is very limited, especially for low emission vehicles representative of present and future vehicle technologies. For this study, the emissions impact of fuel sulfur and catalyst age was evaluated for 14 vehicles. The 14 vehicles included 12 California-certified Low-Emission Vehicles (LEV) to Super-Ultra-Low-Emission Vehicles (SULEV) vehicles and 2 European vehicles certified to Euro 3 standards. Each vehicle was evaluated with 3 fuels (5, 30, and 150 ppmw sulfur) and using asreceived and aged catalysts. Vehicles were tested on each fuel/catalyst configuration over the Federal Test Procedure (FTP) and US06 test cycles. The two European vehicles were also tested over the New European Driving Cycle (NEDC) on each of the fuel/catalyst configurations. For the primary analyses, the European vehicles were excluded from the data set since the European vehicles are certified to different limits and procedures.

In addition to making measurements of bag and modal regulated emissions, a tunable diode laser (TDL) was developed and successfully used to measure engine-out and tailpipe NH₃ in real-time. The TDL offers both the detection limits and the response time necessary to investigate low-level concentrations of NH₃ in vehicle exhaust. Additionally, the TDL has the important advantage that it can make measurements *in-situ* using raw exhaust gases. The combination of these advantages allows the measurement of highly time-resolved NH₃ emissions with sensitivity levels of better than 0.5 ppmv at two standard deviations, or minimum detection limits of roughly 0.5 mg/mi.

For the California-certified vehicles, NH_3 emissions over the FTP were generally lower than those of the regulated emissions. Fleet average FTP NH_3 emissions averaged between 14 and 21 mg/mi depending on the fuel/catalyst combination. Five of the test vehicles had NH_3 emissions below 5 mg/mi for most of the test configurations. Only 4 vehicles had NH_3 emissions over 20 mg/mi when averaged over all test configurations. Measurements of engine-out NH_3 emissions indicated that NH_3 emissions were formed primarily over the catalyst. The highest FTP NH_3 emissions were found during bag 1 of the FTP after catalyst light-off. NH_3 emissions over the US06 were considerably higher than those found for the FTP and were comparable with or greater than those of non-methane hydrocarbons (NMHC) and nitrogen oxides (NO_x) over the US06. Fuel sulfur effects on fleet average NH_3 were found to be statistically significant over the US06 cycle but not over the FTP. Fleet average NH_3 emissions over the US06 for the 150 ppm fuel were 27% higher than those for the 5 ppm and 12% higher than those for the 30 ppm fuel.

Catalyst aging effects on NH_3 emissions were found to be statistically significant for both the FTP and US06 cycles for NH_3 emissions, with higher emissions for the aged catalyst. Fleet average NH_3 emissions were 50% higher for the aged catalysts over the FTP and 17% higher for the aged catalysts over the US06. The interaction between vehicle and catalyst age effects was found to be statistically significant, however, for both the FTP and US06 cycles.

For the FTP, fleet average NO_x emissions were higher at a statistically significant level for the 150 ppm fuel compared with both the 5 and 30 ppm sulfur fuels, although the interaction between vehicle and fuel effects was also statistically significant. For fleet average NMHC, emissions were higher at statistically significant levels for the 150 ppm fuel compared with the 30 ppm fuel, although the magnitude of this fuel effect was small.

The effects of catalyst age were found to be statistically significant for fleet average CO emissions, with higher emissions observed for the aged catalysts.

Similar to NH_3 , the N_2O emissions over the FTP were generally lower than those of the regulated pollutants. The results showed there was a statistically significant increase in N_2O emissions for 150 ppm fuel compared to both the 30 and 5 ppm fuels. This trend is consistent with previous studies that have shown that higher N_2O emissions are generally observed for higher sulfur fuels. The highest N_2O emissions for the FTP were found in bag 1, as the catalyst was warming up to operational temperatures.

The effects of fuel sulfur on both fleet average NMHC and NO_x emissions were found to be statistically significant over the US06 cycle, although the interaction between vehicle and fuel effects was statistically significant for NMHC. A pair-wise comparison showed that fuels with 5, 30 and 150 ppm sulfur were all different from one another at a statistically significant level for both NO_x and NMHC emissions over the US06 cycle. The magnitude of the fuel sulfur effects over the US06 for NMHC and NO_x was also found to be relatively larger than that found for the FTP cycle. For fleet average CO emissions over the US06 cycle, only the differences between the 5 and 150 ppm fuels were found to be statistically significant at the 90% confidence level.

Catalyst effects over the US06 were found to be statistically significant for fleet average NMHC, CO, and NO_x emissions, with higher emissions for the aged catalyst. The vehicle by catalyst interaction was statistically significant, however, for both NMHC and CO emissions.

Fleet average N_2O emissions over the US06 were lower than those obtained over the FTP. N_2O emissions showed trends of higher emissions with increasing fuel sulfur level. Pair-wise comparisons showed that the 5, 30 and 150 ppm fuels were all different from each other for N_2O emissions over the US06 cycle at a statistically significant level.

European Vehicle Results

Overall, the fleet average FTP and US06 results with the inclusion of the European vehicles were very similar to those obtained with just the California-certified vehicles. Over the NEDC cycle, CO, NO_x and NH_3 for the Renault Megane were all found to be higher for the tests conducted on the aged catalyst in comparison with the as-received catalyst. For the VW Bora, fuel sulfur and catalyst effects generally did not have a significant impact on emissions over the NEDC cycle.

1. Introduction

The reduction of fuel sulfur levels in gasoline is considered to be an important factor in attaining future emissions standards and air quality goals. The impact of gasoline sulfur levels has been the subject of numerous studies over the years, and it is well documented that higher sulfur reduces the efficiency of the catalytic converter, resulting in increases in regulated emissions [1-14]. Some of these studies show the effects to be more pronounced, on a percentage basis, for the more advanced ULEV and LEV vehicles [6].

Although catalysts provide reductions for most emissions, from studies as early as the 1970s it was known that other emissions, such as ammonia (NH₃), can be formed over the catalyst surface [15,16]. Recently, there has been increased interest in NH₃ emissions since NH₃ is known to be an important precursor to the formation of secondary particulate matter (PM) and since studies have indicated that NH₃ emission levels may be greater than originally thought [17-19]. One of the important issues regarding NH₃ emissions is the potential effect of changing fuel sulfur levels on the NH₃ emissions found in the tailpipe exhaust. In some early studies, it was suggested that sulfur could inhibit NH₃ formation on the catalyst by deactivating reaction sites for NH₃ formation [20-22]. Some initial chassis dynamometer emissions results were also consistent with these conclusions, showing higher NH₃ emissions for fuels with lower fuel sulfur levels, but for a limited number of tests and only one vehicle [23]. In a more recent study of 10 late model vehicles, NH₃ emissions did not show any consistent trends as a function of fuel sulfur level over the Federal Test Procedure (FTP), but showed lower emissions for higher sulfur levels over the US06 [24]. Other chassis dynamometer measurements on two vehicles, however, showed that decreasing fuel sulfur content resulted in lower NH₃ emissions for one vehicle and had little effect on NH₃ emissions for the second vehicle [25]. To better understand how reduced fuel sulfur levels will affect future NH₃ emissions inventories, it was important to conduct a more comprehensive study and utilize more advanced experimental techniques capable of measuring the low NH₃ emission levels found in late model vehicles.

The objective of this project was to evaluate the impact of different fuel sulfur levels on NH₃ emissions, as well as regulated and N₂O emissions for a fleet of present and future technology gasoline vehicles. For this project, 12 vehicles certified to California's Low Emission Vehicle (LEV) requirements and 2 European vehicles certified to Euro 3 standards were tested on fuels with nominal sulfur levels of 5, 30, and 150 ppmw. The fleet was designed to represent some of the latest technology vehicles currently available in the market. Each vehicle was tested with the as-received catalyst and an aged catalyst. The vehicles were tested using the FTP and US06 cycles. The European vehicles were also tested over the New European Driving Cycle (NEDC). NH₃ emissions were measured using a novel approach, tunable diode laser (TDL) spectroscopy. The TDL offers the detection limits and the response time necessary to investigate low-level concentrations of exhaust gases as well as the ability to make *in-situ* measurements of raw exhaust gases. The results of this study are discussed in the following report.

2. Experimental Procedures

2.1 Test Vehicles

A total of 14 vehicles were recruited and tested for this study. This included 4 low-emission vehicle (LEV), 6 ultra-low-emission vehicle (ULEV) and 2 super-ultra-low-emission vehicle (SULEV) California-certified vehicles and 2 European vehicles certified to Euro 3 standards [26]. The LEV and ULEV vehicles were recruited from a combination of different rental car agencies and private parties. The 2 SULEV vehicles were obtained on loan from a major automobile manufacturer. The European vehicles were obtained on loan from CONCAWE. Table 1 describes the vehicles and shows whether each is certified over the US06. It should be noted that vehicles 5-7 and 10-12 in Table 1 were also used in a separate program to investigate the effects of lubricant sulfur levels and other properties on emissions [27]. Prior to entering the program, all vehicles were inspected using a standard checklist to ensure that they were in sound mechanical and operational condition.

#	MY	OEM	Model	Certification	US06	Engine	Mileage	Engine Family
					Certified	Size		
1	2001	Ford	Taurus	LEV	No	3.0 L	23,553	1FMXV03.0VF9
2	2001	Chevrolet	Cavalier	LEV	No	2.4 L	22,482	1GMXV02.4022
3	2001	Chevrolet	Silverado	LEV	No	5.3 L	8,380	1GMXA05.3183
4	2000	Jeep	Grand Cherokee	LEV	No	4.7 L	29,571	YCRXT0287231
5	2001	Buick	LeSabre	ULEV	Yes	3.8 L	20,164	1GMXV03.8044
6	2001	Dodge	Neon	ULEV	No	2.0 L	18,634	1CRXV0122V40
7	2001	Toyota	Camry	ULEV	Yes	2.2 L	22,055	1TYXV02.2JJA
8	2001	Chrysler	Sebring	ULEV	No	2.4 L	19,677	1CRXV0148V40
9	2001	Acura	CL	ULEV	No	3.2 L	20,523	1HNXV03.2K88
10	2001	Ford	Windstar	ULEV	No	3.8 L	21,261	1FMXT03.82J*
11	2000	Honda	Accord	SULEV	No	2.3 L	11,958	YHNXV02.3NL5
12	2001	Nissan	Sentra CA	SULEV	Yes	1.8 L	6,592	1NSXV01.852A
13	2000	VW	Bora	Euro 3	No	2.0 L	6,741	APK026895
14	2001	Renault	Megane**	Euro 3	No	2.0 L	5,493	C006106F5RD740

Table 1. Description of Test Vehicles

* = 5 or 6, L = liter, ** equipped with a stoichiometric direct–injection gasoline engine

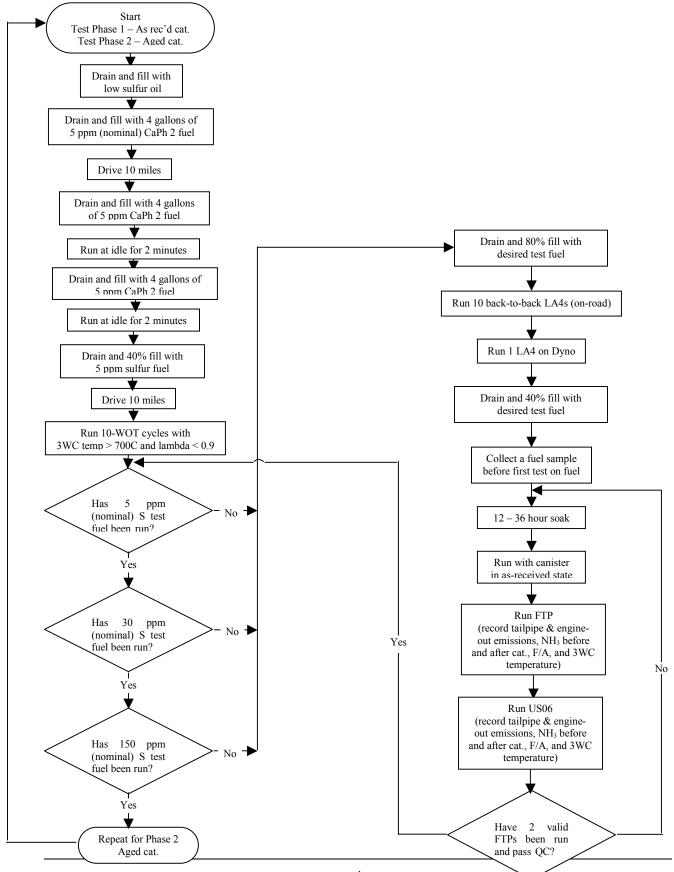
2.2 Fuels and Lubricants

The test matrix for this program involved 3 test fuels with nominal sulfur levels of 5 ppm, 30 ppm, and 150 ppm. The base fuel for these tests was an in-use California Phase 2 gasoline obtained from Chevron with a 5 ppm sulfur level. The properties of this fuel included 14.0 vol% aromatics, and Reid Vapor Pressure (RVP) of 6.7 pounds per square inch (psi), and no oxygenates. A more detailed listing of the fuel properties is provided in Appendix A. The nominal 30 ppm and 150 ppm fuels were obtained by doping the base fuel with a three-component sulfur mixture including dimethyl disulfide, thiophene, and benzothiophene. This mixture has been used in previous studies of fuel sulfur effects [28].

A specially formulated zero-sulfur lubricant was used in this test program to ensure the effects of sulfur from the lubricant would be negligible. This oil had a synthetic base containing ashless, zero-sulfur antiwear and antioxidant additives. The effect of varying oil sulfur levels on regulated emissions was investigated in a separate study using the same zero-sulfur oil as the baseline oil [27].

2.3 Catalyst and Oxygen Sensor Aging

For this program, each vehicle was tested using the original as-received catalyst and a bench aged catalyst system. All catalyst aging was conducted at the Southwest Research Institute (SwRI) in San Antonio, TX. The catalyst systems were obtained new from local dealerships for each of the California-certified vehicles, and were supplied by CONCAWE on a similar basis for the European vehicles. This included the underfloor catalyst(s), any close-coupled catalyst(s), and pre- and post-catalyst oxygen sensors. The catalyst systems were aged for 90 hours (120,000 mile equivalent) using the Rapid Aging Test-A (RAT-A) protocol [29]. Catalysts were configured for the SwRI aging cell at CE-CERT prior to shipment. All catalysts were aged in pairs using a single engine with the RAT-A temperature profile maintained for each catalyst. The aged catalysts for 6 of the test vehicles were used in a companion program to investigate oil sulfur effects [27]. All catalyst systems were aged using a specially formulated ultra-low 0.2 ppmw sulfur gasoline and a zero-sulfur oil [27]. The aging protocol is discussed in greater detail in Appendix B.


2.4 Test Sequence

A flow chart for the E-60 project is provided in Figure 1 and is outlined briefly below.

Prior to testing on any of the fuel/catalyst combinations, a sequence including an oil change to the low-sulfur oil and a multiple drain and fill for the fuel was conducted. The multiple drain and fill procedure was used for the fuel to ensure the in-use fuel in the vehicle's tank at the time it was received was fully purged from the system [30]. After completion of the drain and fill sequence, a cycle to remove residual sulfur from the catalyst was run, consisting of 10 wide-open throttle (WOT) events. This cycle is described in greater detail in Appendix C.

The vehicles were conditioned on each test fuel over a period of approximately 10 back-to-back LA4 cycles. This driving was conducted on the surface streets near the Bourns College of Engineering Center for Environmental Research and Technology (CE-CERT) facility. The route was designed to have similar driving conditions to the LA4 including a number of stops and similar speed ranges. After completing the 10 LA4 equivalents on the road, a final LA4 was conducted on the dynamometer. The vehicle was then soaked for a period of 12-36 hours prior to running the emissions test sequence.

The test cycles for this project were the Federal Test Procedure (FTP) and US06 cycles for the California-certified vehicles. The test cycles were run in duplicate with a third test conducted if the emissions between the two FTPs differed by more than the following criteria: HC 33%, NO_x

Figure 1. Flow Chart for CRC Project No. E-60

29%, and CO 70%. The European vehicles were tested over a similar test sequence, although the NEDC cycle was run in place of the FTP cycle and was followed by the US06. Following the NEDC test sequence, duplicate FTPs were also run on the European vehicles at each test matrix point, with a third test run where the testing criteria were exceeded. For 3 of the 168 FTP test sequences and 3 of the 12 NEDC test sequences, triplicate tests were not conducted for vehicles exceeding the test criteria. This was due in part to logistical and other reasons, including the need to return vehicles to their owners. Although these specific paired sequences may have slightly more variability than other pairs, these differences did not have any significant impacts on the overall results.

For each vehicle, the fuels were tested in order of ascending fuel sulfur level, moving sequentially from the 5 ppm level to the 30 ppm level to the 150 ppm sulfur level. This test sequence minimized the possibility of sulfur carry-over from one test to the next. Keeping repeat tests to the minimum necessary to produce reliable results, allowed the maximum number of test vehicles to be evaluated. Although the procedure does not incorporate true long term repeat tests, or randomization of test fuel order, the fact that each fuel was tested on a number of vehicles allows consistent trends to be identified. The statistical analyses of the data should be evaluated bearing these factors in mind.

The vehicles were tested on both the as-received and aged catalysts. In each case, tests on all fuels were completed before changing the catalyst configuration. The order in which the catalyst configurations were tested was determined in part by the logistics of the project. The 6 vehicles tested in the E-61 program were already configured with the aged catalyst and hence were tested on the aged catalysts first [27]. The two European vehicles were also tested on the aged catalyst first so they were configured for return shipment following testing. The remaining vehicles were tested with the as-received catalyst first followed by the aged catalyst.

2.5 Vehicle Emissions Measurements

2.5.1 Regulated Pollutants

All tests were conducted in CE-CERT's Vehicle Emissions Research Laboratory (VERL) equipped with a Burke E. Porter 48-inch single-roll electric dynamometer. For these tests, standard bag measurements were obtained for total hydrocarbons (THC), non-methane hydrocarbons (NMHC), carbon monoxide (CO), nitrogen oxides (NO_x) and carbon dioxide (CO₂). Modal tailpipe and engine-out measurements were also taken for THC, NMHC, NO_x, CO, and CO₂. Bag measurements were conducted with a Pierburg AMA-4000 bench while the preand post-catalyst emissions were made with a Pierburg AMA-2000 emissions bench. Both the AMA-4000 and the AMA-2000 emission benches incorporate a separate methane (CH₄) analyzer for the determination of the NMHC.

2.5.2 NH₃ Tunable Diode Laser Measurements

The primary NH₃ measurements were made for both engine-out and tailpipe emissions on a realtime basis using a tunable diode laser infrared absorption spectrometer (TDL). The TDL provides significant advantages over other methodologies in quantifying low levels of NH₃ from vehicle exhaust. Previous studies have used techniques such as citric acid coated filters [31] or Fourier Transform Infrared (FTIR) spectroscopy [23] typically through a dilution tunnel. While these techniques provide some information about the integrated NH₃ emissions from vehicles, the adsorption/desorption of NH₃ to and from surfaces in the lines transferring to the tunnel and the dilution tunnel itself complicate these measurements. The dilution process itself also reduces the NH₃ concentration levels in the tunnel, making it difficult to measure NH₃ from vehicles with low emission rates.

An important step in reducing the adsorption/desorption effects for NH_3 is measurement in the raw exhaust. Both citric acid coated filters and FTIR have disadvantages in this regard. Citric acid coated filters can be used to determine integrated concentrations from the raw exhaust, but over transient cycles, these concentration levels can not be correlated with the exhaust flow rate to enable determination of the mass emission rate. FTIR can be used for raw exhaust measurements, but to obtain comparable detection limits, the FTIR requires a considerably larger sample cell. With the large sample cell and corresponding longer sample residence time, it again becomes more difficult to obtain an accurate concentration vs. time profile that can be correlated with the exhaust flow. This is further illustrated in Section 2.5.3.

TDL has already been applied to measurements of vehicle exhaust for the measurement of other infrared absorbing gases such as CO, CO₂, and formaldehyde (HCHO) [32-33]. The distinction here is that the other measurements were done via extraction and dilution into a multi-path reflective cell at mid-infrared wavelengths, whereas the system constructed and developed for this project employed measurements of the raw exhaust, without modification, in the near infrared wavelength region. TDL spectroscopy offers the specificity, sensitivity and response time necessary to investigate low-level concentrations of exhaust gases. Additionally, the TDL has the important advantage that it can make measurements *in-situ* using raw exhaust gases [34]. The combination of these advantages in the configuration described below allowed the measurement of highly time-resolved engine-out and tailpipe NH₃ emissions with sensitivity levels at two standard deviations of better than 0.5 ppmv, or minimum detection limits of roughly 0.5 mg/mi.

The TDL optics were installed in conjunction with the existing exhaust sampling lines for measuring raw pre- and post-catalyst emissions. This was done by installing a short 2-meter section into the sample line, basically making the TDL sampling system a part of the line. Figure 2 is a picture of the installation. The 2-meter sections were fabricated using 1-inch inner diameter stainless steel tubes that were electroplated with a Ni alloy to passivate the surface. The corresponding sampling cell volume is approximately 1 liter. The sampling system was heated at temperatures between 120 and 130°C to prevent condensation or adsorption in the sampling lines. With a constant sampling rate of 20 liters per minute (lpm), this sampling configuration has a residence time for the sample gas in the cell of just over 2 seconds. Sealed quartz windows were placed at diametrically opposed ends of the section.

The optical system was configured in a monostatic mode with a transmitting/receiving assembly on one side and a retroreflector on the other side. This was done to enhance sensitivity by doubling the effective optical pathlength of the 2-meter section to 4-meters. With the 4-meter pathlength, the signal noise at two times the standard deviation was found to be better than 0.5 ppmv for a 2-second averaging time. The transmitter/receiver assembly contained a variable focal length grin lens with a perforated, off-axis parabolic mirror (OAP) as the collector. The laser beam was sent via fiber optic cable (FC-APC 9 micrometer) that connected to the lens assembly. The divergent beam was then slightly focused so that it was 0.5-inch in diameter when hitting the surface of the retroreflector and continued to expand to 1-inch when returning to the collecting OAP. The beam traveled through the optical center of the OAP where there was a small 1/8-inch diameter perforation. The GaAS detector was placed at the focal point of the OAP and received the raw modulated signal. The subsequent output was returned to the controller via coaxial cable and analyzed employing signal processing techniques.

Figure 2. Configuration of the TDL Sampling System

The single mode laser light for the TDL was created by running an electrical current through a diode crystal to create light with a specific wavelength in the near infrared spectral region. For NH₃, a GaAs diode laser was used to optimize the radiation to a wavelength near 1.512 μ m. The GaAs laser can be operated at room temperature. The TDL system employed for the study was a UNISEARCH Associates LasIR. The instrument was configured with a three-way optical beam splitter that sent 45% of the total laser energy to each of the two channels, allowing for the measurement of both engine-out and tailpipe emissions at these levels. The 10% third channel was used to locate and lock the emission wavelength of the laser by passing it through a small cell that contains a high concentration of the target gas (NH₃).

An important characteristic of the tunable diode laser is that the wavelength at which it emits changes very slightly over a small spectral range (1 nm) with the electric current passing through it. This makes it possible to scan across the entire selected absorption line of the target gas as well as the region where the target gas does not absorb. By scanning the absorption feature prior to the target gas absorption, deviations in overall laser intensity can be measured, providing enhanced sensitivity. The TDL performs each such scan in a period of $1/60^{\text{th}}$ of a second. Two-

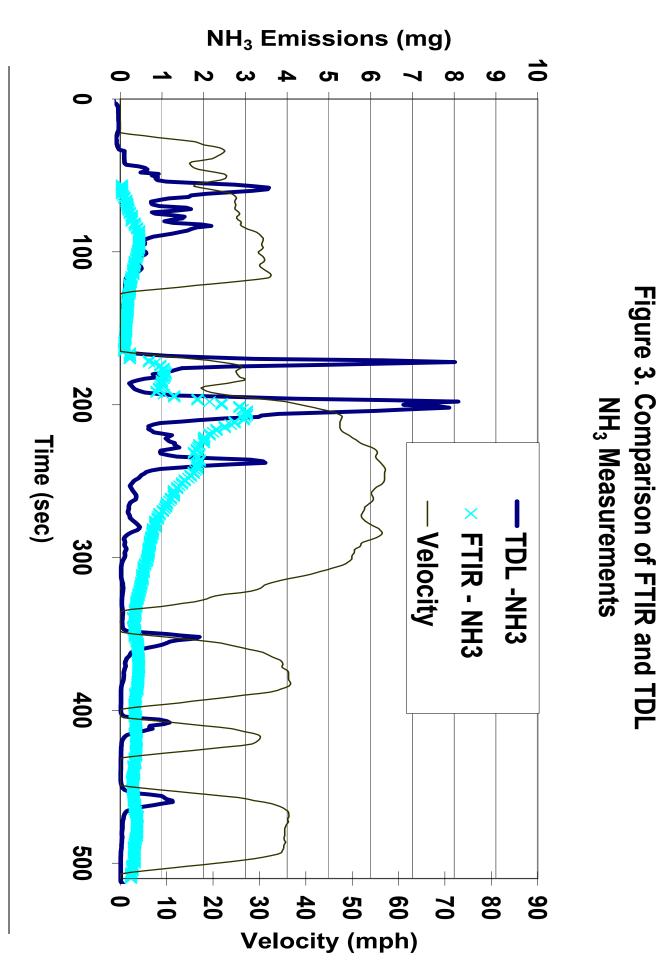
tone FM modulation techniques were used to filter out any stray signals and to improve the signal-to-noise resolution. More details on the signal processing for the TDL can be found in Appendix D.

Verification of the TDL accuracy was done using calibration gas levels between 10 and 150 ppmv. A calibration curve is provided in Appendix D. Although some calibration gases are certified from the producer with accuracies of better than $\pm 5\%$, it has been suggested that accuracies of <10% are difficult to achieve with NH₃ [35]. The calibration gas used for most of the verification tests and daily testing calibrations was certified with an accuracy of $\pm 10\%$. The TDL readings were compared with measurements obtained from citric acid-coated filters at various positions in the sampling train. The results showed agreement within 10% for an NH₃ calibration gas level of 150 ppm, as shown in Appendix D. Daily test calibrations were conducted *in-situ* by injecting the calibration gas into the raw exhaust stream under idle conditions.

In calibrating the TDL measurements, it was also important to evaluate temperature and pressure effects. This is primarily important for the more aggressive portions of driving cycles such as the US06 where pressures and temperatures can increase in the sampling lines. At higher pressures and temperatures, the TDL lineshape can broaden, affecting the measured intensity. Since the sample cell is of a fixed volume, pressure and temperature also can affect the number of molecules in the sampling cell, which in turn can affect the measured intensity. Plots of the pressure and temperature dependence of the TDL signal over a full range of conditions are provided in Appendix D.

The dual channel capability of the TDL allowed the measurement of engine-out and tailpipe emissions simultaneously. The TDL was configured to provide data once every 2 seconds for both the engine-out and tailpipe emissions. For each channel, data were integrated over a 2-second dwell time, with sampling alternating between engine-out and tailpipe measurements each second. Second-by-second NH₃ concentrations were obtained from the 2-second TDL readings using a linear extrapolation. The concentrations were then converted into mass emissions rates by multiplying by the density of NH₃ and the time-aligned exhaust flow rate. Similar procedures have been used previously in analysis of second-by-second data for regulated pollutants for the development of CE-CERT's Comprehensive Modal Emissions Model (CMEM) [36]. The exhaust flow rate was determined on a second-by-second basis using the CO₂ tracer method. Temperature and pressure corrections were applied to the TDL data based on second-by-second measurements made in the sampling cell.

2.5.3 Fourier Transform Infrared Spectroscopy Measurements


A Fourier Transform Infrared (FTIR) system was also used to measure NH_3 and N_2O emissions. This instrument samples through the dilution tunnel. The instrument collects one set of values every 3 seconds. The absorption cell for the FTIR has a volume of approximately 5 liters and a residence time of approximately 10 seconds. Other pollutants such as formaldehyde, acetaldehyde, benzene, and 1,3-butadiene are also available with the FTIR, but the detection limits for these compounds exceed the diluted concentration levels for the vehicles tested in this program. A comparison of real-time measurements made using the FTIR and TDL instruments is presented in Figure 3 for bag 1 of an FTP. To compensate for the 3-second sampling time for the FTIR, a 3-second average was applied to the data. The results show that the FTIR measurements are considerably broader than the TDL measurements. Typically, the FTIR measurements underestimate the maximum NH₃ emission rates but have an extended tail after the peak in NH₃ emissions. It should be noted the NH₃ mass emission rates for these two measurements were very similar at 88 mg/mi for the TDL and 84 mg/mi for the FTIR.

The observed differences in Figure 3 can be attributed to the longer residence time in the FTIR sampling cell as well as adsorption/desorption effects that occur as the sample travels through the dilution tunnel. A well-mixed cell model can be used to mathematically adjust for the differences in the residence times for the two instruments [37]. The FTIR measurements become sharper when the well-mixed cell model is used, but they are still more diffuse than those of the TDL signal and exhibit a tail. Overall, the comparisons between the TDL and FTIR are reasonably good. Some differences can be attributed to differences in the sampling methodologies. For lower-emitting vehicles (i.e., below 10 mg/mi), the FTIR was typically found to underestimate the NH₃ concentration since the peak NH₃ emissions could not be measured as accurately and the emission levels in the tail region fell below the detection limits. For cycles with aggressive driving segments near the end of the test, such as the US06, an additional problem occurs in that the tail cannot be fully quantified prior to the conclusion of the test cycle. It should be noted that since the FTIR is designed to make measurements from the dilution tunnel, the transfer tube was wrapped with a heating pad that was maintained at a temperature of 120°C. This helps to minimize the loss of ammonia in the transfer tube between the exhaust pipe and the dilution tunnel

2.6 Statistical Analysis

Analysis of variance (ANOVA) tests were performed for each pollutant to determine the statistical significance of fuel sulfur and catalyst age effects and any corresponding interactions between the design test variables (vehicle, fuel, and catalyst age). The data were analyzed using the average data values for repeat tests on each vehicle/fuel/catalyst combination. The analysis approach used was a 3-way ANOVA using fuel sulfur level and catalyst age as fixed effects and vehicles as a random effect. The ANOVA analyses were conducted using a PC/SAS system from SAS Institute, Inc.

The ANOVA analyses were run using up to four different data set versions. The primary conclusions from the statistical analyses were based on a data set using the natural logarithm of the arithmetic averages for each vehicle/fuel/catalyst combination. For this data set only the California-certified vehicles were used since the European vehicles are certified over the NEDC, as opposed to the FTP. Separate analyses were also conducted using the entire fleet including the European vehicles. From a statistical point of view, analyses using the logarithmic transform of the data were used since previous studies have shown that emissions variance is relatively constant as a percentage of the emission level. In other words, vehicles with higher emission levels will tend to have a higher variability on an absolute basis than those with lower emissions

University of California, Riverside, CE-CERT

10

levels. Taking the logarithm of the data helps to provide a more constant variability across the range of the data set. For this data set, outlier tests were also removed based on the Hawkins-Perold test. A similar technique was used in previous Auto/Oil Air Quality Research Programs where similar data sets were investigated [38]. The Hawkins-Perold test was applied to run sets where triplet or quadruplet data were obtained. Using the Hawkins-Perold test, an entire FTP test was rejected as an outlier if at least two of the three composite emissions, i.e., NMHC, CO, and NO_x, for that test fell outside the limits specified by the Hawkins-Perold two-sided test at the probability of p=0.10. This methodology is described in greater detail in ref. 38. On the basis of the Hawkins-Perold test, only 2 FTP and 2 US06 tests were found to be outliers for 2 or more regulated emissions.

The ANOVA analyses were also run using different data sets to ensure the conclusions were consistent. Other data sets examined included a data set using the arithmetic averages for each vehicle/fuel/catalyst combination with the outliers removed, a data set using the arithmetic averages with outliers not removed, and a data set using the natural logarithm of the arithmetic averages with outliers not removed. In most cases, statistically significant effects observed for the base analysis case were also found for the other analysis cases.

The statistical significance of the fuel effects between the 5, 30, and 150 ppm fuel sulfur levels was also examined using pair-wise difference comparisons. The pair-wise comparisons were conducted using a least squares means test with a Tukey adjustment. Pair-wise comparisons that were statistically significant at the 90% confidence level (p=0.10) are included as well as those that were statistically significant at the 95% confidence level (p=0.05). Instances where comparisons are only statistically significant at the 90% confidence level are noted in the text.

In cases where statistically significant interactions were found between different factors, such as vehicle and catalyst, some additional analyses were conducted. In particular, statistically significant interactions between factors such as vehicle and catalyst indicate that the catalyst effects can differ for different vehicles. In such cases, interaction plots were developed showing the catalyst/fuel effects for each of the individual vehicles, as discussed further below. For cases where specific vehicles showed different trends than those of other vehicles, additional ANOVA analyses were sometimes conducted with those vehicles eliminated to determine the sensitivity of the analysis to that particular vehicle.

3. Results

3.1 FTP Emissions Results

The fleet average FTP results for NH₃, NMHC, CO, NO_x and N₂O are presented in Figure 4. This Figure shows the average emission results on each fuel/catalyst combination for each of the 12 California-certified test vehicles. As discussed in section 2.6, the main results and analyses are presented using only the California-certified fleet, since the California-certified and European vehicles are not certified to the same standard. Some additional analyses with the European vehicles included are also provided in Section 3.3.2. The averages in Figure 4 and throughout the results section also exclude tests determined to be outliers by the Hawkins-Perold test. In Figure 4, the CO emissions are divided by 10 to allow the changes for all emissions to be more clearly presented. The TDL NH₃ measurements were used for all analysis of NH₃ emissions since these measurements are more representative of the actual tailpipe NH₃ emissions, as discussed in Section 2.5. The error bars in Figure 4 and other figures presenting fleet average results represent half of the least significant difference, as determined from the statistical analysis. More complete test results are provided in Appendix E. Complete ANOVA analysis results are provided in Appendix F for the FTP.

3.1.1 FTP NH₃ Emissions

The FTP NH₃ emissions results are presented in Table 2 for each of the test fuels and the two catalyst configurations. The individual vehicle results for NH₃ emissions are presented in Figure 5. NH₃ emissions over the FTP were generally lower than those of the regulated pollutants. Fleet average FTP NH₃ emissions averaged between 14 and 21 mg/mi depending on the fuel/catalyst combination. Five of the test vehicles had NH₃ emissions below 5 mg/mi for most of the test configurations, although NH₃ emissions for some of these vehicles were slightly higher for the 150 ppm fuel sulfur with aged catalyst configuration. Only 4 vehicles had NH₃ emissions over 20 mg/mi when averaged over all test configurations.

	Fuel Averages		Catalyst Averages
5	16	OE	14*
30	16	Aged	21*
150	19	U U	

Table 2 FTP NH, Emissions Results (mg/mi)

*: Statistically significant catalyst differences.

The NH₃ emissions for the aged catalysts were found to be 50% higher than those for the asreceived catalysts. The difference in NH₃ emissions for the different catalysts was found to be statistically significant (p=0.0212). The vehicle by catalyst interaction was also statistically significant at the 90% confidence level, indicating that there were differences in catalyst age effects for different vehicles. To examine the vehicle by catalyst interaction, an interaction plot of catalyst effects vs. vehicle was developed. The interaction plot is presented in Figure 6 and shows the paired catalyst results for each of the individual vehicles. The interaction plots show that for most vehicles the emissions on the as-received catalyst were either similar to or higher than those for the aged catalyst. For vehicles that are relatively insensitive to catalyst age, some tests and vehicles could have slightly higher emissions for the as-received catalysts due to variability between test runs. Thus, the vehicle by catalyst interaction can be attributed to a subset of vehicles in the fleet whose NH₃ emissions were relatively insensitive to catalyst age or showed a reverse effect. Of these vehicles, the Jeep showed the most significant deviation from the expected trend of higher emissions for the aged catalyst. To evaluate the sensitivity of the ANOVA analyses to the results for the Jeep, an additional ANOVA was conducted with the Jeep results excluded. Interestingly, with the removal of the Jeep, the vehicle by catalyst interaction was no longer statistically significant (p=0.1672), while the catalyst effect remained statistically significant (p=0.0021).

Fuel effects were not found to be statistically significant over the fleet for NH₃ emissions. This is in contrast with some previous studies that have shown NH₃ emissions can have a tendency to decrease with increasing fuel sulfur levels [20-23]. More recent studies have shown fuel sulfur to have mixed effects on NH₃ emissions over the FTP or other similar cycles, however [24,25].

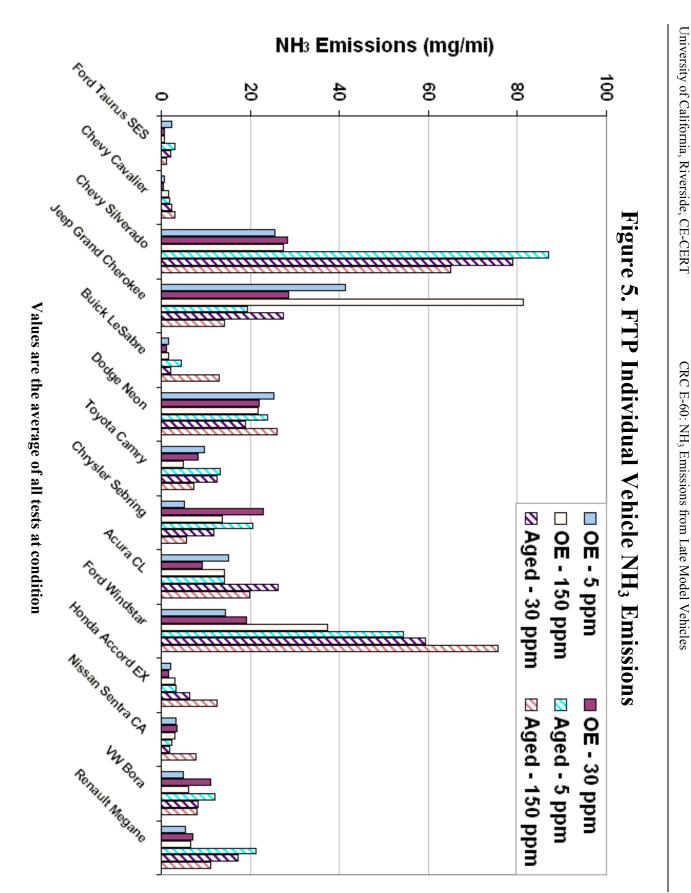
Since the FTP is composed of individual segments of driving comprising cold start conditions (bag 1), hot stabilized driving (bag 2), and hot start driving (bag 3), separate analyses were conducted for each of the individual bags to examine the differences in driving on fuel sulfur and catalyst effects. NH₃ emissions for individual FTP bags are presented in Figure 7. Interestingly, NH₃ emissions are highest for bag 1, similar to other emissions. A plot of real-time NH₃ emissions, as shown in Figure 8, indicates that the peak in NH₃ emissions does not occur prior to catalyst light-off, but rather immediately after catalyst light-off. The real-time NH₃ emissions plot also shows that NH₃ emissions are transient in nature, with emission peaks corresponding to periods of acceleration.

In general, the data for all three bags show higher emissions for the aged catalysts, similar to the trends observed for the weighted emissions. The average NH₃ results for individual bags for the three test fuels and two catalyst configurations are presented in Table 3. Statistically significant catalyst effects were found for bags 1 and 2, but not for bag 3. The vehicle by catalyst interaction was also found to be statistically significant at the 90% confidence level for bag 1. Fuel sulfur effects were not found to be statistically significant for any of the FTP bags.

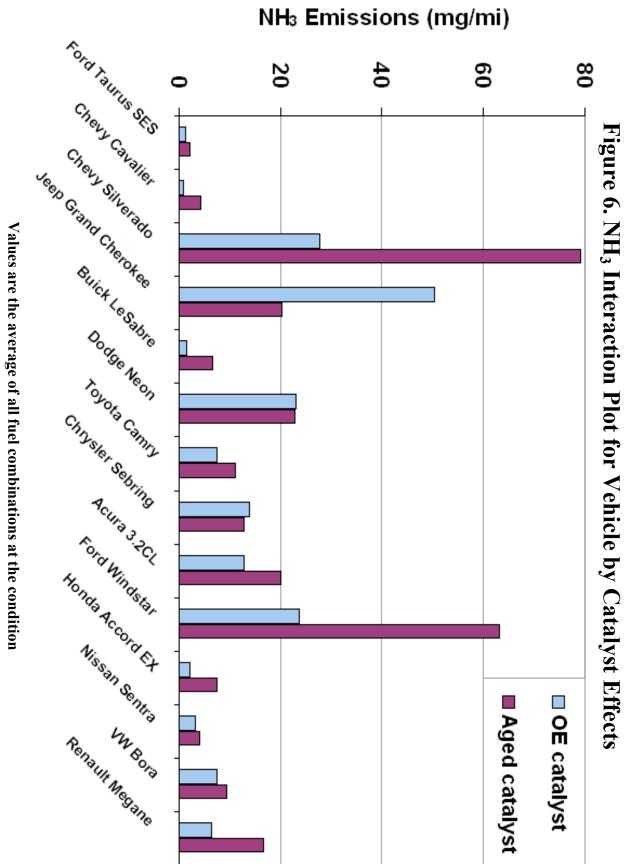
	Table 3. FTP NH ₃ Emissions for Individual Bags (mg/mi)							
	Fuel Averages				Cata	alyst Ave	rages	
	Bag 1	Bag 2	Bag 3		Bag 1	Bag 2	Bag 3	
5	37	12	9	OE	32*	10*	8	
30	34	13	10	Aged	40*	17*	14	
150	38	14	14	0				

*: Statistically significant catalyst differences.

Measurements of engine-out NH₃ emissions were consistent with the idea that NH₃ emissions are formed primarily over the catalyst. Engine-out emissions profiles for a number of vehicles did show a few small peaks, on the order of 2-5 ppm, but the contribution of the peaks was typically below 1 mg/mi. The Toyota Camry did show some higher peaks in NH₃ emissions, but these generally occurred during deceleration. The engine-out mass emission rates for the Toyota were around 5 mg/mi or less. It is possible that NH₃ could build up on surfaces in and around the

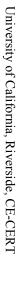

closed coupled catalyst during other portions of the cycle and subsequently degas during deceleration. It is also possible that some other catalytic surface may be upstream of the closed coupled catalyst. Higher NH₃ emissions were also observed for the Dodge Neon, which had engine-out emissions in the range of 3 to 14 mg/mi. In order to better understand the nature of the engine out emissions observed for the Toyota Camry or Dodge Neon further experimentation would be required. In general, it can be concluded that for most vehicles NH₃ is not formed in appreciable amounts during the combustion process.

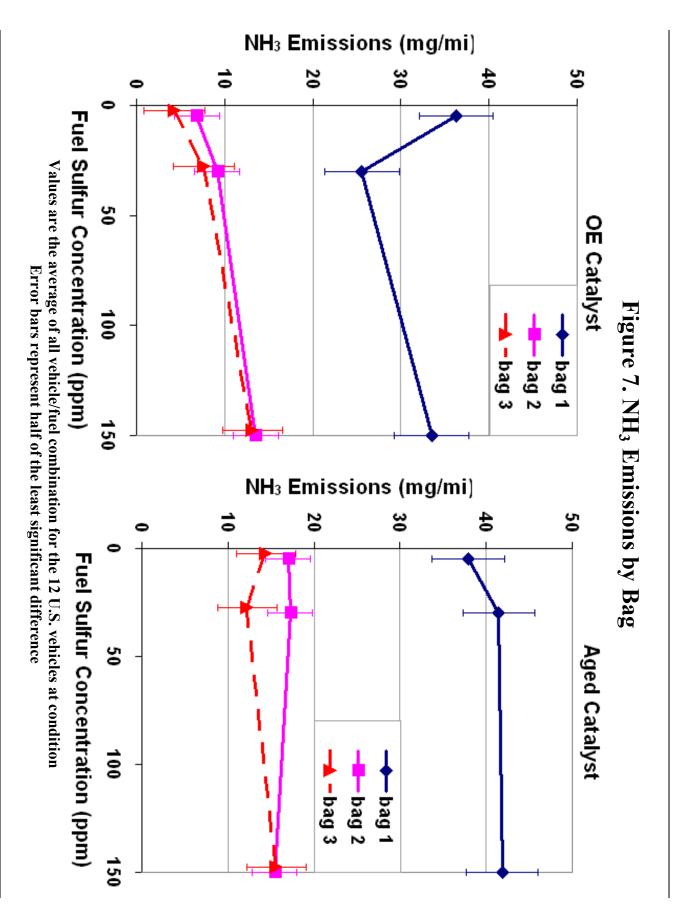
Emissions (g/mi) 0<u>.</u>00 0.04 0.02 0<u>.06</u> 80<u>'</u>0 0.10 0 Fuel Sulfur Concentration (ppm) \odot - 🔶 - N2O I ← NMHC NOx Values are the average of all vehicle/fuel combination for the 12 U.S. vehicles at condition Đ 50 OE Catalyst X NH3 Error bars represent half of the least significant difference **Figure 4. Fleet Average FTP Emissions** - CO/10 100 150 Emissions (g/mi) 0.04 0.06 0<u>.00</u> 0.02 80<u>.</u>0 0.10 Fuel Sulfur Concentration (ppm) 0 ÷ -••-4 - - - N20 - + NMHC - - CO/10 NOx H 50 Aged Catalyst **×** NH3 100 i. 150

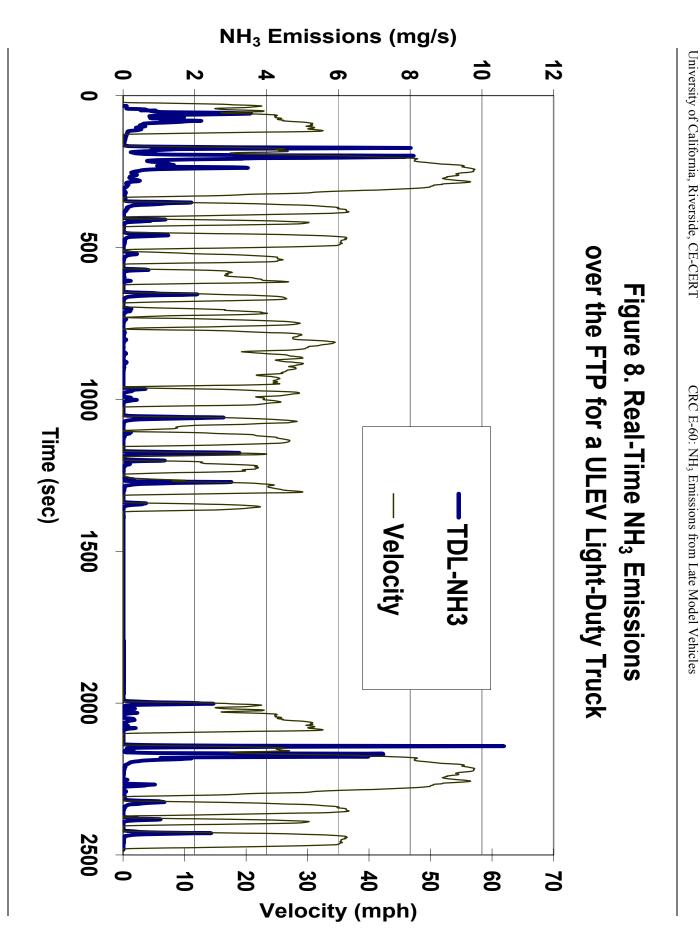

15

University of California, Riverside, CE-CERT

CRC E-60: NH₃ Emissions from Late Model Vehicles




University of California, Riverside, CE-CERT



University of California, Riverside, CE-CERT

CRC E-60: NH₃ Emissions from Late Model Vehicles

3.1.2 FTP NMHC Emissions

FTP NMHC emissions results are presented in Table 4 for each of the test fuels and the two catalyst configurations. Similar results for THC are also provided in Appendix G. Average NMHC emissions for each vehicle at each of the fuel/catalyst test matrix points are presented in Figure 9. Although a statistically significant difference was observed between the fleet average NMHC emissions for the 150 ppm sulfur fuel compared with the 30 ppm fuel, the magnitude of this difference was small. The effects of catalyst age were not statistically significant for the fleet.

1		Emissions Results (§/m)			
	Fuel Averages		Catalyst Averages		
5	0.044	OE	0.043		
30	0.042^{c}	Aged	0.044		
150	0.045^{b}	U			

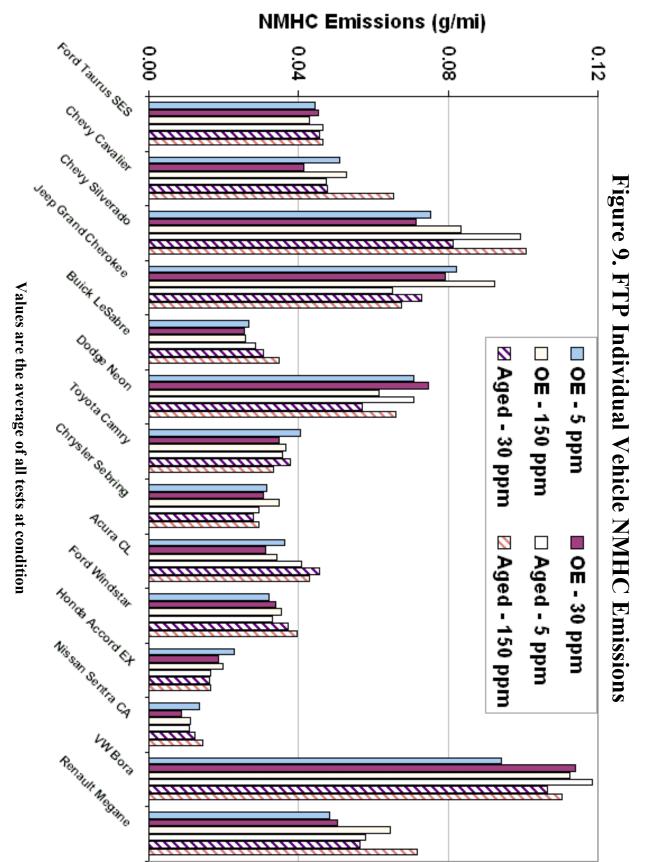
 Table 4. FTP NMHC Emissions Results (g/mi)

b: Statistically significant difference from 30 ppm;

c: Statistically significant difference from 150 ppm;

A comparison of NMHC emissions for the different bags is presented in Figure 10. The bag 1 NMHC emissions are divided by 20 to allow the results for all three bags to be presented on the same plot. Table 5 presents the average FTP NMHC emissions by bag for the three test fuels and two catalyst configurations. Some statistically significant fuel differences were found for bag 2 between the 5 and 150 ppm fuels and for bag 3 at the 90% confidence level between the 30 and 150 ppm fuels, but these differences were relatively small in magnitude. Catalyst effects were only found to be statistically significant for bag 3, although again the difference was small on an absolute basis. The vehicle by fuel and vehicle by catalyst interactions were both statistically significant for the bag 3 results.

	Fuel Averages				Catalyst Averages		
	Bag 1	Bag 2	Bag 3		Bag 1	Bag 2	Bag 3
5	0.189	0.004 ^c	0.009	OE	0.185	0.005	0.009*
30	0.180	0.004	0.009 ^c	Aged	0.188	0.004	0.011*
150	0.190	0.005^{a}	0.012 ^b				


 Table 5. FTP NMHC Emissions Results for Individual Bags (g/mi)

a: Statistically significant different from 5 ppm;

b: Statistically significant different from 30 ppm;

c: Statistically significant different from 150 ppm;

*: Statistically significant difference between catalysts.

University of California, Riverside, CE-CERT

CRC E-60: NH₃ Emissions from Late Model Vehicles

21

NMHC Emissions (g/mi) 0.000 0.005 0.010 0.015 Fuel Sulfur Concentration (ppm) 📥 -bag 3 Values are the average of all vehicle/fuel combination for the 12 U.S. vehicles at condition ← (bag 1)/20 -bag 2 OE Catalyst 50 Error bars represent half of the least significant difference **Figure 10. NMHC Emissions by Bag** 100 150 NMHC Emissions (g/mi) 0.000 0.015 0.005 0.010 Fuel Sulfur Concentration (ppm) Aged Catalyst 50 ► (bag 1)/20 bag 3 -bag 2 100 150

22

CRC E-60: NH₃ Emissions from Late Model Vehicles

3.1.3 FTP CO Emissions

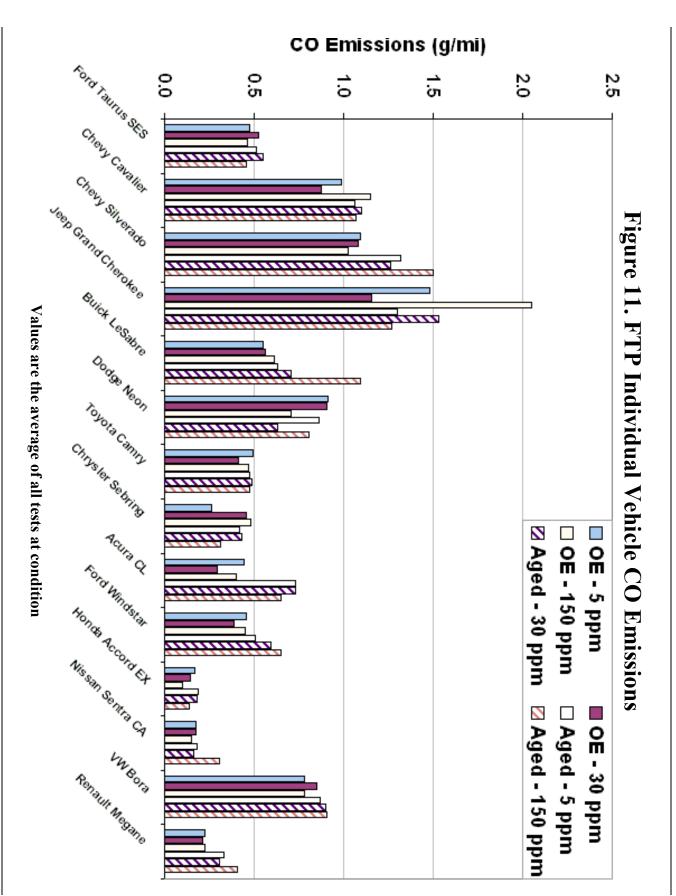
FTP CO emissions are presented in Table 6 for each of the test fuels and the two catalyst configurations. The FTP CO emissions for individual vehicles are shown in Figure 11.

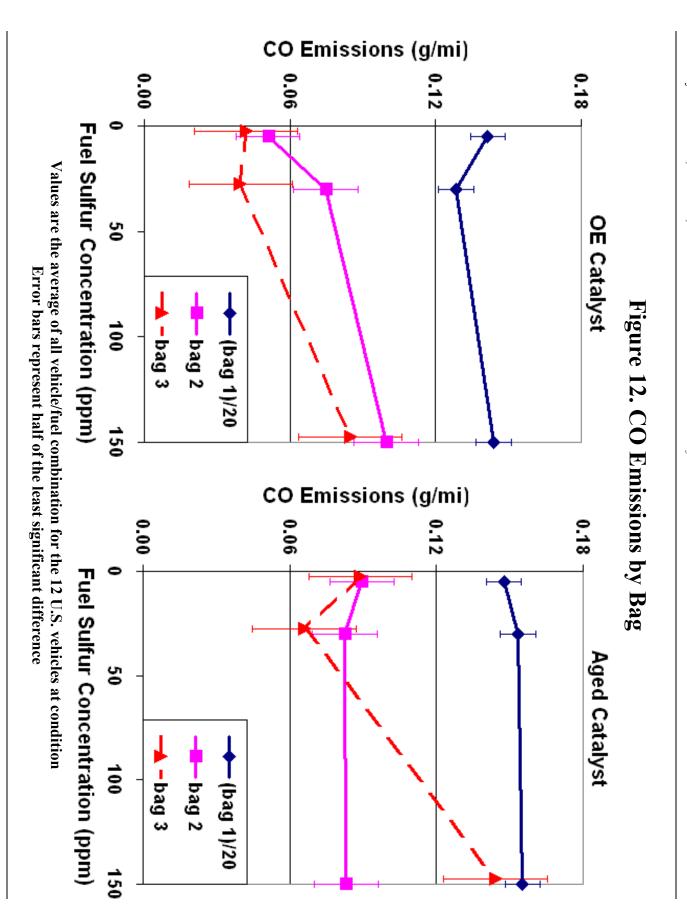
Table 6. FTP CO Emissions Results (g/mi)							
	Fuel Averages	Catalyst Averages					
5	0.654	OE	0.626*				
30	0.639	Aged	0.702*				
150	0.699	0					
* 0.		1.00	1				

*: Statistically significant differences between catalysts.

On a fleet average basis, CO emissions were approximately 12% higher for the tests conducted on the aged catalysts than on the as-received catalysts. The ANOVA analyses showed that the effects of catalyst age on CO emissions were statistically significant. Fuel effects on CO emissions were not found to be statistically significant for the fleet average.

The results of FTP CO emissions for individual bags are presented in Figure 12 and in Table 7. In Figure 12, bag 1 CO emissions are divided by a factor of 20. ANOVA analyses showed that statistically significant catalyst effects were found for bags 1 and 3, although the vehicle by catalyst interaction was found to be statistically significant at the 90% confidence level for bag 1. Fuel differences were only found to be statistically significant for bag 2 between the 5 and 150 ppm fuels. It should be noted in Figure 12 that the steep increase in emissions for the 150 ppm-aged configuration for bag 3 CO emissions is due in part to high bag 3 emissions for the Buick LeSabre on this test configuration.


Table 7.1 11 CO Emissions Results for mulvidual Dags (g/m)							
	Fuel Averages				Catalyst Averages		
	Bag 1	Bag 2	Bag 3		Bag 1	Bag 2	Bag 3
5	2.890	0.070 ^c	0.065	OE	2.758*	0.075	0.056*
30	2.818	0.079	0.053	Aged	3.042*	0.085	0.100*
150	2.992	0.091 ^a	0.115	0			


 Table 7. FTP CO Emissions Results for Individual Bags (g/mi)

a: Statistically significant different from 5 ppm;

c: Statistically significant different from 150 ppm;

*: Statistically significant differences between catalysts.

3.1.4 FTP NO_x Emissions

FTP NO_x emissions are presented in Table 8 for each of the test fuels and the two catalyst configurations. Individual vehicle results for FTP NO_x are presented in Figure 13. Fleet average NO_x emissions showed an increase in emissions with increasing fuel sulfur level, as shown in Figure 4 and Table 8. Pair-wise tests comparing the three fuel sulfur levels indicated that statistically significant differences were found between the 150 ppm fuel and the 5 ppm fuel. Statistically significant differences for NO_x emissions were also found between the 150 and 30 ppm fuels, but only at the 90% confidence level. Fleet average NO_x emissions for the 150 ppm fuel were 45% higher than those for the 5 ppm fuel and 29% higher than those for the 30 ppm fuel. A statistically significant vehicle by fuel interaction was found, however, indicating some difference in the sensitivity of individual vehicles to fuel sulfur level. The effect of catalyst age on fleet average NO_x emissions was not statistically significant.

	Table 8. I	FTP NO _x E	missions Res	ults (g/mi)
--	------------	-----------------------	--------------	-------------

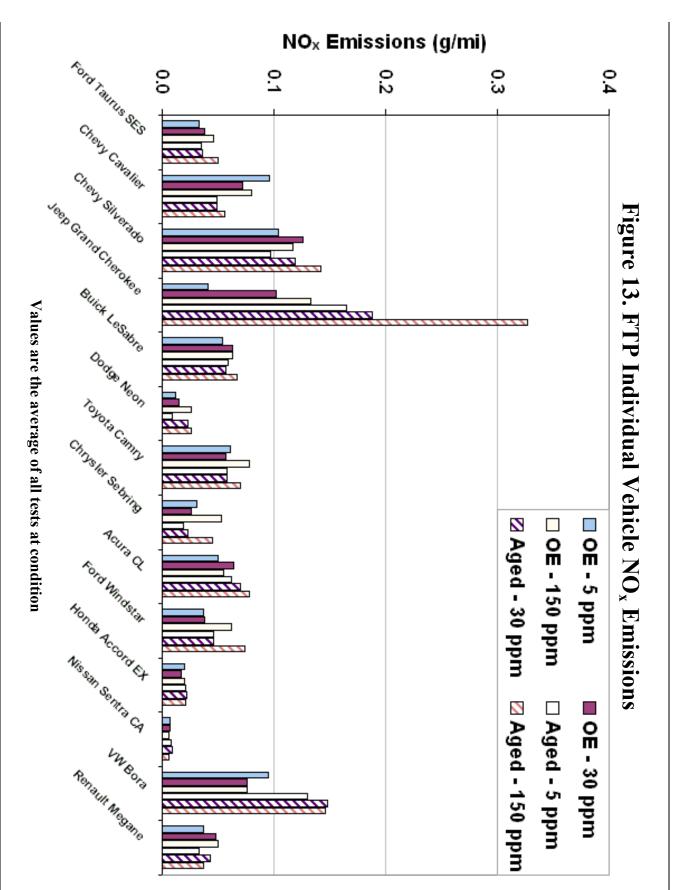
	Fuel Averages	Catalyst Averages			
5	0.049°	OE	0.053		
30	0.055 ^c	Aged	0.064		
150	0.071 ^{a,b}				

a: Statistically significant different from 5 ppm;

b: Statistically significant different from 30 ppm;

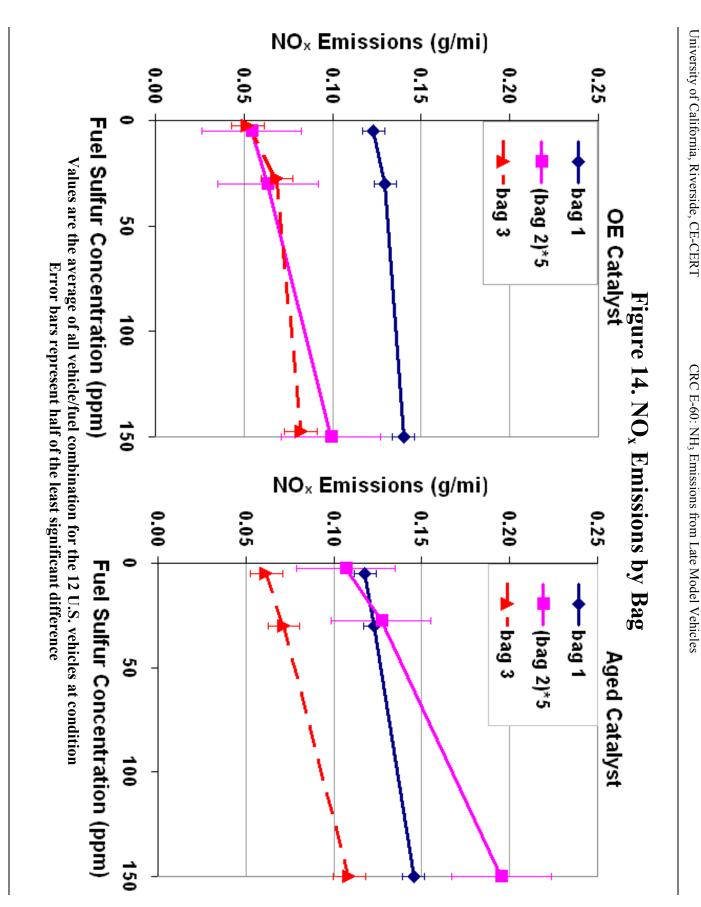
c: Statistically significant different from 150 ppm;

Fleet average NO_x emissions for the individual bags are presented in Figure 14. For this Figure, bag 2 NO_x emissions were multiplied by a factor of 5 to allow all of the bags to be presented in the same plot. The results of FTP NO_x emissions for individual bags are presented in Table 9 for the three test fuels and two catalyst configurations. For fuel effects, the statistical analysis for the individual bags was similar to the results for the weighted emissions, with statistically significant fuel effects, but also statistically significant vehicle by fuel interactions. Statistically significant differences in NO_x emissions between the 5 and 150 ppm were found for all three bags. The differences between the 150 and 30 ppm fuels for bag 2 were also statistically significant, but only at the 90% confidence level. A statistically significant vehicle by fuel interaction was found for bags 1 and 2. Catalyst effects were not statistically significant for the individual bags, consistent with the FTP weighted results.


 Table 9. FTP NOx Emissions Results for Individual Bags (g/mi)

Fuel Averages				Catalyst Averages			
	Bag 1	Bag 2	Bag 3		Bag 1	Bag 2	Bag 3
5	0.120 ^c	0.016 ^c	0.057 ^c	OE	0.131	0.014	0.068
30	0.126	0.019 ^c	0.070	Aged	0.129	0.029	0.081
150	0.143 ^a	0.029 ^{a,b}	0.095 ^a	9			

a: Statistically significant different from 5 ppm;


b: Statistically significant different from 30 ppm;

c: Statistically significant different from 150 ppm;

University of California, Riverside, CE-CERT

27

3.1.5 FTP N₂O Emissions

The individual vehicle results for N_2O are presented in Figure 15. Similar to NH_3 , the N_2O emissions over the FTP were generally lower than those of the regulated pollutants. Only three vehicles had N_2O emissions over 10 mg/mi averaged for most of the test configurations. Several other vehicles also had N_2O emissions over 10 mg/mi, but only for tests conducted on 150 ppm fuel. It is worth noting that no N_2O emissions are available for the Renault for the aged catalyst/30 ppm fuel configuration due to a problem with the FTIR at the time of the test.

FTP N₂O emissions are presented in Table 10 for the three fuel sulfur levels and the two catalyst configurations. The results show an increase in N₂O emissions with increasing fuel sulfur level that was statistically significant. Pair-wise comparisons showed that the N₂O emissions for the 150 ppm fuel were higher at a statistically significant level compared to the 30 and 5 ppm fuels. This is trend is consistent with previous studies that have shown that higher N₂O emissions are generally observed for higher sulfur fuels [24,25]. Statistically significant differences in N₂O emissions were not found between the as-received and the aged catalyst.

Iabi	Table 10. FTP N ₂ O Emissions Results (mg/mi)									
	Fuel Averages	Catalyst Average								
5	6 ^c	OE	9							
30	$7^{\rm c}$	Aged	11							
150	17 ^{a,b}									

Table 10. FTP N₂O Emissions Results (mg/mi)

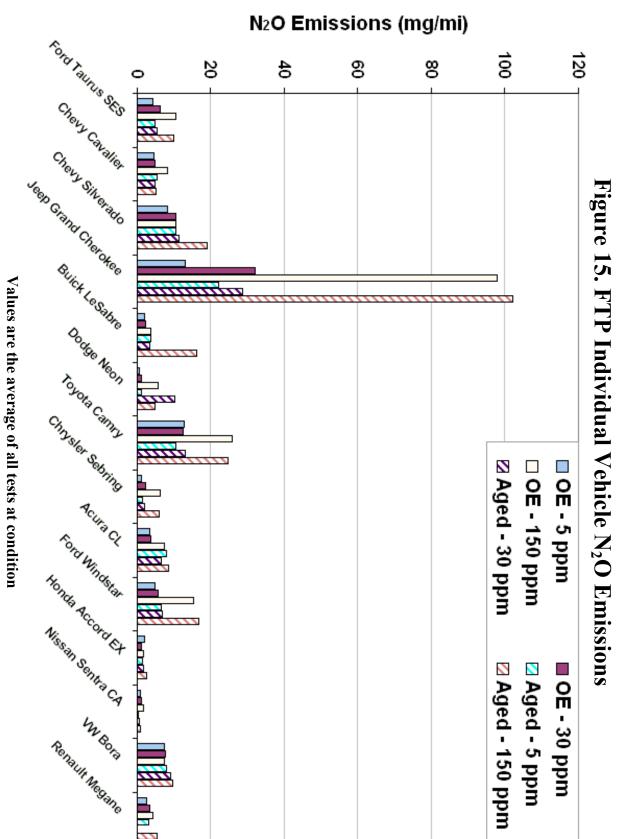
a: Statistically significant different from 5 ppm;

b: Statistically significant different from 30 ppm;

c: Statistically significant different from 150 ppm;

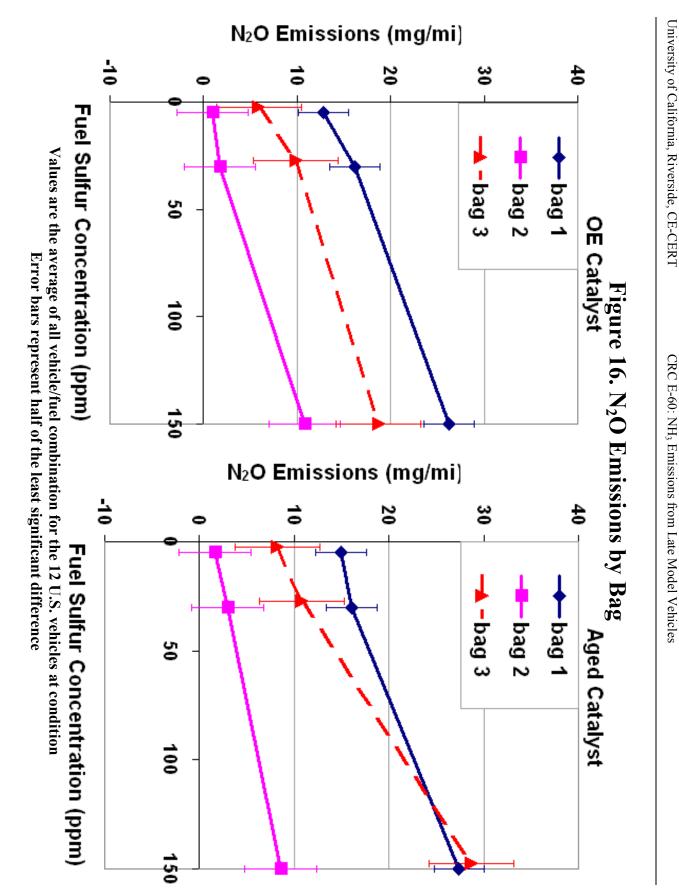
 N_2O emissions for individual FTP bags are presented in Figure 16. N_2O emissions were found to be the highest for bag 1 followed by bag 3 of the FTP. Although N_2O is considered to be a by product of reactions on the catalyst, previous studies have shown that N_2O it is more readily formed at intermediate temperatures in the range of ~250°C-450°C [39-43]. Since such temperatures are typically found when the catalyst is warming up to operational temperatures, it is not surprising that N_2O emissions are highest during bags 1 and 3, which include a start-up component. A plot of real-time N_2O emissions is provided in Figure 17. Consistent with the results for the weighted FTP, statistically significant fuel effects were found for bags 1 and 3. Pair-wise comparisons showed that for N_2O emissions the 150 ppm fuel was higher at a statistically significant level compared to the 5 and 30 ppm fuels for bags 1 and 3, although the vehicle by fuel interaction was statistically significant for bag 3. Fuel effects for bag 2 were statistically significant between the 30 and 150 ppm fuels, but only at the 90% confidence level. Statistically significant catalyst effects on N_2O emissions were only found for bag 3.

Table 11. FTP N_2O Emissions for Individual Bags (mg/ml)									
	F	uel Avera	iges		Cata	alyst Ave	rages		
	Bag 1	Bag 2	Bag 3		Bag 1	Bag 2	Bag 3		
5	14 ^c	1	7 ^c	OE	18	5	12*		
30	16 ^c	2 ^c	10 ^c	Aged	19	4	16*		
150	27 ^{a,b}	10 ^b	24 ^{a,b}	_					


Table 11. FTP N ₂ O	Emissions for Individual Bags	(mg/mi)
	Emissions for marriadal Dags	(

a: Statistically significant different from 5 ppm;

b: Statistically significant different from 30 ppm;


c: Statistically significant different from 150 ppm;

*: Statistically significant differences between catalysts.

University of California, Riverside, CE-CERT

CRC E-60: NH₃ Emissions from Late Model Vehicles

University of California, Riverside, CE-CERT

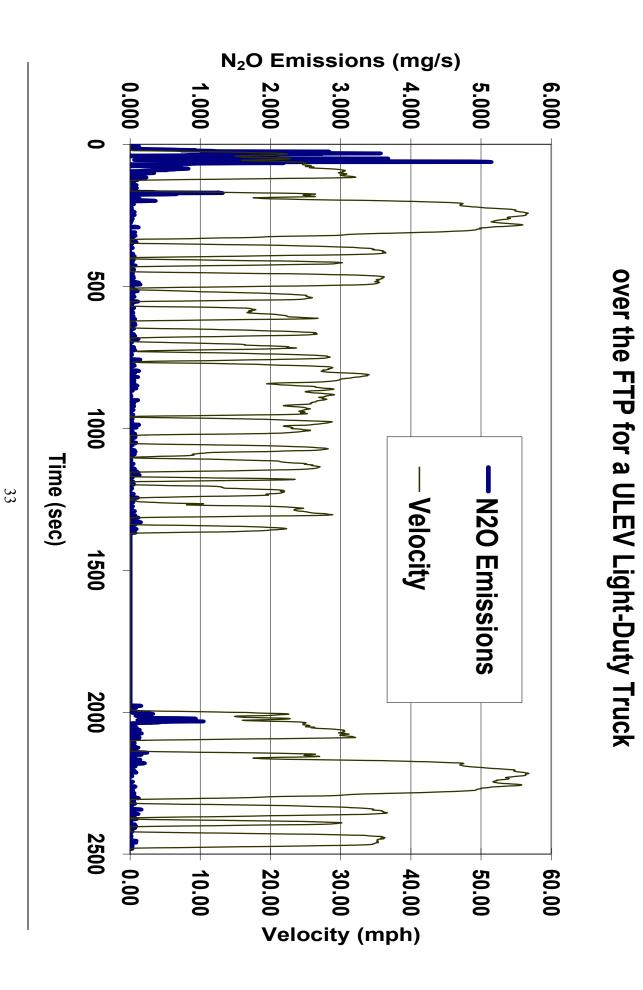


Figure 17. Real-Time N₂O Emissions

3.2 US06 Emissions Results

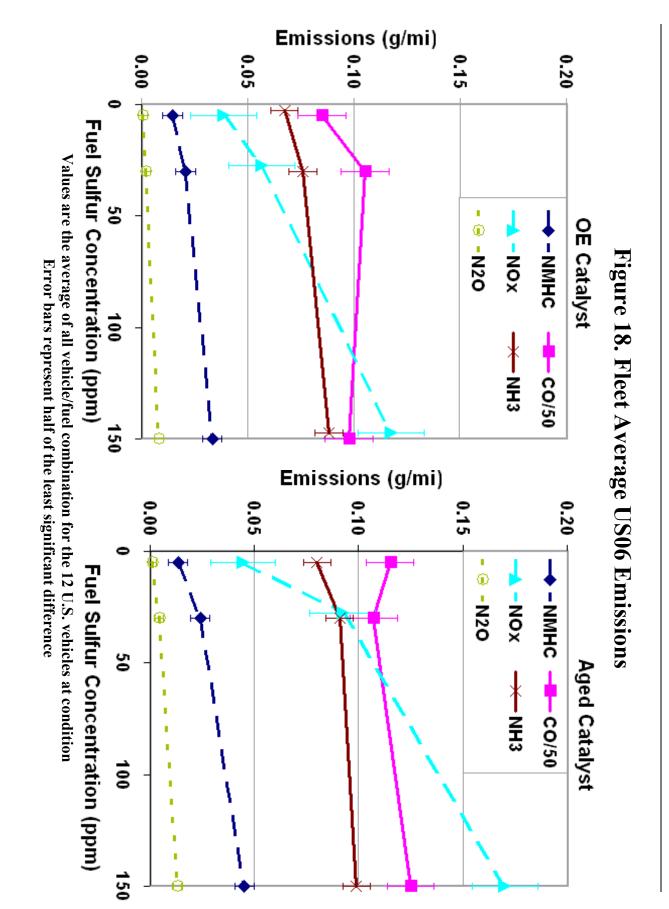
The fleet average US06 emissions for NH_3 , NMHC, CO, NO_x , and N_2O are presented in Figure 18. This Figure shows the average emission results on each fuel/catalyst combination for each of the 12 California-certified test vehicles. These averages exclude tests determined to be outliers by the Hawkins-Perold test. The CO emissions are divided by 50 to allow the details for the other emissions to be more clearly seen in the figure. More complete test results for the US06 are provided in Appendix H. Complete ANOVA analysis results are provided in Appendix I for the US06. It is worth noting that of the test vehicles, only the Buick LeSabre, Toyota Camry, and Nissan Sentra were certified over the US06 cycle.

3.2.1 US06 NH₃ Emissions

As shown in Figure 18, NH₃ emissions over the US06 were considerably higher than those found for the FTP and showed slightly higher fleet averages for the tests conducted with higher fuel sulfur levels and aged catalysts. The fleet average results for NH₃ emissions by fuel and by catalyst for all test configurations are presented in Table 12. The higher NH₃ emissions over the US06 cycle can primarily be attributed to higher emissions during periods of aggressive acceleration. This is shown in Figure 19, which shows a plot of NH₃ vs. time for the US06 for one of the test vehicles.

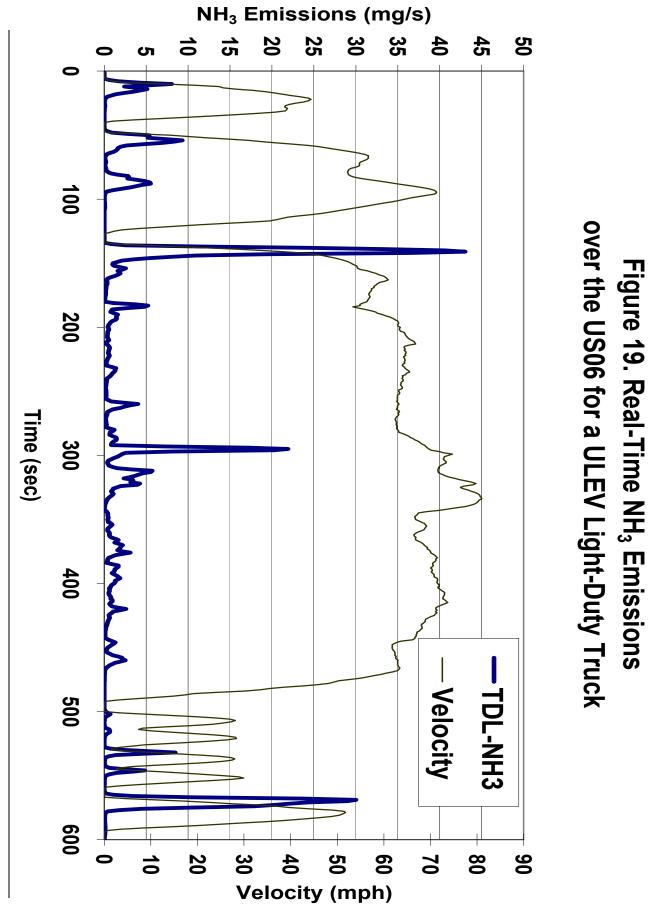
	Fuel Averages		Catalyst Averages
5	74 ^c	OE	77*
30	83 ^c	Aged	90*
150	94 ^{a,b}	_	

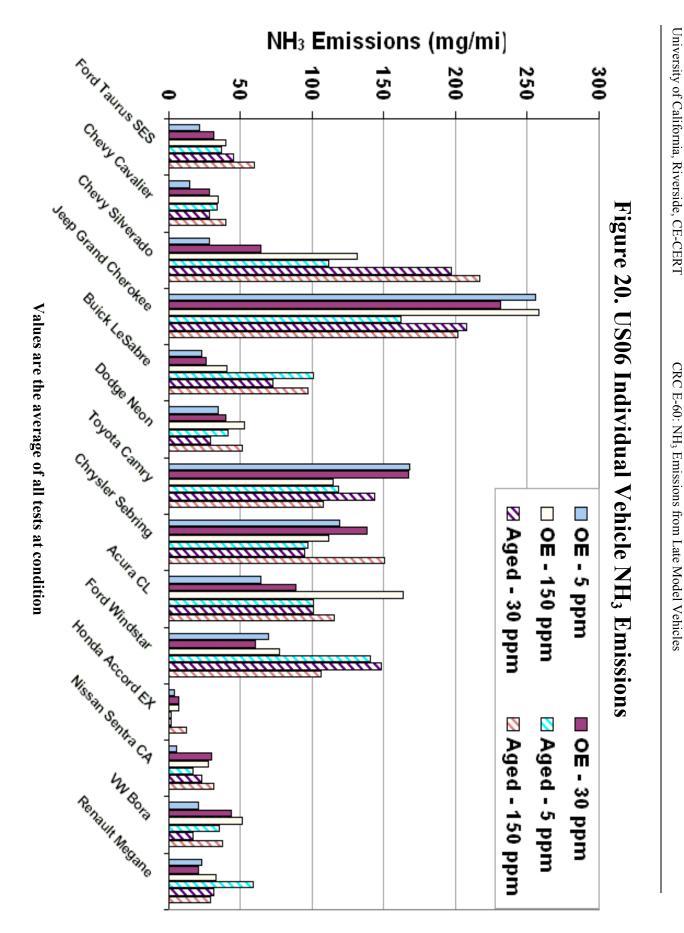
a: Statistically significant different from 5 ppm;


b: Statistically significant different from 30 ppm;

c: Statistically significant different from 150 ppm;

*: Statistically significant catalyst differences at 90% confidence level.


ANOVA analyses showed that the fuel effects were statistically significant. Pair-wise tests showed that the differences between NH₃ emissions for the 150 ppm fuel compared with both the 30 and 5 ppm fuels were statistically significant. Fleet average NH₃ emissions for the 150 ppm fuel were 27% higher than those for the 5 ppm fuel and 12% higher than those for the 30 ppm fuel. The individual vehicle results are presented in Figure 20 for US06 NH₃ emissions. It is interesting to note that in a previous study of fuel sulfur effects in our laboratory on NH₃ emissions over the US06, it was found that a majority of the vehicles showed an opposite trend of decreasing NH₃ emissions with a higher sulfur fuel [24]. In the previous study, however, at a number of the test matrix points only single tests were performed. The vehicle conditioning for that study was also less rigorous than that used in the present work.


NH₃ emissions for the aged catalysts were 17% higher than those for the as-received catalysts. The effects of catalyst age were statistically significant, although at only the 90% confidence level. The vehicle by catalyst interaction was also statistically significant, indicating that the effects of catalyst age differed between vehicles, as shown in Figure 20.

University of California, Riverside, CE-CERT

CRC E-60: NH₃ Emissions from Late Model Vehicles

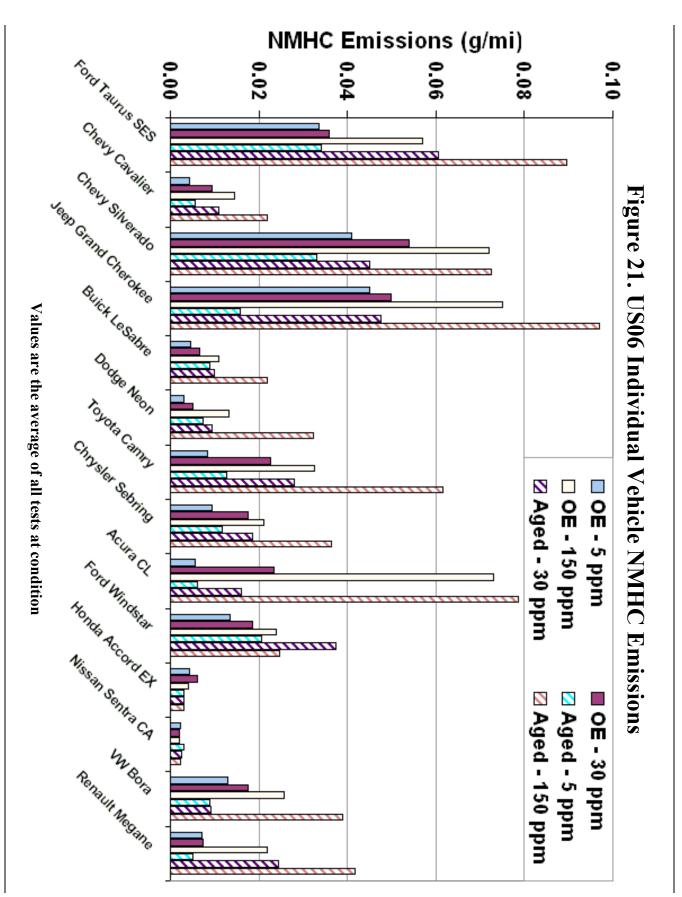
University of California, Riverside, CE-CERT

3.2.2 US06 NMHC Emissions

US06 fleet average NMHC emissions are presented in Table 13 for the three test fuels and two catalysts. The individual vehicle data for the US06 NMHC emissions are presented in Figure 21. NMHC emissions over the US06 showed more consistent trends for fuel sulfur level and catalyst age. NMHC emissions were found to increase with increasing fuel sulfur levels. Overall, the fuel sulfur trends were stronger over the US06 cycle compared to the FTP. Fleet average NMHC emissions were found to increase by 64% from the 5 to 30 ppm fuels and by 178% from the 5 to 150 ppm fuels. NMHC emissions for tests conducted on the aged catalyst were approximately 22% higher than those for the as-received catalyst.

ANOVA analyses showed that fuel sulfur effects were statistically significant, although a statistically significant vehicle by fuel interaction was also found. Pair-wise comparisons showed that the 5, 30 and 150 ppm fuels were all different from each other for NMHC emissions over the US06 cycle at a statistically significant level. Catalyst effects were also statistically significant at the 90% confidence level, although the vehicle by catalyst interaction was statistically significant.

1 au	Table 15. US00 Minite Emissions Results (g/mi)									
	Fuel Averages		Catalyst Averages							
5	$0.014^{b,c}$	OE	0.023*							
30	0.023 ^{a,c}	Aged	0.028*							
150	$0.039^{a,b}$	_								


Table 13. US06 NMHC Emissions Results (g/mi)

a: Statistically significant different from 5 ppm;

b: Statistically significant different from 30 ppm;

c: Statistically significant different from 150 ppm;

*: Statistically significant differences between catalysts.

3.2.3 US06 CO Emissions

US06 CO emission results are shown in Table 14 for the three test fuels and the two catalyst configurations. The individual vehicle results for CO are presented in Figure 22. CO emissions for the aged catalysts were approximately 21% higher for the tests conducted on the aged catalysts compared with the as-received catalysts. ANOVA analyses indicate that the differences between catalysts were statistically significant at the 90% confidence level. A statistically significant vehicle by catalyst interaction was also found, however, indicating some differences in the effect of catalyst age for different vehicles. Fuel sulfur level effects were statistically significant at the 90% confidence level between only the 5 and 150 ppm fuels.

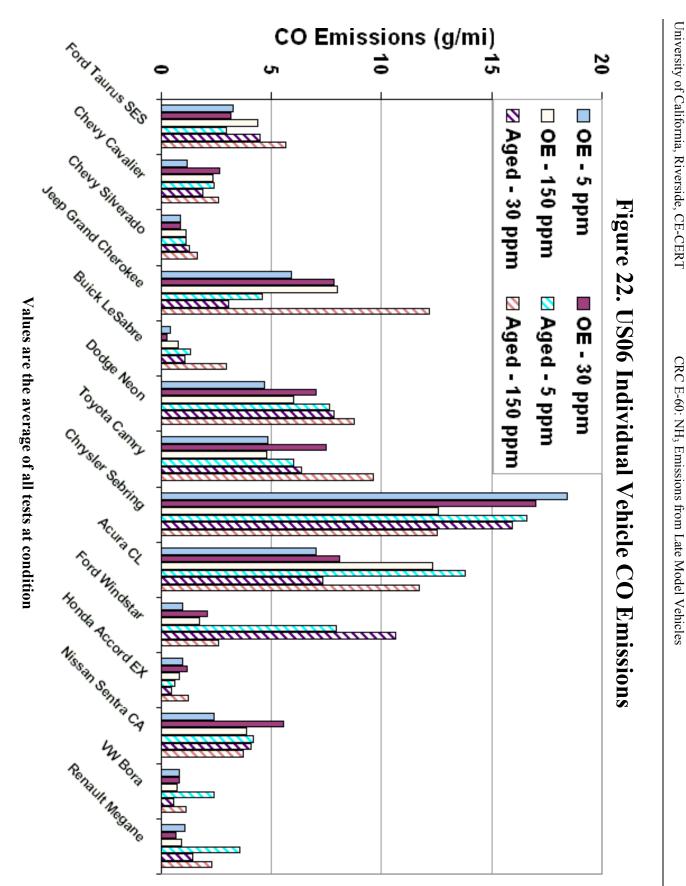

Table 14. 0500 CO Emissions Results (g/m)								
	Fuel Averages		Catalyst Averages					
5	4.999 [°]	OE	4.796*					
30	5.310	Aged	5.789*					
150	5.568 ^a	_						

Table 14. US06 CO Emissions Results (g/mi)

a: Statistically significant different from 5 ppm;

c: Statistically significant different from 150 ppm;

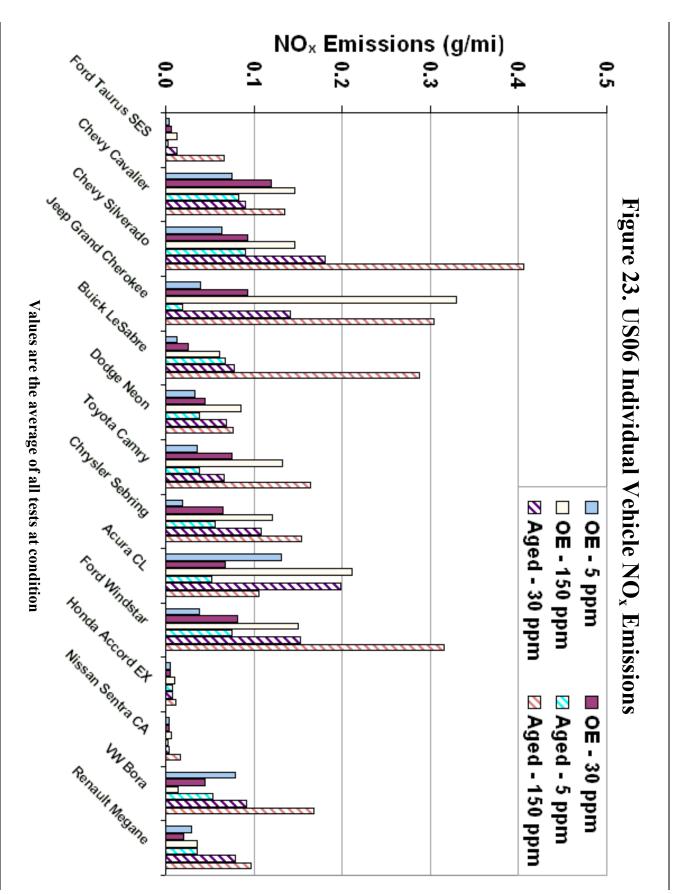
*: Statistically significant differences between catalysts.

3.2.4 US06 NO_x Emissions

Fuel effects on NO_x emissions over the US06 were relatively strong as shown in Figure 18 and Table 15. The individual vehicle data for the US06 NO_x emissions are presented in Figure 23. Fleet average NO_x emissions compared with the 5 ppm fuel were 79% higher for the 30 ppm fuel and 243% higher for the 150 ppm fuel. The ANOVA analysis results showed that fuel effects were statistically significant. Pair-wise comparisons showed that the 5, 30, and 150 ppm fuels were all different from each other at a statistically significant level.

1 ai	Table 15. $0500 \text{ NO}_{\text{X}}$ Emissions Results (g/m)									
	Fuel Averages	Catalyst Average								
5	$0.042^{b,c}$	OE	0.071*							
30	$0.075^{a,c}$	Aged	0.102*							
150	0.144 ^{a,b}	0								

Table 15. US06 NO_x Emissions Results (g/mi)


a: Statistically significant different from 5 ppm;

b: Statistically significant different from 30 ppm;

c: Statistically significant different from 150 ppm;

*: Statistically significant differences between catalysts.

The fleet average NO_x emissions for the aged catalysts were 44% higher than those for the asreceived catalysts for the US06. These catalyst age effects were found to be statistically significant.

CRC E-60: NH₃ Emissions from Late Model Vehicles

3.2.4 US06 N₂O Emissions

US06 N₂O emission results are presented in Table 16 for the three fuels and the two catalyst configurations. The individual vehicle results are presented in Figure 24 for US06 N₂O emissions. N₂O emissions over the US06 were lower than those obtained over the FTP. This is not surprising since N₂O is more readily formed at intermediate catalyst temperatures, as opposed to the higher temperatures observed over the US06 cycle. The ANOVA analysis results showed that fuel effects were statistically significant for N₂O emissions over the US06, while catalyst effects were not. Pair-wise comparisons showed that the 5, 30 and 150 ppm fuels were all different from each other for N₂O emissions over the US06 cycle at a statistically significant level. The absolute difference between the 5 and 30 ppm fuels was relatively small, however.

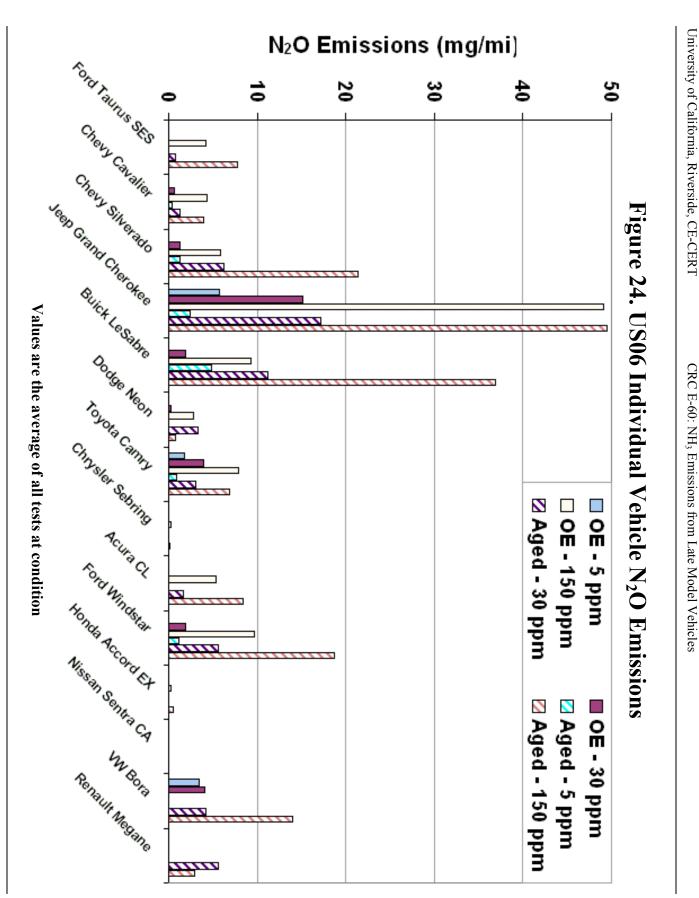
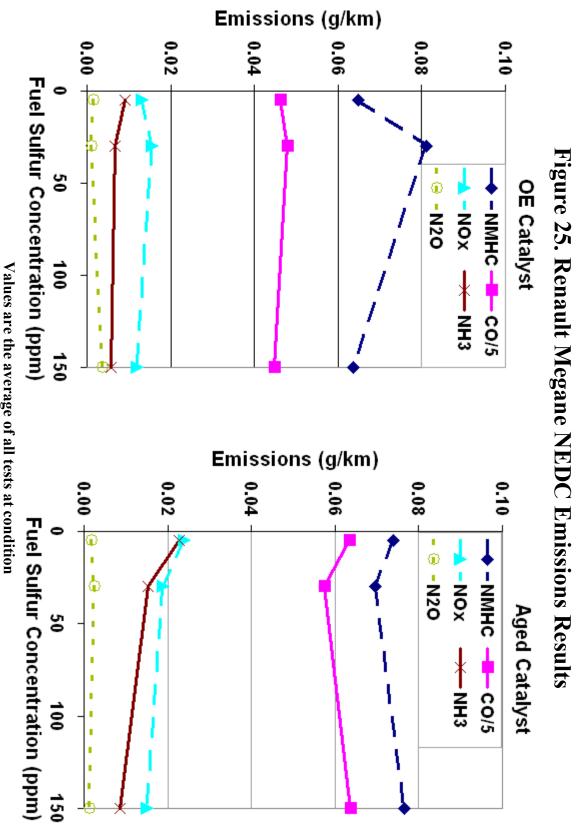

1 41	Table 10: 0500 1120 Emissions Results (g/m)									
	Fuel Averages	Catalyst Average								
5	$0.001^{b,c}$	OE	0.004							
30	0.003 ^{a,c}	Aged	0.006							
150	0.011 ^{a,b}	_								

Table 16. US06 N₂O Emissions Results (g/mi)

a: Statistically significant different from 5 ppm;

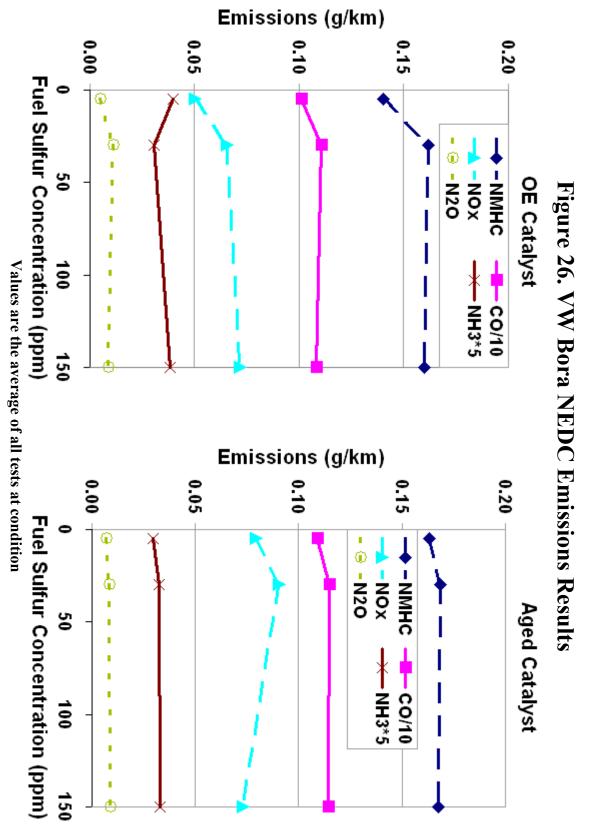
b: Statistically significant different from 30 ppm;

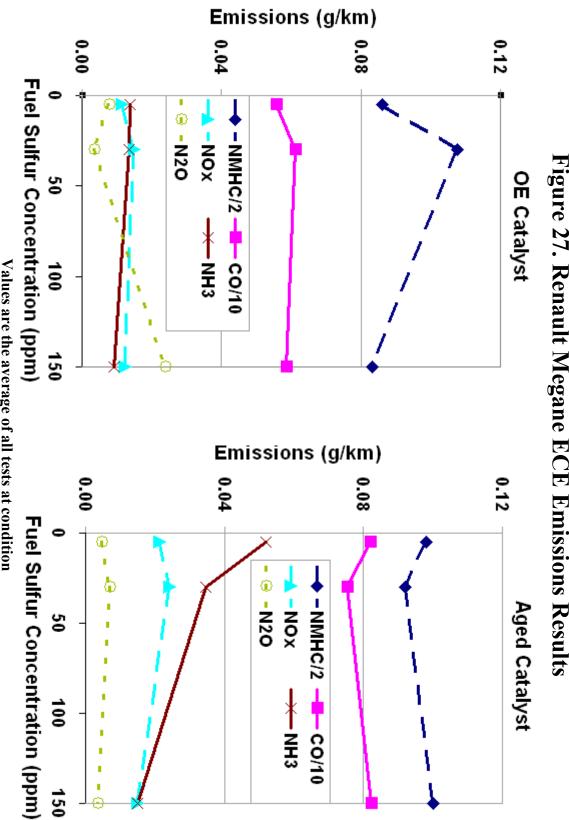
c: Statistically significant different from 150 ppm;


3.3 European Vehicle Emissions Results

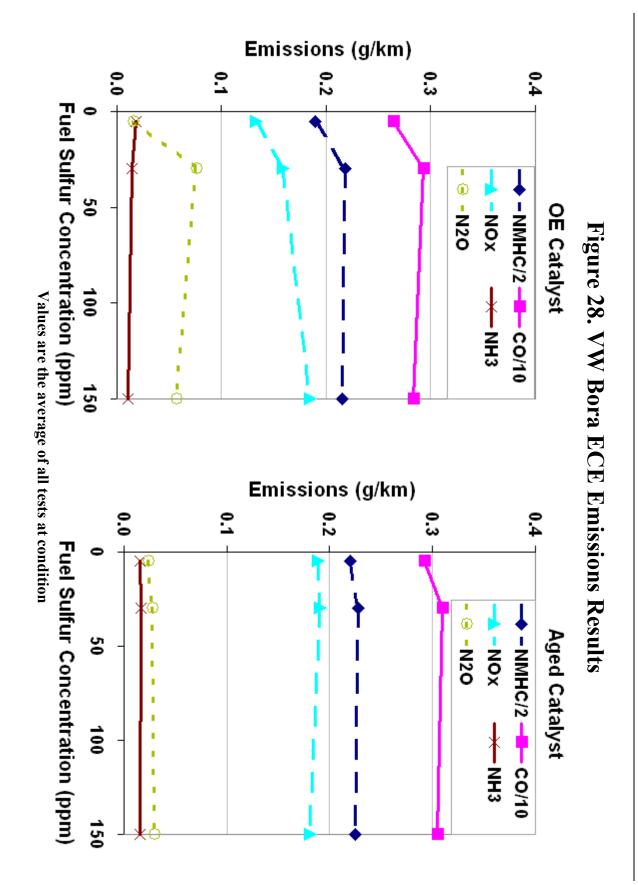
3.3.1 NEDC Emissions Results

The NEDC results for the VW Bora and Renault Megane are presented in Figures 25 and 26, respectively, for NMHC, CO, NO_x, and NH₃. Complete NEDC results are provided in Appendix J. For these graphs, the CO emissions for the Renault are divided by 5, the CO emissions for the VW Bora are divided by 10, and the NH₃ emissions for the VW Bora are multiplied by 5 to allow the features for all emissions to be presented in the Figures. In comparison with the other cycles used in this project, the NEDC cycle is more similar to the FTP in that it includes a cold start test portion and is not as aggressive as the US06 cycle.


For the Renault Megane, CO, NO_x and NH_3 were all found to be higher for the tests conducted on the aged catalyst in comparison with the as-received catalyst. NH_3 emissions also showed a trend of lower emissions with decreasing fuel sulfur level for the Renault over the NEDC. It is worth noting that a similar trend in NH_3 emissions was also observed for the aged catalyst over the FTP (see Figure 5). For the VW Bora, fuel sulfur and catalyst effects generally did not have a significant impact on emissions over the NEDC cycle, although it was found that NO_x emissions for the tests on the aged catalyst with the 5 and 30 ppm fuel were slightly higher than those for the as-received catalysts.


The emissions results for the ECE and EUDC (Extra Urban Driving Cycle) segments of the NEDC cycle are presented in Figures 27-30 for the VW Bora and the Renault Megane. The ECE portion of the cycle is the first part that includes four iterations of the ECE driving trace and a cold start. Since the cold start is the largest component of the overall emission rate, a majority of the emissions are generated during the ECE portion of the cycle. The trends for the ECE cycle are similar to those found for the total NEDC emissions.

Values are the average of all tests at condition


47

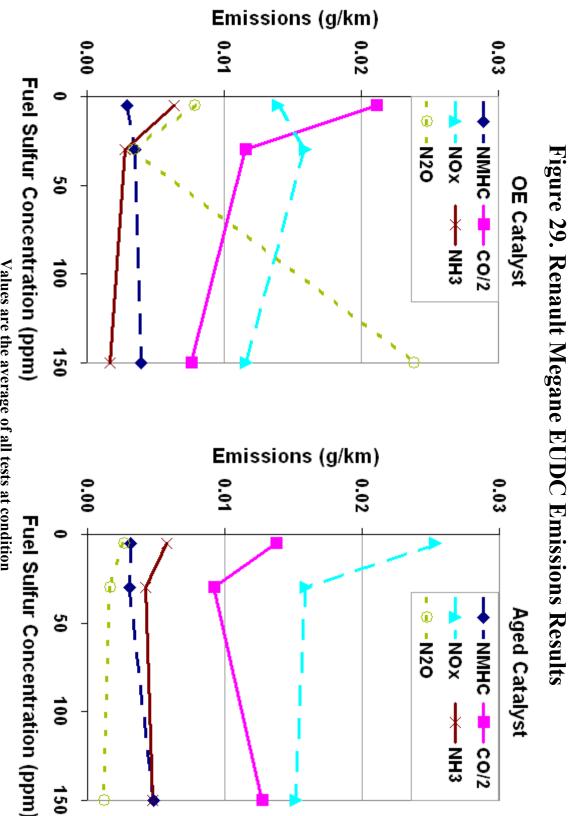
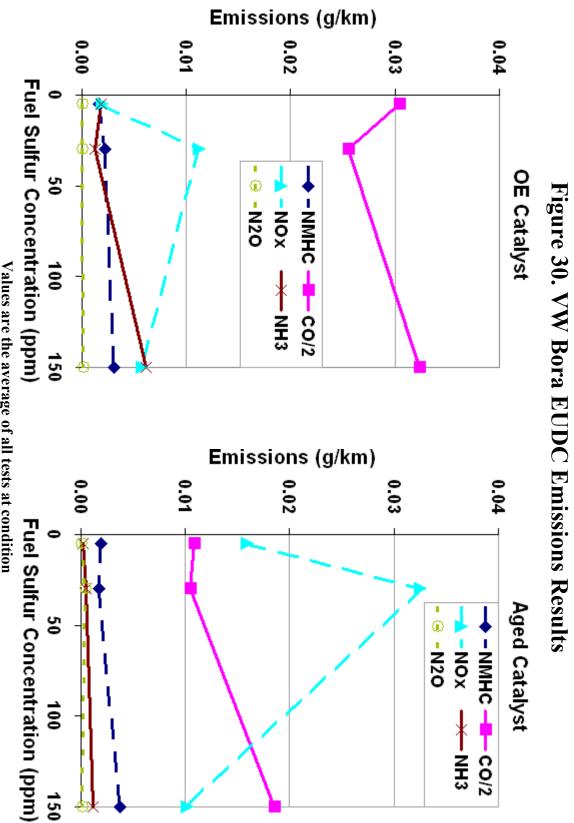


Figure 27. Renault Megane ECE Emissions Results

Values are the average of all tests at condition


University of California, Riverside, CE-CERT CRC E-60: NH₃ Emissions from Late Model Vehicles

Values are the average of all tests at condition

Fuel Sulfur Concentration (ppm)

CRC E-60: NH₃ Emissions from Late Model Vehicles

Values are the average of all tests at condition

3.3.2 FTP and US06 Emissions Including European Vehicles

Since the European vehicles were excluded from the averages and statistical analyses discussed above, some additional analysis was done with these vehicles included. The results in Tables 17 and 18 show the FTP and US06 emissions for the NMHC, CO, NO_x , NH_3 , and N_2O with the European vehicles included. Overall, the results with the inclusion of the European vehicles were very similar to those obtained with just the U.S. vehicles. Statistical analyses for the results were also similar for the cases where the European vehicles were excluded or included, as shown in Appendices F and I. It is worth noting that over the FTP and US06, the European vehicles generally fell within the range of emission levels found for the remaining vehicles in the fleet.

	Fuel Averages						Cataly	yst Aver	ages		
	NMHC	CO	NO _x	NH ₃	N_2O		NMHC	СО	NO _x	NH ₃	N ₂ O
5	0.049	0.639	0.053 ^c	0.016	0.005 ^c	OE	0.048	0.610^{*}	0.055		0.009
30	0.048°				0.007^{c}	Aged	0.050	0.691*	0.067	0.020^{*}	0.010
150	0.052^{b}	0.682	$0.072^{a,b}$	0.018	0.016 ^{a,b}						

Table 17. FTP Emissions Results Including the European Vehicles (g/mi)

	Fuel Averages						Cataly	st Avera	ages		
	NMHC	CO	NO _x	NH ₃	N_2O		NMHC	СО	NO _x	NH ₃	N ₂ O
5	0.013 ^{b,c}	4.564	0.043 ^{b,c}	0.068 ^c	$0.001^{b,c}$	OE	0.022^{*}	4.229*	0.066*	0.071	0.003
					$0.003^{a,c}$	Aged	0.027^{*}	5.233 [*]	0.100^{*}	0.082	0.006
150	0.038 ^{a,b}	4.953	0.134 ^{a,b}	$0.086^{a,b}$	$0.010^{a,b}$						

a: Statistically significant different from 5 ppm;

b: Statistically significant different from 30 ppm;

c: Statistically significant different from 150 ppm;

*: Statistically significant differences between catalysts.

4. Summary and Conclusions

For this study, the emissions impact of fuel sulfur and catalyst age was evaluated for 14 vehicles. The 14 vehicles included 12 California-certified LEV to SULEV vehicles and 2 European vehicles. Each vehicle was evaluated using 3 fuels (5, 30, and 150 ppm sulfur) and using the asreceived and aged catalysts. Vehicles were tested on each fuel/catalyst configuration over the FTP and US06 test cycles. The two European vehicles were also tested over the NEDC cycle on each of the fuel/catalyst configurations. It should be noted that for the primary analyses, the European vehicles were excluded from the data set since the European vehicles are certified to different limits and procedures.

A tunable diode laser was developed and successfully used to measure engine-out and tailpipe NH₃ in real-time. The TDL offers both the detection limits and the response time necessary to investigate low-level concentrations of exhaust gases. Additionally, the TDL has the important advantage in that it can make measurements *in-situ* using raw exhaust gases. The combination of these advantages allows the measurement of highly time-resolved NH₃ emissions with sensitivity levels of better than 0.5 ppmv at two standard deviations, or minimum detection limits of roughly 0.5 mg/mi.

The major results of this study are:

*NH*₃ *Emissions for the FTP and US06*

- For the California-certified vehicles, NH₃ emissions over the FTP were generally lower than those of the regulated emissions. Fleet average FTP NH₃ emissions averaged between 14 and 21 mg/mi depending on the fuel/catalyst combination. Five of the test vehicles had NH₃ emissions below 5 mg/mi for most of the test configurations. Only 4 vehicles had NH₃ emissions over 20 mg/mi when averaged over all test configurations. The highest NH₃ emissions were found during bag 1 of the FTP after catalyst light-off.
- NH₃ emissions over the US06 were considerably higher than those found for the FTP with levels comparable with or greater than US06 emissions of other regulated emissions such as NMHC and NO_x.
- Measurements of engine-out NH₃ emissions indicated that NH₃ emissions were formed primarily over the catalyst.
- Fuel sulfur content did not affect fleet average NH₃ emissions over the FTP. Over the US06 cycle, on the other hand, fuel sulfur effects were found to be statistically significant with higher fleet average NH₃ emissions observed for increasing fuel sulfur level. Fleet average NH₃ emissions over the US06 for the 150 ppm fuel were 27% higher than those for the 5 ppm and 12% higher than those for the 30 ppm fuel.
- Catalyst aging effects on NH₃ emissions were found to be statistically significant for the FTP and for the US06, with higher emissions for the aged catalysts. Fleet average NH₃ emissions were 50% higher for the aged catalysts over the FTP and 17% higher for the aged catalysts over the US06. A statistically significant vehicle by catalyst interaction was found, however, for both the FTP and US06 cycles.

Regulated and N₂O Emissions for the FTP

- For the FTP, fleet average NO_x emissions were higher at a statistically significant level for the 150 ppm fuel compared with both the 5 and 30 ppm sulfur fuels, although the vehicle by fuel interaction was also statistically significant. For fleet average NMHC, emissions were higher at statistically significant levels for the 150 ppm fuel compared with the 30 ppm fuel, although the magnitude of this fuel effect was small.
- The effects of catalyst age were found to be statistically significant for fleet average CO emissions, with higher emissions observed for the aged catalysts.
- Similar to NH₃, the N₂O emissions over the FTP were generally lower than those of the regulated pollutants. The results showed there was a statistically significant increase in N₂O emissions for the 150 ppm fuel compared to both the 30 and 5 ppm fuels. This trend is consistent with previous studies that have shown that higher N₂O emissions are generally observed for higher sulfur fuels. The highest N₂O emissions for the FTP were found in bag 1, as the catalyst is warming up to operational temperatures.

Regulated and N₂O Emissions for the US06

- The effects of fuel sulfur on both fleet average NMHC and NO_x emissions were found to be statistically significant over the US06 cycle, although a statistically significant vehicle by fuel interaction was also found for NMHC. A pair-wise comparison showed that fuels with 5, 30 and 150 ppm sulfur were all different from one another at a statistically significant level for both fleet average NO_x and NMHC emissions over the US06 cycle. The magnitude of the fuel sulfur effects over the US06 for NMHC and NO_x was also found to be larger on a relative basis than those found for the FTP cycle. For fleet average CO emissions, only the fuel effects between the 5 and 150 ppm fuels were found to be statistically significant at the 90% confidence limits.
- Catalyst effects over the US06 were found to be statistically significant for fleet average NMHC, CO, and NO_x emissions, with higher emissions for the aged catalyst. The vehicle by catalyst interaction was statistically significant, however, for both NMHC and CO emissions.
- Fleet average N₂O emissions over the US06 were lower than those obtained over the FTP. N₂O emissions showed trends of higher emissions with increasing fuel sulfur level. Pair-wise comparisons showed that the 5, 30 and 150 ppm fuels were all different from each other for N₂O emissions over the US06 cycle at a statistically significant level.

Emission Results for the European Vehicles

- Overall, the fleet average FTP and US06 results with the inclusion of the European vehicles were very similar to those obtained with just the U.S. vehicles.
- Over the NEDC cycle, CO, NO_x and NH₃ for the Renault Megane were all found to be higher for the tests conducted on the aged catalyst in comparison with the as-received catalyst. For the VW Bora, fuel sulfur and catalyst effects generally did not have a significant impact on emissions over the NEDC cycle.

5.0 Acknowledgments

The authors acknowledge the contribution and support of the following individuals during the course of this project. Dave Martis, Joseph Calhoun, Ross Rettig, Joe Gil, and Joe Valdez of the Vehicle Emissions Research Laboratory (CE-CERT) performed the emissions testing on the vehicles. We thank David Karecki of UNISEARCH Associates, Inc. for his assistance in the verification of the TDL instrument. We thank Honda Research and Development America, Inc., and CONCAWE for providing test vehicles for this program. We thank the Coordinating Research Council and CONCAWE for their financial support of this program under CRC contract E-60.

6.0 References

- Benson, J.D.; Burns, V.; Gorse, R.A.; Hochhauser, A.M.; Koehl, W.J.; Painter, L.J.; and Reuter, R.M. (1991) Effects of Gasoline Sulfur Level on Mass Exhaust Emissions – Auto/Oil Air Quality Improvement Research Program. SAE Paper 912323. Society of Automotive Engineers, Warrendale, PA.
- Koehl, W.J.; Gorse, R.A. Jr.; Knepper, J.C.; Rapp, L.A.; Benson, J.D.; Hochhauser, A.M.; Leppard, W.R.; Reuter, R.M.; Burns, V.R.; Painter, L.J.; and Rutherford, J.A. (1993) Effects of Gasoline Sulfur Level on Exhaust Mass and Speciated Emissions: The Question of Linearity-Auto/Oil Air Quality Improvement Program, SAE Paper No. 932727. Society of Automotive Engineers, Warrendale, PA.
- Leppard, W.R.; Burns, V.R.; Painter, L.J.; Reuter, R.M.; Koehl, W.J.; Hochhauser, A.M.; Rapp, L.A.; Rutherford, J.A.; Benson, J.D.; Knepper, J.C.; and Ribbon, B.H. (1995) Effects of Gasoline Properties (T₅₀, T₉₀, and Sulfur) on Exhaust Hydrocarbon Emissions of Current and Future Vehicles: Modal Analysis – The Auto/Oil Air Quality Improvement Research Program. SAE Paper No. 952504. Society of Automotive Engineers, Warrendale, PA.
- Leppard, W.R.; Burns, V.R.; Painter, L.J.; Reuter, R.M.; Koehl, W.J.; Hochhauser, A.M.; Rapp, L.A.; Rutherford, J.A.; Benson, J.D.; Knepper, J.C.; and Ribbon, B.H. (1995) Effects of Gasoline Properties (T₅₀, T₉₀, and Sulfur) on Exhaust Hydrocarbon Emissions of Current and Future Vehicles: Speciation Analysis – The Auto/Oil Air Quality Improvement Research Program. SAE Paper No. 952505. Society of Automotive Engineers, Warrendale, PA.
- Rutherford, J.A.; Burns, V.R.; Leppard, W.R.; Ribbon, B.H.; Koehl, W.J.; Hochhauser, A.M.; Painter, L.J.; Reuter, R.M.; Benson, J.D.; Knepper, J.C.; and Rapp, L.A. (1995) Effects of Gasoline Properties on Emissions of Current and Future Vehicles –T₅₀, T₉₀, and Sulfur– The Auto/Oil Air Quality Improvement Research Program. SAE Paper No. 952510. Society of Automotive Engineers, Warrendale, PA.
- 6. AAMA/AIAM (1997) AAMA/AIAM Study on the Effects of Fuel Sulfur on Low Emission Vehicle Criteria Pollutants. Report by the American Automobile Manufacturers Association (AAMA) and the Association of International Automobile Manufacturers (AIAM), December.
- Schleyer, C.H.; Gunst, R.F.; Eckstrom, J.; Freel, J.; Gorse, R.A.; Barnes, G.J.; Eng, K.D.; Natarajan, M.; and Schlenker, A.M. (1998) Effect of Fuel Sulfur on Emissions in California Low Emission Vehicles. SAE Paper No. 982726. Society of Automotive Engineers, Warrendale, PA.
- 8. AAM/AIAM (2001) Industry Low-Sulfur Test Program. Presented to the California Air Resources Board by the Alliance of Automobile Manufacturers (AAM) and the Association

of International Automobile Manufacturers (AIAM), ww.arb.ca.gov/cbg/meeting/2001/mtg2001.htm, September.

- 9. Mayotte, S.G., et al. (1994) Reformulated Gasoline Effects on Exhaust Emissions: Phase 1; Initial Investigation of Oxygenate, Volatility, Distillation, and Sulfur Effects. SAE Paper No. 941973. Society of Automotive Engineers, Warrendale, PA.
- Mayotte, S.G., et al. (1994) Reformulated Gasoline Effects on Exhaust Emissions: Phase II; Continued Investigation of Oxygenate Content, Oxygenate Type, Sulfur Olefins, and Distillation Parameters. SAE Paper No. 941974. Society of Automotive Engineers, Warrendale, PA.
- Korotney, D.J.; Rao, V.; Lindhjem, C.E.; and Sklar, M.S. (1995) Reformulated Gasoline Effects on Exhaust Emissions: Phase III; Investigation on the Effects of Sulfur Olefins, Volatility, and Aromatics and the Interactions Between Olefins and Volatility of Sulfur. SAE Paper No. 950782. Society of Automotive Engineers, Warrendale, PA.
- 12. Lindhjem, C.E. (1995) The Effect of Gasoline Reformulation and Sulfur Reduction on Exhaust Emissions from Post-1983 but Pre-1990. SAE Paper No. 950778. Society of Automotive Engineers, Warrendale, PA.
- 13. Sztenderowicz, M.L.; Bandy, W.J.; Most, W.J.; Jetter, J.J.; Sprik, T.L.; Doherty, H.; and Eng, K.D. (1995) Effects of Fuel Sulfur on Emissions from Transitional Low Emission Vehicles. SAE Paper No. 952561. Society of Automotive Engineers, Warrendale, PA.
- 14. Palmer, F., (1995) European Programme on Emissions, Fuels, and Engine Technology EPEFE Report. Final reported prepared for ACEA and Europia. Published by Compugraf SPRL.
- 15. Shelef, M., and Gandhi, H.S. (1974) Ammonia Formation in the Catalytic Reduction of Nitric Oxide. III. The Role of Water-Gas Shift, Reduction by Hydrocarbons, and Steam Reforming. *Ind. Eng. Chem., Prod. Res. Develop.*, **13**, 80-85.
- 16. Pingent, M., and De Soete, G. (1989) Nitrous Oxide N₂O in Engine Exhaust Gases A First Appraisal of Catalyst Impact. SAE Technical Paper No. 890492.
- Fraser, M.P., and Cass, G.R. (1998) Detection of Excess Ammonia Emissions from In-Use Vehicles and the Implications for Fine Particle Control. *Environ. Sci. & Technol.* 32, 1053-1057.
- 18. Kean, A.J.; Harley, R.A.; Littlejohn, D.; and Kendall, G.R. (2000) On Road Measurement of Ammonia and Other Motor Vehicle Exhaust Emissions, *Environ. Sci. & Technol.* 32, 3535-3539.
- 19. Baum, M.M.; Kiyomiya, E.S.; Kumar, S.; Lappas, A.M.; and Lord, H.C. III, (2000) Multicomponent Remote Sensing of Vehicle Exhaust by Dispersive Absorption

Spectroscopy. 1. Effect of Fuel Type and Catalyst Performance. *Environ. Sci. & Technol.* 34, 2851-2858.

- 20. Gandhi, H.S., and Shelef, M. (1991) Effects of Sulphur on Noble Metal Automotive Catalysts. *Applied Catalysts*, **77**, 175-186.
- 21. Gandhi, H.S.; Piken, A.G.; Stepien, H.K.; Shelef, M.; Delosh, R.G.; and Heyde, M.E., (1977) SAE Technical Paper No. 770196.
- 22. Summers, J.C., and Baron, K. (1979) The Effects of SO₂ on the Performance of Noble Metal Catalyst in Automotive Exhaust. *Journal of Catalysis*, **57**, 380-389.
- 23. Durbin, T.D.; Wilson, R.D.; Norbeck, J.M.; Miller, J.W.; Huai, T.; and Rhee, S.H. (2002) Estimates of the Emission Rates of Ammonia from Light-Duty Vehicles using Standard Chassis Dynamometer Test Cycles. *Atmospheric Environment*, **36**, 1475-1482.
- 24 Huai, T.; Durbin, T.D.; Rhee, S.H.; Miller, J.W.; and Norbeck, J.M. (2002) The Impact of Gasoline Fuel Sulfur Levels on NH₃ and N₂O Emissions. Proceedings of the 12th CRC On-Road Vehicle Emissions Workshop, San Diego, CA, April.
- 25 Baronick, J.; Heller, B.; Lach, G.; and Ramacher, B. (2000) Impact of Sulfur in Gasoline on Nitrous Oxide and Other Exhaust Gas Components. SAE Technical Paper No. 2000-01-0857.
- 26. DIRECTIVE 98/69/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 13 October 1998 relating to measures to be taken against pollution by emissions from motor vehicles and amending Council Directive 70/220/EEC.
- Durbin, T.D.; Miller, J.W.; Pisano, J.T.; Sauer, C.; Rhee, S.H.; and Huai, T. (2002) Impact of Engine Oil Properties on Emissions. Final Report for the Coordinating Research Council Project E-61, by the University of California at Riverside's Bourns College of Engineering – Center for Environmental Research and Technology, August.
- Kopp, V.R.; Furey, R.L., Cooper, J.H.; McNally, M.J.; Doerr, D.G.; and Schubert, A.J. (1995) Test Fuel Blending and Analysis for Phase II Follow-Up Programs: The Auto/Oil Air Quality Improvement Research Program SAE Technical Paper 952506. Society of Automotive Engineers, Warrendale, PA.
- 29. Sims, G.S., and Johri, S. (1988) Catalyst Performance Study Using Taguchi Methods. SAE Technical Paper 881589. Society of Automotive Engineers, Warrendale, PA.
- 30. Shoffner, B. (2001) A Vehicle Fuel Tank Flush Effectiveness Evaluation Program. Final Report by the Southwest Research Institute, San Antonio, TX, for the Coordinating Research Council under contract no. CM-138-01/1, August.
- 31. Graham, L. (1999) Gaseous and Particulate Matter Emissions from In-Use Light-Duty Gasoline Motor Vehicles. Report #99-67, Environment Canada, Ottawa, Ontario, Canada.

- 32. Mackay, G.I.; Nadler, S.D.; Karecki, D.R.; Schiff, H.I.; Butler, J.W.; Gierczak, C.A.; and Jesion, G. (1994) Dynamometer Intercomparison of Automobile Exhaust Gas CO/CO₂ Ratios and Temperature Between On-Board Measurements and a Remote Sensing Near Infrared Diode Laser System. UNISEARCH Interim Report 1b to the Coordinating Research Council and the National Renewable Energy Laboratory, Contract VE-8-2 August.
- 33. Chanda, A.; Mackay, G.I.; Karecki, D.R.; and Schiff, H.I. (1999) Measurement of Automotive Exhaust Using the LASIR Tunable Diode Laser Spectrometer System. Proceedings from the SPIE International Symposium, Jul 19-23, 1999, Denver, Colorado.
- 34. Bartone, M.; Broek, S.; Fuller, A.; and Pisano, J.T. (2000) Measurement of HF in a High Temperature Environment During the Recycling of Spent Potliner Using the Vortec Cyclone Melting System. Proceedings from the Air and Waste Management Association Annual Conference, June 2000, Salt Lake City, Utah.
- 35. Marrin, J., (2001) Personal communication. Scott-Marrin Gases, Riverside, CA.
- 36. Barth, M.; An, F.; Younglove, T.; Scora, G.; Levine, C.; Ross, M.; and Wenzel, T. (2000) Development of a Comprehensive Modal Emissions Model. Final Report by the University of California's College of Engineering-Center for Environmental Research and Technology, Riverside, CA for the National Cooperative Highway Research Program under contract NCHRP 25-11.
- 37. Truex, T.J.; Collins, J.F.; Jetter, J.J.; Knight, B.; Hayashi, T.; Kishi, N.; and Suzuki, N. (2000) Measurement of Ambient Roadway and Vehicle Exhaust Emissions-An Assessment of Instrument Capability and Initial On-Road Test Results with an Advanced Low Emission Vehicle. SAE Technical Paper No. 2000-01-1142, Society of Automotive Engineers, Warrendale, PA.
- 38. Painter, L.J., and Rutherford, J.A. (1992) Statistical Design and Analysis Methods for the Auto/Oil Air Quality Research Program. SAE Technical Paper No. 920319, Society of Automotive Engineers, Warrendale, PA.
- Pingent, M., and De Soete, G. (1989) Nitrous Oxide N₂O in Engine Exhaust Gases A first Appraisal of Catalyst Impact. SAE Technical Paper No. 890492.
- Jobson, E.; Smedler, G.; Malmberg, P.; Bernler, H.; Hjortsberg, O.; Gotterg, I.; and Rosen, A. (1994) Nitrous Oxide Formation over Three-way Catalysts. SAE Technical Paper No. 940926.
- 41. Odaka, M.; Koike, N.; and Suzuki, H. (1998) Deterioration Effect of Three-way Catalyst on Nitrous Oxide Emission. SAE Technical Paper No. 980676.

- 42. Koike, N.; Odaka, M.; and Suzuki, H. (1999) Reduction of N₂O from Automobiles Equipped with Three-Way Catalyst – Analysis of N₂O Increase Due to Catalyst Deactivitation. SAE Technical Paper No. 1999-01-1081.
- 43. Hirano, H.; Yamada, T.; Tanaka, K.I.; Siera, J.; Cobden, P.; and Nieuwenhuys, B.E. (1992) Mechanisms of the Various Nitric Oxide Reduction Reactions on a Platinum-rhodium (100) Alloy single Crystal. *Surface Science*. **292**, 97-112.

Property	Value	Method
API Gravity	66.3 @ 60/60	D1298
Density	$0.712 \text{ x } 10^3 \text{ kg/m}^3 @ 15.6^{\circ}\text{C}$	
RVP	6.7 psi	Mini RVP
Base Sulfur	5 ppmw	Antek Sulfur
Benzene	0.1 wt %	
Aromatics	14.0 vol. %	D1319
Olefins	0.5 vol. %	D1319
T50	214.3°F/101.3°C	D86
Т90	243.6°F/117.6°C	D86

Appendix A. Properties of the Test Fuel.

Sulfur doping levels: Nominal 30 ppmw: 1st batch 30 ppmw and 2nd batch 31.6 ppmw Nominal 150 ppmw: 1st batch 144 ppmw and 2nd batch 145 ppmw

Appendix B. Description of Catalyst Aging.

Catalyst aging was conducted on catalytic systems (including pre- and post oxygen sensors) for the 14 test vehicles associated with the E-60 project. In total, 8 catalyst pairs were aged for a period of 90 hours (generic 120K miles) using the RAT-A cycle. The aging was conducted using a synthetic low-sulfur oil with a 0.01% sulfur content and an ultra-low sulfur gasoline with a 0.2 ppmw sulfur level. Catalyst aging was conducted at the Southwest Research Institute (SwRI). The steps for the RAT-A aging cycle are summarized below and described in greater detail in ref. 29. The more general steps used in the catalyst aging process are also provided below.

RAT-A Aging Protocol.

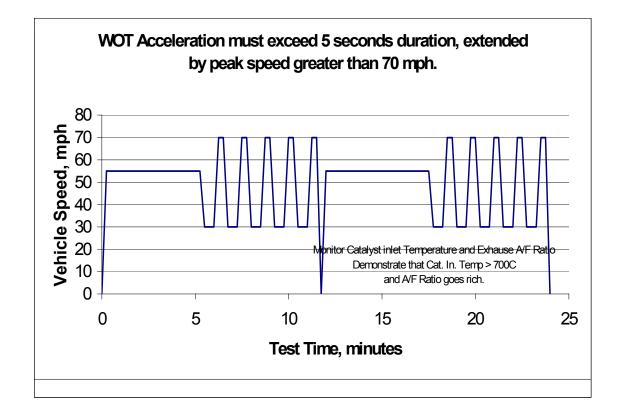
Step Description

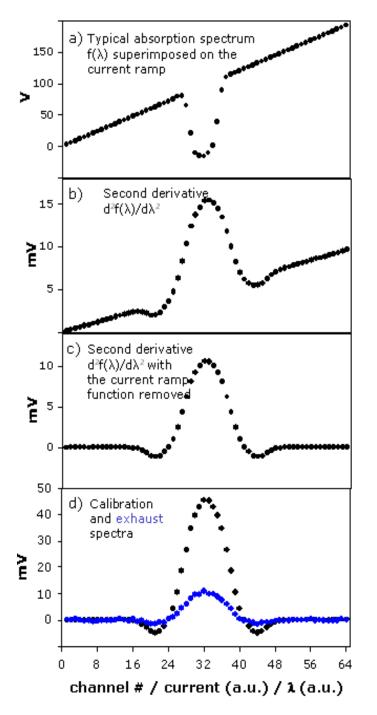
- 2 Duration= 6 seconds. Open loop, fuel injector pulse width same as used in Step 3.
- 3 Duration=10 seconds. Open loop, fuel injection pulse width increased from Step 1 to achieve 2.9 percent CO at catalyst inlet with secondary air source supplying additional air to achieve an oxygen concentration of 3.0 percent at the catalyst inlet. Typical catalyst bed temperature= 975 1020°C (catalyst bed temperature measured one inch downstream of catalyst front face).
- 4 Duration=4 seconds. Fuel control returned to closed-loop (stoichiometric conditions). Air injection from Step 3 continues for duration (air injection point is located downstream of oxygen sensor used to control the engine).

General Steps of Catalyst Aging Procedure Including Configuration for Testing

<u>Step</u> <u>Description</u>

- CE-CERT provided SwRI with 8 sets of catalyst systems to age (i.e., 8 pair of catalysts). Each catalyst was fabricated to make inlet and outlet inline, with 2.5" marmon flanges on inlet and outlet.
- 2 SwRI installed thermocouples in the first catalyst substrate, and installed on test stand (no fabrication or modification included).
- 3 The engine oil was drained and synthetic lubricating oil with low-sulfur (Lube 1 identified in the oil matrix) was used.
- 4 The RAT-A aging cycle was set up and cycle specifications were verified. If more than one converter was in a system, then setup was performed on the first catalyst only. Flows were adjusted to provide equal flows through each of the two catalyst systems being simultaneously aged. Aging was conducted with an ultra-low sulfur gasoline provided by


CRC. Raw exhaust concentrations were monitored at the start of the aging (zero hours).

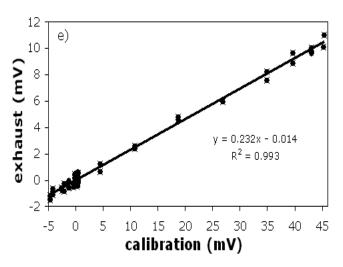

- 5 After 24 hours of aging, the exhaust conditions were verified to insure correct and stable operating conditions.
- 6 After 48 hours of aging, the exhaust conditions were verified and the test parts were rotated between the banks of the engine.
- 7 After 72 hours of aging, the exhaust conditions were verified to insure correct and stable operating conditions.
- 8 After 90 hours of aging, a final emissions verification was made and the parts were removed from the test stand.
- 9 Steps 3 through 8 were repeated for the next seven (7) sets of catalysts.
- 10 The catalysts were labeled and repackaged for return to CE-CERT.

Appendix C. Sulfur Removal Protocol.

This procedure is designed to cause the vehicle to transiently run rich at high catalyst temperature, to remove accumulated sulfur from the catalyst, via hydrogen sulfide formation. The drive trace is shown below the descriptive protocol. The catalyst inlet temperature and the exhaust A/F ratio must be monitored during this procedure. It is required to demonstrate that the catalyst inlet temperature must exceed 700°C during the WOT accelerations and that rich fuel/air mixtures are achieved during WOT. If these parameters are not achieved, increased loading on the dynamometer should be added for this protocol (but not during the emissions test).

- 1. Drive the vehicle from idle to 55 mph and hold speed for 5 minutes (to bring catalyst to full working temperature).
- 2. Reduce vehicle speed to 30 mph and hold speed for one minute.
- 3. Accelerate at WOT (wide-open throttle) for a minimum of 5 seconds, to achieve a speed in excess of 70 mph. Continue WOT above 70 mph, if necessary to achieve 5-second acceleration duration. Hold the peak speed for 15 seconds and then decelerate to 30 mph.
- 4. Maintain 30 mph for one minute.
- 5. Repeat steps 3 and 4 to achieve 5 WOT excursions.
- 6. One sulfur removal cycle has been completed.
- 7. Repeat steps 1 to 5 for the second sulfur removal cycle.
- 8. The protocol is complete if the necessary parameters have been achieved.

Appendix D. Processing of the TDL Signal.

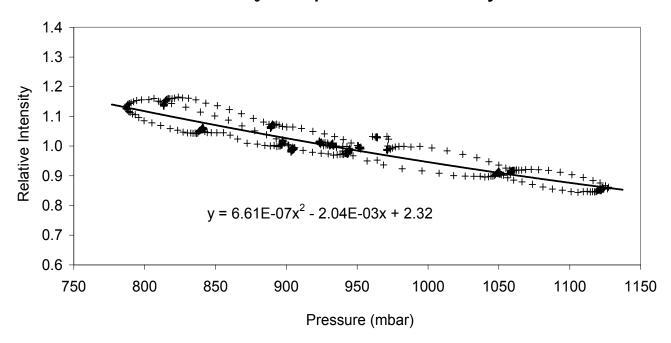

a) A current ramp divided into 64 bits is applied to the GaAs laser to vary the wavelength of emission.

b) An additional sinusoidal modulation is delivered to the diode. The modulation signal is frequency doubled and the output amplified. The detected signal is therefore the second derivative of the absorption signal.

c) A quadratic equation is applied to the second derivative signal. The signal is smoothed and the ramp function is taken out via a deconvolution procedure.

d) A stored calibration spectrum is compared to each of the exhaust spectra bit by bit.

e) Linear regression of exhaust spectrum versus calibration spectrum. The exhaust concentration is obtained by multi-plying the concentration of the calibration spectrum with the regression slope.


TDL Pressure and Temperature Effects.

The following graphs show the temperature and pressure dependence of the NH_3 absorption feature intensity for the TDL. The effects were incorporated into the calculations of the NH_3 mass emission rates.

Temperature Dependence of the NH₃ Absorption Feature Intensity

Pressure Dependence of the NH₃ Absorption Feature Intensity

Results for Comparison Tests between TDL and Citric Acid Coated Filters

Recoveries for Injection of 150 ppm of calibration gas for 45 seconds at 20 lpm

	Citric Acid	
TDL	Coated Filters	Sampling Location
1590 µg	1700 µg	In front of Sampling Line
		Behind Pre-Filter in
1590 µg	1640 µg	Sampling Line
		Immediately after TDL
1590 µg	1690 µg	sampling system

0.001			0.000			0.001	0.			4.354				0.004			40	0.040			0.001	~					stdev	
0.010			0.000			0.001	0.0			432.8				0.050			54	0.454			0.046	-					average	
0.020 0.011	0.001 (0.024	00 0.000	0 0.000	00 0.000	002 0.000	-0.004 0.002	0.004 -0	0.003 0	429.7	379.0	453.5	437.5	0.053	1 0.087	37 0.001	0.137	000 0.425	0.021 0.000	1.998 0	0.046 1	0.015 (0.010	0.177	150	Aged	10204074	
0.017 0.009	0.000 (0.022	00 0.000	0 0.000	00 0.000	001 0.000	-0.005 0.001	0.002 -0	0.004 0	435.9 (381.5	459.5	449.0	0.047	1 0.076	23 0.001	.123	0.000 0.482	0.010 0.0	2.300 0	0.047 2	0.014 (0.010	0.182	150	Aged	10204068	
0.001			0.000			0.001	0.0			0.406				0.010			58	0.058			0.006	_					stdev	
0.005			0.000			0.002	0.0			432.8				0.036			.49	0.549			0.046	_					average	
0.008 0.006	0.000 (0.017	00 0.000	0.000	00 0.000	0.002 0.000	-0.001 0.0	0.003 -0	0.005 0	432.3	377.5	457.4	442.4	0.040	4 0.027	07 0.004	198 0.107	000 0.498	0.016 0.000	2.361 0	0.052 2	0.014 (0.012	0.203	30	Aged	10204063	
0.003 0.004	0.000 (0.016	00 0.000	0.000	00 0.000	0.001 0.000	-0.002 0.0	0.003 -0	0.003 0	432.8	378.0	452.9	455.6	0.025	0 0.023	92 0.000	37 0.092	0.000 0.537	0.000 0.0	2.597 0	0.039 2	0.013 (0.003	0.165	30	Aged	10204059	
0.009 0.006	0.000 (0.019	00 0.000	0 0.000	00 0.000	003 0.000	0.003 0.003	0.004 0.	0.002 0	433.2	378.8	456.4	447.0	0.043	0 0.076	05 0.000	613 0.105	000 0.613	0.000 0.000	2.958 0	0.045 2	0.016 (0.006	0.182	30	Aged	10204057	
0.001			0.000			0.000	0.0			1.865				0.001			36	0.036			0.003	-					stdev	
0.005			0.000			0.003	0.			429.0				0.035			.13	0.513			0.046	_					average	
0.004 0.004	0.000 C	0.016	00 0.000	0 0.000	00 0.000	0.003 0.000	-0.002 0.0	0.005 -0	0.006 0	427.7	376.6	448.3	443.7	0.036	0 0.040	20 0.000	187 0.120	000 0.487	0.000 0.000	2.350 0	0.044 2	0.018 (0.005	0.177	S	Aged	10204050	
0.007 0.005	0.000 (0.017	00 0.000	0 0.000	00 0.000	0.003 0.000	0.000 0.0	0.004 0.	0.003 0	430.3	378.7	450.7	447.6	0.034	1 0.054	90 0.001	538 0.090	0.000 0.538	0.002 0.0	2.596 0	0.049 2	0.014 (0.005	0.204	S	Aged	10204048	
0.000			0.000			0.001	0.			2.166				0.006			69	0.069			0.004	-					stdev	
0.010			0.000			0.001	0.			431.4				0.047			65	0.465			0.043	_					average	
0.020 0.011	0.001 (0.022	00 0.000	0 0.000	00 0.000	0.000 0.000	-0.006 0.0	0.003 -0	0.001 0	429.8	382.0	450.5	441.6	0.051	5 0.099	03 0.005	16 0.103	000 0.416	0.030 0.000	1.933 0	0.046 1	0.011 (0.011	0.179	150	OE	10204036	
0.019 0.010	0.000 (0.024	00 0.000	0 0.000	00 0.000	0.001 0.000	-0.002 0.0	0.003 -0	0.001 0	432.9	377.0	459.3	441.2	0.042	0 0.083	92 0.000	614 0.092	0.000 0.514	0.001 0.0	2.477 0	0.040 2	0.011 (0.003	0.170	150	OE	10204033	
0.001			0.000			0.000	0.0			5.735				0.006			51	0.051			0.001	_					stdev	
0.006			0.000			0.001	0.0			434.1				0.039			22	0.522			0.045	_					average	
0.012 0.007	0.000 0.012	0.019	00 0.000	0.000	00 0.000	0.000 0.000	-0.002 0.0		-0.001 0.002	430.1 -	375.3	454.2	442.3	0.043	1 0.078	01 0.001	86 0.101	000 0.486	0.006 0.000	2.334 0	0.045 2	0.012 (0.007	0.183	30	OE	10204024	
0.006 0.005	0.000 (0.018	00 0.000	0 0.000	00 0.000	0.001 0.000	-0.001 0.0	0.001 -0	0.003 0	438.2	380.2	461.4	457.1	0.034	1 0.049	95 0.001	58 0.095	000 0.558	0.000 0.000	2.691 0	0.046 2	0.011 (0.004	0.196	30	OE	10204020	
N/A			N/A			0.001	0.			1.680				0.002			01	0.001			0.001	_					stdev	
0.004			0.000			0.002	0.			437.4				0.034			.78	0.478			0.045	_					average	Taurus
N/A N/A	N/A	N/A	/A N/A	'A N/A	N/A N/A		-0.001 0.002	0.003 -0	0.005 0	436.2	389.3	456.9	447.0	0.035	0 0.057	92 0.000	0.092	0.000 0.477	0.004 0.0	2.289 0	0.044 2	0.013 (0.005	0.182	S	OE	10204014	Ford
0.010 0.004	0.000 (0.007	00 0.000	0 0.000	00 0.000	003 0.000	-0.001 0.003	0.004 -0	0.004 0	438.6 (385.0	462.5	450.2	0.032	0 0.051	88 0.000	0.088	000 0.479	0.001 0.000	2.305 0	0.045 2	0.014 (0.003	0.191	S	OE	10204010	2001
bag 3 Wgtd	bag 2	bag 1	bag 2 bag 3 Wgtd bag 1	2 bag		⁷ gtd bag 1	bag 3 Wgtd	bag 2 b	bag 1 b	Wgtd	ω	bag 2	bag 1	Wgtd	bag 2 bag 3		gtd bag 1	ıg 3 Wgtd	bag 2 bag 3	bag 1 b	Wgtd b		bag 2 bag 3	bag 1	Fuel S	Cat.	Test	Vehicle
) (g/mi)	FTIR - NO (g/mi)	H	/mi)	FTIR - NH(g/mi)	FTIR		g/mi)	TDL-NH (g/mi)	T		(g/mi)	CO ₂ (§			NO _x (g/mi)	NO		IJ	CO (g/mi)			(g/mi)	NMHC (g/mi)					

CRC E-60: NH₃ Emissions from Late Model Vehicles

69

0.001			0.000				0.000				2.3			14	0.014			0.135				0.031					stdev	
0.005			0.000				0.003			-	334.0			56	0.056			1.070				0.065					average	
3 0.006	0.000 0.003	0.023 0	0.000	0.000	0.000	0.000	0.003	0.002	3 0.002	0.008	2 332.3	1 285.2	3.2 351.1	46 348.2)38 0.046	0.026 0.038	0.107 0.0	0.974 0	0.122	0.077	4.331	10 0.043	0.003 0.010	0.189 0.	150 0	Aged	10207024	
1 0.005	0.000 0.001	0.021 0	0.000	0.000	0.000	0.000	0.003	0.001	3 0.001	0.008	6 335.6	0 287.6	1.1 355.0	66 351.1)26 0.066	0.036 0.026	0.193 0.0	1.165 0	0.123	0.037	5.361	0.087	0.004 0.011	0.397 0.	150 0	Aged	10207021	
0.001			0.000				0.002				3.5			01	0.001			0.091				0.003					stdev	
0.005			0.000				0.002			-	334.7			49	0.049			1.097				0.048					average	
2 0.005	0.000 0.002	0.023 0	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.001	0 332.3	5 287.0	9.5 349.5	50 349.5	0.050	0.033 0.037	0.109 0.0	1.033 0	0.087	0.089	4.641	09 0.046	0.003 0.009	0.202 0.	30 0	Aged	10207017	
0.004	0.001 0.001	0.017 0	0.000	0.000	0.000	0.000	0.004	0.001	0.001	0.015	4 337.2	5 291.4	2.5 355.5	48 352.5)26 0.048	0.030 0.026	0.123 0.0	1.161 0	0.087	0.064	5.318	06 0.050	0.003 0.006	0.224 0.	30 0	Aged	10207009	
0.000			0.000				0.000				6.6			04	0.004			0.115	-			0.010					stdev	
0.005			0.000				0.002				332.5			50	0.050			1.064				0.047					average	
2 0.005	0.002 0.002	0.020 0	0.000	0.000	0.000	0.000	0.002	0.001	3 0.001	0.008	3 337.2	9 291.3	1.4 355.9	47 351.4	0.047	0.036 0.025	0.104 0.0	0.982 0	0.137	0.068	4.384	14 0.041	0.002 0.014	0.172 0.	5 0	Aged	10207003	
1 0.005	0.000 0.001	0.024 0	0.000	0.000	0.000	0.000	0.002	0.001	7 0.000	0.007	5 327.9	8 287.5	1.2 342.8	52 344.2)43 0.052	0.029 0.043	0.120 0.0	1.145 0	0.111	0.070	5.200	15 0.054	0.003 0.015	0.235 0.	5 0	Aged	10206068	
N/A			N/A				0.001				1.3			12	0.012			0.093	-			0.008					stdev	
0.008			0.000				0.002				340.8			81	0.081			1.150				0.053					average	
A N/A	N/A N/A	N/A	N/A	N/A	N/A	N/A	0.001	0.002	2 0.001	0.002	0 341.7	9 300.0	1.0 358.9	72 354.0	0.072	0.038 0.087	0.139 0.0	1.084 0	0.186	0.044	4.871	0.047	0.003 0.023	0.190 0.	150 0	OE	10206058	
7 0.008	0.003 0.007	0.025 0	0.000	0.000	0.000	0.000	0.002	0.003	3 0.001	0.003	6 339.9	4 294.6	3.9 358.4	89 353.9	0.089	0.052 0.079	0.196 0.0	1.215 0	0.130	0.053	5.555	20 0.058	0.003 0.020	0.248 0.	150 0	OE	10206057	
0.001			0.000				0.001				1.9			96	0.006			0.055	_			0.000					stdev	
0.005			0.000				0.001				340.0			72	0.072			0.877	_			0.041					average	
0 0.004	0.000 0.000	0.019 0	0.000	0.000	0.000	0.000	0.001	0.001	3 0.001	0.003	3 338.7	1 294.3	1.1 356.1	68 354.1)41 0.068	0.043 0.041	0.167 0.0	0.916 0	0.061	0.063	4.178	04 0.042	0.002 0.004	0.190 0.	30 0	OE	10206029	
0.006	0.000 0.001	0.027 0	0.000	0.000	0.000	0.000	0.000	0.000	0.000	3 0.001	3 341.3	2 296.3	3.9 358.2	76 358.9)58 0.076	0.033 0.058	0.209 0.0	0.838 0	0.092	0.030	3.840	0.041	0.002 0.011	0.179 0.	30 0	OE	10206024	
0.001			0.000				0.001							32	0.032			0.098	_			0.018					stdev	
0.005			0.000				0.001				339.8			96	0.096			0.987	_			0.051					average	
0 0.004	0.000 0.000	0.020 0	0.000	0.000	0.000	0.000	0.000	0.001	0.000	0.001	1 339.2	0 294.1	.0 358.0	79 351.0	0.079	0.059 0.034	0.187 0.0	0.875 0	0.064	0.039	4.039	07 0.037	0.002 0.007	0.166 0.	5 0	OE	10206017	Cavalier I0206017
0 0.004	0.000 0.000	0.021 0	0.000	0.000	0.000	0.000	0.001	0.001	0.000	0.002	6 339.2	5 293.6	1.6 358.5	76 351.6	0.076	0.038 0.059	0.191 0.0	1.059 0	0.104	0.012	4.930	0.044	0.002 0.013	0.191 0.	5 0	OE	10206016	Chevy
1 0.005	0.000 0.001	0.024 0	0.000	0.000	0.000	0.000	0.001	0.001	4 0.001	0.004	3 341.1	7 294.3	1.2 360.7	33 354.2	39 0.133	0.048 0.139	0.337 0.0	1.027 0	0.089	0.042	4.731	12 0.071	0.002 0.012	0.322 0.	5 0	OE	10206012	2001
bag 3 Wgtd	bag 2 bag	bag1 b	Wgtd	bag 3	bag 2	bag 1 bag 2 bag 3 Wgtd	Wgtd	bag 3	bag 1 bag 2 bag 3 Wgtd		bag 3 Wgtd		g 1 bag 2	td bag 1	g 3 Wgtd	bag 2 bag 3	bag 1 ba	Wgtd b		bag 2 bag 3	bag 1	g 3 Wgtd	bag 2 bag 3	bag 1 ba	Fuel S b	Cat. F	Test	Vehicle
'ni)	FTIR - NO (g/mi)	FT		H (g/mi)	FTIR - NH (g/mi)	ম	Ŭ	TDL-NH (g/mi)	TDL-N			CO ₂ (g/mi)	c		ij	NO _x (g/mi)	1		/mi)	CO (g/mi)		mi)	NMHC (g/mi)	Z				

CRC E-60: NH₃ Emissions from Late Model Vehicles

70

0.006			0.014				0.013				0.7			0.006	0.1			0.017				0.005						stdev	
0.019			0.072				0.065			2	526.2			0.143	0.			1.501				0.101						average	
0.022 0.015	0.001 0	0.040	0.062	0.042	0.076	0.055	9 0.056	0.059	92 0.040	.7 0.092	.3 525.7	1.2 466.3	533.5 554.2	0.138 53	0.152 0.	0.032 0.	0.385 0	1.513	0.316	0.202	6.373	0.097	0.039	0.013	0.385	1 150	I Aged	10208014	
0.043 0.023	0.004 0	0.043	0.082	0.058	0.099	0.071	7 0.074	5 0.077	19 0.055	.7 0.119	.6 526.7	.0 467.6	9.5 557.0	0.147 529.5	0.216 0.	0.039 0.	0.327 0	1.489 (0.439	0.271	5.921	0.104	0.051	0.015	0.397	1 150	3 Aged	10208013	
0.004			0.026				0.021			~	40.8			0.009	0.0			0.279				0.020						stdev	
0.014			0.084				0.085			0	550.0			0.124	0.			1.422				0.093						average	
0.015 0.010	0.000 0	0.027	0.055	0.035	0.071	0.040	4 0.061	0.054	73 0.061	.6 0.073	.4 527.6	1 469.4	531.0 557.1	0.120 53	0.119 0.	0.021 0.	0.369 0	1.248	0.228	0.233	5.135	0.082	0.032	0.010	0.329	1 30	2 Aged	10208012	
0.020 0.019	0.001 0	0.057	0.092	0.064	0.110	0.089	0.098	5 0.081	27 0.095	.1 0.127	.5 597.1	.4 479.5	0.3 675.4	0.135 570.3	0.122 0.	0.030 0.	0.397 0	1.743	0.244	0.232	7.246	0.117	0.032	0.011	0.492	1 30) Aged	10208009	
0.018 0.013	0.001 0	0.037	0.104	0.057	0.137	0.086	3 0.096	0.068	97 0.111	.3 0.097	.3 525.3	1.5 466.3	530.4 554.5	0.118 53	0.123 0.	0.016 0.	0.364 0	1.274	0.236	0.305	5.071	0.081	0.030	0.007	0.331	1 30	S Aged	10208008	
0.001			0.027				0.016				0.6			0.028	0.1			0.102				0.027						stdev	
0.010			0.095				0.087			S	528.5			0.097	0.1			1.319				0.099						average	
0.017 0.012	0.001 0	0.032	0.070	0.044	0.089	0.056	4 0.069	3 0.054	81 0.073	.7 0.081	.7 528.7	3.6 467.7	4.6 558.6	0.124 534.6	0.123 0.1	0.019 0.	0.387 0	1.202	0.269	0.241	4.837	0.077	0.032	0.010	0.306	5	7 Aged	10208007	
0.011 0.010	0.000 0	0.035	0.092	0.067	0.116	0.065	3 0.091	0.073	92 0.099	.8 0.092	.0 527.8	5.9 471.0	530.5 556.9	0.099 53	0.077 0.0	0.008 0.	0.354 0	1.365 (0.292	0.282	5.490	0.091	0.033	0.010	0.370	l S	3 Aged	10208003	
0.008 0.009	0.000 0	0.033	0.123	0.065	0.161	0.105	0.101	0.061	31 0.111	0 0.131	.4 529.0	0.7 469.4	531.5 559.7	0.068 53	0.065 0.0	0.008 0.	0.223 0	1.389	0.276	0.353	5.449	0.130	0.036	0.011	0.550	5	Aged	10208001	
0.004			0.009				0.005			0	29.0			0.031	0.0			0.369				0.030						stdev	
0.013			0.029				0.029			-	556.1			0.131	0.			1.233				0.099						average	
0.014 0.011	0.000 0	0.032	0.020	0.014	0.028	0.006	5 0.024	5 0.025	43 0.015	.6 0.043	.7 540.6	.2 480.7	540.8 572.2	0.136 54	0.150 0.	0.017 0.	0.416 0	0.931	0.151	0.169	3.867	0.071	0.032	0.015	0.263	150) OE	10207050	
0.017 0.017	0.002 0	0.054	0.029	0.011	0.028	0.056	3 0.033	4 0.018	03 0.014	.6 0.103	.4 589.6	6 492.4	578.5 645.6	0.159 57	0.193 0.	0.107 0.	0.245 0	1.645	0.140	0.106	7.482	0.130	0.030	0.013	0.554	150	7 OE	10207047	
0.012 0.010	0.001 0	0.033	0.038	0.010	0.054	0.037	2 0.031	5 0.012	48 0.035	.2 0.048	.6 538.2	0.0 476.6	540.4 570.0	0.098 54	0.111 0.0	0.012 0.	0.294 0	1.124	0.141	0.256	4.594	0.096	0.028	0.013	0.392	150	OE	10207046	
0.000			0.016				0.003			-	2.0			0.008	0.0			0.018				0.005						stdev	
0.011			0.030				0.028			S	534.5			0.127	0.			1.082				0.072						average	
0.013 0.011	0.000 0	0.034	0.042	0.015	0.065	0.020	3 0.031	3 0.013	36 0.038	.9 0.036	.5 535.9	.7 474.5	542.8 565.7	0.132 54	0.181 0.	0.010 0.	0.372 0	1.069	0.177	0.282	4.217	0.068	0.023	0.012	0.265	30	F OE	10207044	
0.018 0.010	0.000 0	0.027	0.018	0.011	0.029	0.003	3 0.026	3 0.018	32 0.028	0 0.032	.9 533.0	1.6 472.9	3.8 564.6	0.121 533.8	0.217 0.	0.010 0.	0.273 0	1.094	0.189	0.228	4.455	0.075	0.026	0.012	0.296	30	OE	10207043	
0.001			0.008				0.003				0.9			0.016	0.			0.032				0.011						stdev	
0.008			0.026				0.026			6	532.6			0.104	.0			1.096				0.075							Silverado
0.010 0.008	0.000 0	0.024	0.020	0.008	0.033	0.005		0.011	26 0.029	0 0.026		0.5 476.1	5.1 560.5	0.115 535.1	0.149 0.1	0.018 0.	0.309 0		0.167	0.225	4.388		0.023	0.010	0.272	S	OE	10207040	Chevy
0.013 0.009		0.026		0.009				6 0.007		.2 0.059	.8 533.2	.4 475.8	539.0 561.4	0.093 53	0.126 0.0	0.010 0.	0.255 0			0.232	4.585	0.083	0.024		0.340	S	• OE	10207038	2001
bag 3 Wgtd	bag 2 b	bag 1	Wgtd	bag 3	bag 2	bag 1	bag 2 bag 3 Wgtd	bag 3		d bag 1	3 Wgtd	; 2 bag 3	bag 1 bag 2	Wgtd ba		bag 2 bag 3	bag1 b	Wgtd 1		bag 2 bag 3	bag 1	Wgtd	bag 3	bag 2	bag 1	Fuel S	Cat.	Test	Vehicle
(g/mi)	FTIR - N ₂ O (g/mi)	J	0	FTIR - NH ₃ (g/mi)	FTIR - N		Ð	TDL-NH ₃ (g/mi)	TDL-I		-	CO ₂ (g/mi)	C		ni)	NO _x (g/mi)			'mi)	CO (g/mi)			NMHC (g/mi)	NMH					
-			_			•				•				•								-			•				•

CRC E-60: NH₃ Emissions from Late Model Vehicles

71

																						0				Ve
																						Cherokee	Grand	Jeep	2000	Vehicle
average stdev	10207037	10207035	stdev	average	10207025	10207022	stdev	average	10207014	10207006	10207002		stdev	average	10206056	10206048	10206031	stdev	average	10206025	10206022	stdev	average	10206014	10206005	Test
				ŭ				Ŭ						ů												Cat.
	Aged 1	Aged 1			Aged 3	Aged 3			Aged	Aged	Aged				0E 1	0E 1	OE 1			OE	OE 3			OE	OE	
	150 0	150 0			30 0	30 0			5 0	5 0	5 0				150 0	150 0	150 0			30 0	30 0			5 0	5 0	Fuel S b
	0.306 (0.283 (0.275 (0.363 (0.288 (0.311 (0.244 (0.381 (0.363 (0.427 (0.359 (0.352 (0.397 (0.346 (bag 1
	0.006	0.005			0.007	0.005			0.005	0.005	0.006				0.010	0.012	0.015			0.004	0.005			0.004	0.003	NMHC (g/mi) bag 2 bag 3
	0.014	0.012			0.014	0.012			0.015	0.013	0.015				0.022	0.021	0.013			0.010	0.013			0.011	0.013	
0.067 0.004	0.070	0.065	0.012	0.073	0.065	0.081	0.007	0.065	0.066	0.071	0.058	0.000	0 007	0.092	0.090	0.087	0.100	0.000	0.079	0.079	0.079	0.007	0.082	0.087	0.077	Wgtd
	6.489	5.516			6.206	8.285			6.331	7.116	4.961				8.983	7.873	9.940			6.234	4.776			8.039	6.040	bag 1
	0.016	0.018			0.015	0.036			0.014	0.018	0.014				0.160	0.033	0.395			0.027	0.022			0.000	0.033	CO (bag 2
	0.081	0.040			0.057	0.055			0.047	0.101	0.112				0.582	0.495	0.034			0.019	0.019			0.038	0.069	CO (g/mi) 1g 2 bag 3
1.269 0.150	1.375	1.163	0.311	1.531	1.311	1.751	0.225	1.303	1.332	1.512	1.065	i	0 2 4 6	2.053	2.105	1.785	2.269	0.216	1.158	1.310	1.005	0.276	1.484	1.679	1.289	Wgtd
	0.181	0.304			0.113	0.155			0.124	0.093	0.169				0.136	0.185	0.239			0.164	0.194			0.112	0.145	bag 1
	0.340	0.318			0.253	0.165			0.175	0.120	0.188				0.022	0.086	0.194			0.044	0.050			0.038	0.009	
	0.352	0.427			0.203	0.177			0.265	0.155	0.182				0.009	0.012	0.442			0.138	0.160			0.007	0.008	NO _x (g/mi) ag 2 bag 3
0.328 0.025	2 0.310	7 0.345	0.031	0.188	3 0.210	7 0.166	0.036	0.165	5 0.189	5 0.124	2 0.182		0 177	0.133	9 0.042	2 0.086	2 0.271	0.011	0.103	3 0.095	0.110	0.006	0.041	7 0.045	3 0.037	3 Wgtd
0, 00	0 553.4	5 554.2	-	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0 524.5	546.2	6	0	9 541.0	4 545.0	2 541.4	t	2	5	2 566.3	555.5	1 587.0			5 573.2	0 572.4	6	-	5 565.1	7 566.2	d bag 1
	4 594.2	2 595.6			5 561.5	2 584.9			0 575.3	0 585.6	4 587.5				3 608.0	5 594.8	0 622.8			2 616.7	4 617.9			1 613.4	2 611.7	ъ
	.2 490.3	.6 490.1			.5 463.0	.9 482.6			.3 479.5	.6 483.2	.5 487.0				0 520.5	.8 503.4	.8 522.2			.7 508.3	.9 511.2			4 505.7	.7 507.6	CO ₂ (g/mi) ag 2 bag 3
557.6 0.6).3 557.2).1 558.1	15.6	537.8	.0 526.7	2.6 548.8	4.6	547.1	9.5 541.9	.2 549.1	.0 550.3	t	13 1	574.9	1.5 575.3	.4 561.6	.2 587.9	0.9	578.5	.3 577.9	.2 579.1	0.1	573.8	.7 573.8	1.6 573.7) ; 3 Wgtd
7.6 6	1.2 0.077	3.1 0.037	.6	7.8	6.7 0.077	3.8 0.096	6	7.1	0.082	9.1 0.113	0.03	;	-	61	5.3 0.197	0.176	0.121	9	3.5	0.091	9.1 0.051	-	3.8	3.8 0.185	3.7 0.133	gtd bag 1
	0.003	37 0.003			0.003	96 0.031				13 0.006					97 0.032	76 0.018	21 0.033			91 0.008	51 0.004					
									0.004 0.		0.002 0.													0.008 0.	0.010 0.	TDL-NH ₃ (g/mi) bag 2 bag 3
0 0	0.004 0	0.003 0	0	0	0.003 0	0.002 0	0	0	0.000 0.	0.008 0.	0.005 0	ç	0	0	0.226 0.	0.116 0.	0.014 0.	0	0	0.032 0.	0.046 0.	0	0	0.015 0	0.011 0	
0.014 0.006	0.019 0	0.010 0	0.013	0.027	0.018 0	0.036 0	0.010	0.019	0.019 0	0.029 0	0.010 0	, L	0 037	0.081	0.120 0	0.078 0	0.046 0	0.004	0.029		0.025 0	0.008	0.041	0.047 0	0.036 0	Wgtd b
	0.038 (0.001 (0.026 (0.057 (0.031 (0.063 (0.000 (0.233 (0.152 (0.084 (0.093 (0.008 (0.200 (0.140 (FT bag 1 t
	0.007	0.000			0.005	0.041			0.003	0.016	0.000				0.099	0.055	0.072			0.033	0.000			0.034	0.046	FTIR - NH ₃ (g/mi) bag 2 bag 3
	0.000	0.000			0.000	0.000			0.000	0.006	0.000				0.123	0.070	0.000			0.000	0.000			0.009	0.015	H ₃ (g/mi) bag 3
0.006 0.008	0.012	0.000	0.017	0.020	0.008	0.033	0.011	0.010	0.008	0.023	0.000		0 040	0.089	0.133	0.079	0.055	0.024	0.019	0.036	0.002	0.003	0.059	0.062	0.057	Wgtd
	0.063	0.085			0.024	0.024			0.020	0.019	0.032				0.074	0.059	0.131			0.032	0.035			0.026	0.023	l bag 1
	0.078	0.091			0.022	0.022			0.018	0.015	0.021				0.057	0.104	0.165			0.022	0.017			0.022	0.000	FTIR - N bag 2
	0.139	0.176			0.039	0.051			0.034	0.024	0.029				0.031	0.024	0.200			0.053	0.057			0.008	0.008	FTIR - N ₂ O (g/mi) bag 2 bag 3
0.102 0.015	0.092	0.113	0.003	0.029	0.027	0.030	0.004	0.022	0.023	0.018	0.025	0.001	0 061	0.098	0.053	0.072	0.167	0.001	0.032	0.033	0.032	0.009	0.013	0.019	0.007	ii) Wgtd
	-			-	-	-		-		-									-			-				<u> </u>

CRC E-60: NH₃ Emissions from Late Model Vehicles

72

					Vehicle 2001 Buick LeSabre
10203006 10203009 average stdev	10202063 10203002 average stdev	10202051 10202054 average stdev	10203048 10203051 average stdev	10203031 10203040 average stdev	Test 10203016 10203020 average stdev
Aged Aged	Aged Aged	Aged Aged	OE OE	O E	Cat. OE
4 150 4 150	4 30 4 30	н 5 5	150 150	30 30	Fuel S 5
0.124	0.135 0.119	0.116 0.126	0.107	0.102 0.120	S bag 1 0.119 0.115
4 0.005 5 0.004	5 0.004 9 0.003	6 0.004 6 0.002	7 0.004 1 0.002	2 0.002 0 0.003	
5 0.016 4 0.009	4 0.009 3 0.008	4 0.008 2 0.008	4 0.006 2 0.005	2 0.003 3 0.004	NMHC (g/mi) bag 2 bag 3 0.003 0.004 0.003 0.003
6 0.033 9 0.037 0.035 0.003	9 0.033 8 0.028 0.030 0.003	8 0.028 8 0.029 0.029 0.001	6 0.026 5 0.025 0.026 0.000	0.023 0.023 0.028 0.026 0.004	ii) 3 Wgtd 4 0.027 3 0.026 0.027 0.027
33 3.584 37 4.540 35	33 3.382 28 3.061 30	28 2.350 29 3.325 29	26 2.306 25 3.349 26 20 20	23 2.617 28 2.516 26 24	
34 0.236 40 0.087	32 0.009 51 0.014	50 0.022 25 0.032	06 0.024 49 0.051	17 0.040 16 0.056	0 0 b
36 0.929 87 0.295	09 0.126 14 0.111	22 0.082 32 0.132	24 0.023 51 0.010	40 0.030 56 0.008	CO (g/mi) (g 2 bag 3 046 0.027 030 0.010
29 1.121 95 1.067 1.094 0.038	26 0.741 11 0.673 0.707 0.048	82 0.521 32 0.743 0.632 0.157	23 0.498 10 0.725 0.612 0.161	30 0.572 08 0.553 0.563 0.013) 3 Wgtd 27 0.535 10 0.566 0.551 0.022
21 0.197 67 0.108 94 38	41 0.122 73 0.187 07 48	521 0.170 743 0.166 32 57	98 0.177 25 0.165 12 61	72 0.189 53 0.147 63	ttd bag 1 35 0.160 66 0.135 51 51
97 0.009 08 0.003	22 0.003 87 0.004	70 0.003 66 0.003	77 0.005 65 0.004	89 0.008 47 0.007	0 0 5
0.111 0. 0.129 0. 0.		0.084 0. 0.080 0. 0.	0.102 0. 0.087 0. 0.		ω Ö 🕉
0.076 44 0.059 48 0.068 0.012	0.051 44 0.064 44 0.058 0.009	0.060 44 0.058 44 0.059 0.001	0.067 44 0.060 44 0.064 42 0.005	0.069 44 0.057 44 0.063 0.008	Wgtd bs 0.059 45 0.050 45 0.055 44 0.055 44 0.006 44
445.2 4 483.3 5	442.1 4 443.9 4	442.3 4 446.6 4	446.5 4 445.7 4	449.7 4 446.7 4	bag 1 b: 452.8 4: 443.8 4:
449.7 3 507.3 3	442.8 3 441.6 3	443.2 3 449.9 3	447.3 3 443.7 3	444.5 3 443.9 3	CQ; (g/mi) bag 2 bag 453.5 365. 452.4 367.
368.2 4 396.3 4 4	360.3 4 359.9 4 4 0	363.2 4 365.5 4 4	367.0 4 360.9 4 4	358.7 4 356.6 4 4	9 5 3
426.4 (471.8 (449.1 32.149	420.0 (419.6 (419.8 (0.257 (421.0 (426.0 (423.5 3.536	425.1 (421.3 (423.2 2.655	422.0 (420.5 (421.3 1.068	Wgtd b 429.2 (427.4 (428.3 1.253
0.013 (0.020 (0.001 (0.010 (0.010 (0.003 (0.003 (0.002 (TDL-NH (g/mi) bag 1 bag 2 bag 3 Wgtd 0.002 0.001 -0.001 0.001 0.007 0.002 0.001 0.003 0.007 0.002 0.001 0.002 0.002 0.001 0.003 0.002 0.002 0.001 0.002 0.001
0.010 0.005 0	0.000 -0.002 0.002 0.006	0.001 0.004 0.003 0.008	0.002 0.001	0.001 0	TDL-NH (g/mi) bag 2 bag 3 0.001 -0.001 0.002 0.001
0.030 0.012			0.001 0.000	0.001	H ₄ (g/mi) bag 3 -0.001 0.001
0.016 0.010 0.013 0.004	0.000 0.004 0.002 0.003	0.004 0.005 0.005 0.001	0.002 0.001 0.002 0.002	0.001 0.001 0.001 0.001	
0.008 0.002	0.000 0.003	0.000	0.000 0.000	0.000 0.000	F bag 1 0.000 0.000
0.010 0.002	0.000	0.000	0.000	0.000	FTIR - NH (g/mi) bag 2 bag 3 0.000 0.000 0.000 0.000
0.018 0.004	0.000	0.000	0.000	0.000	bag Wgtd 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.012 0.003 0.007 0.006	0.000 0.001 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000	i) Wgtd 0.000 0.000 0.000 0.000
0.024 N/A	0.007 0.007	0.007 0.008	0.006 0.003	0.003 0.003	bag 1 0.003 0.002
0.001 N/A	0.000	0.000	0.000	0.000	FTIR - N bag 2 0.000 0.000
0.039 N/A	0.007 0.007	0.008 0.007	0.012 0.008	0.006 0.006	FTIR - NO (g/mi) bag 2 bag 3 0.000 0.004 0.000 0.006
0.016 N/A 0.016 N/A	0.003 0.003 0.003	0.004 0.004 0.004	0.004 0.003 0.004	0.002 0.002 0.002	YO (g/mi) bag 3 Wgtd 0.004 0.002 0.006 0.002 0.002 0.002 0.002
			4 ~ 4		

CRC E-60: NH₃ Emissions from Late Model Vehicles

73

		<u> </u>				126								-													average	
0.005 0.004	0.001	0.011)4 0.011)8 0.027	1 0.004 29 0.008	19 0.011 50 0.029	0.019 031 0.050	006 0.020 010 0.031	020 0.006 029 0.010	0.040 0.020	319.7 0. 319.8 0.	284.4 31 282.8 31	334.8 2 335.9 2	329.1 3 328.8 3	0.027	0.033	0.003 0.016	59 0.080 59 0.075	25 0.654 69 0.759	0.029 0.025	3.040 3.407	0.062 0.059	0.004	0.004 0.002	0.285	d 150 d 150	I Aged 8 Aged	10203001	
						0.054													0.035 0.045	4.696				0.359			10202062	
0.010			0.00.			č	0.0			1	:			0.000				0.01			0.000						5660	
0.013		•	0 003			03	0 003			1 474	_ ,			0.008			-	0.027			0.008						average	
0.000 0.001	0.000	2 0.006	0.012	0.000	44 0.006	017 0.044	0.017	010 0.001	0.057 0.010		283.7 31	331.8 2	324.9 3		0.044	3 0.024	0 0.023		0.026 0.001	2.878	0.051	0.003	0.003	0.235	d 30	3 Aged	10202053	
	0.021																		0.051 0.001					0.288		_	10202050	
0.001			0.002			01	0.001			2.534	2.			0.000			Š	0.078			0.005						stdev	
0.001		5	0.016			124	0.024			323.9	32			0.009			0	0.860			0.071						average	
0.000 0.002	0.000	0.009	0.018	15 0.003	43 0.015	0.043	0.024	0.008	0.066 0.016	322.1 0.	285.0 32	337.3 2	333.1 3	0.009	0.002	0.003	0.033	29 0.805	0.045 0.029	3.722	0.067	0.003	1 0.003	0.314	d 5	6 Aged	10202046	
0.000 0.000	0.000	4 0.002	0 0.014	12 0.000	39 0.012	0.039	003 0.023	0.003	0.068 0.016	325.6 0.	289.2 32	341.1 2	335.5 3	0.009	0.009	0.004	0.020	02 0.915	0.030 0.002	4.327	0.074	0.006	0.004	0.341	d 5	3 Aged	I0202043	
0.002		-	0.014			13	0.013			1.792	1.			0.009			6	0.169			0.012						stdev	
0.006			0.015			122	0.022			318.0	31			0.026			র্ট	0.705			0.061						average	
0.010 0.008	0.004	3 0.014	0.013	15 0.002	23 0.015	0.023	003 0.019	0.003	0.037 0.020	320.1 0.	285.8 32	335.5 2	326.9 3	0.031	0.034	0.015	0.067	90 0.685	0.088 0.090	2.964	0.060	0.004	3 0.002	0.278	150	9 OE	I0203039	
0.008 0.005	0.001	2 0.013	0 0.002	0.000	02 0.004	0.002	003 0.010	0.003	0.013 0.012	317.4 0.	281.3 31	334.2 2	323.4 3	0.031	0.023	8 0.009	16 0.098	53 0.546	0.028 0.053	2.492	0.050	0.003	0.003	0.232	150	4 OE	10203034	
0.006 0.004	0.001	0.010)5 0.030	0.005	77 0.024	0.077	007 0.036	0.007	0.100 0.026	316.6 0.	280.8 31	331.6 2	326.7 3	0.016	0.014	0.004	3 0.047	63 0.883	0.065 0.063	4.014	0.074	0.003	0.002	0.349	150	0 OE	I0203030	
N/A		F.	N/A			Ō5	0.005			0.011	0.			0.000			:4	0.054			0.005						stdev	
0.001		51	0.016			122	0.022			322.0	32			0.015			6	0.909			0.075						average	
0.001 0.001	0.000	0.003	0 0.016	0.000	58 0.008	0.058	002 0.018	06 -0.002	0.077 0.006	322.0 0.	285.1 32	338.1 2	330.8 3	0.015	0.013	0.006	0.039	00 0.947	0.012 0.000	4.528	0.078	0.002	0.002	0.370	30	0 OE	10203050	
N/A N/A	N/A	N/A	A N/A	A N/A	N/A N/A		001 0.025	011 -0.001	0.097 0.011	322.0 0.	286.8 32	337.8 2	329.0 3	0.015	0.018	0.003	0.041	00 0.870	0.023 0.000	4.136	0.071	0.002	3 0.002	0.333	30	6 OE	10203046	
							0			0	2			0			ć				0							
0 000			0 004			04	0 004			0 501	0			0 000			×	0 198			0 010						stdev	
0.001		~	0.018			125	0.025			320.2	32			0.012			-	0.911			0.071						average	Neon
0.000 0.001	0.000	0.004	0 0.015	0.011 0.000		0.043	00 0.023	0.000	0.077 0.012	319.9 0.	285.2 31	335.1 2	328.1 3	0.012	0.020	0.001	0.029	00 0.771	0.024 0.000	3.655	0.063	0.002	0.003	0.296	S	4 OE	e 10203024	Dodge
0.000 0.000	0.000	0.002	0 0.020	4 0.000	62 0.014	0.062	01 0.028	0.001	0.094 0.016	320.6 0.	285.2 32	335.9 2	329.2 3	0.012	0.018	0.000	0.035	01 1.051	0.063 0.001	4.907	0.078	0.003	0.003	0.365	s	1 OE	10203021	2001
bag 1 bag 2 bag 3 Wgtd	bag 2	1 bag 1	bag 1 bag 2 bag 3 Wgtd	2 bag	1 bag	ıtd bag	g3 Wg	g 2 baş	bag 1 bag 2 bag 3 Wgtd		bag 3 Wgtd		bag 1 bag 2	Wgtd		bag 1 bag 2 bag 3		3 Wgtd	bag 1 bag 2 bag 3	bag 1	Wgtd	bag 3	l bag 2	S bag 1	Fuel S	Cat.	Test	Vehicle
O (g/mi)	FTIR - NO (g/mi)		(mi)	FTIR - NH(g/mi)	FTIR		/mi)	TDL-NH (g/mi)	TDI		ni)	CO ₂ (g/mi)			NO _x (g/mi)	NO		-	CO (g/mi)			NMHC (g/mi)	NMH					
_		•				-				-				-			-				_			-				-

CRC E-60: NH₃ Emissions from Late Model Vehicles

Appendix E. Detailed FTP Emission Results

74

																									Camry	Toyota	2001	Vehicle	
stdev	average	10202057	10202037	I0202036	stdev	average	810202018	10202016	stdev	average	10202008	10202001	10201046	stdev	average	10203045	10203041	stdev	average	07000701	10202026	10203022	10203017	stdev	average	10203010	I0203007	Test	
		Aged	Aged	Aged			Aged	Aged			Aged	Aged	Aged			OE	OE			Ê	D E	P	O _{FI}			OE	OE	Cat.	
		150	150	150			06	30			S	S	5			150	150			00	30	10	06			S	5	Fuel S	
		0.116	0.128	0.172			0.161	0.164			0.133	0.123	0.200			0.154	0.155			0.107	0.157	0 139	0 152			0.171	0.184	bag 1	
		0.003	0.002	0.003			0.002	0.004			0.002	0.003	0.004			0.002	0.003			0.002	c.00.0	200.0	1003			0.003	0.002	bag 2	NMH
		0.013	0.010	0.014			0.008	0.011			0.008	0.011	0.010			0.011	0.011			0.011	0.000	800.0	600.0			0.009	0.008	bag 3	NMHC (g/mi)
0.007	0.033	0.029	0.030	0.041	0.002	0.038	0.037	0.039	0.009	0.036	0.031	0.030	0.046	0.001	0.037	0.036	0.037	0.002	0.035	0.007	0.027	££0 0	950 0	0.001	0.040	0.039	0.041	Wgtd	
		1.381	1.712	3.366			1.974	2.565			2.075	1.719	2.762			2.089	2.039			1.704	1.000	1 685	1 974			2.179	2.373	bag 1	
		0.011	0.011	0.025			0.020	0.016			0.014	0.015	0.016			0.009	0.037			0.010	0.021	0 021	0 013			0.018	0.014	bag 2	CO
		0.088	0.056	0.110			0.021	0.045			0.043	0.073	0.034			0.099	0.118			0.077	0.010	0.048	0 0 7 4			0.033	0.050	bag 2 bag 3	CO (g/mi)
0.230	0.478	0.316	0.377	0.741	0.091	0.489	0.423	0.553	0.106	0.475	0.450	0.384	0.591	0.006	0.470	0.465	0.474	0.036	0.415	0.44	0 4 4 1	0 373	0 4 2 6	0.030	0.492	0.470	0.513	Wgtd	
		0.181	0.189	0.166			0.148	0.141			0.101	0.174	0.135			0.200	0.206			0.155	0.100	0 155	0 143			0.162	0.164	bag 1	
		0.019	0.008	0.017			0.012	0.010			0.009	0.006	0.013			0.010	0.026			0.010	0.000	800.0	600.0			0.009	0.010		NO
		0.091	0.087	0.099			0.079	0.084			0.080	0.079	0.109			0.082	0.114			0.077	0.077	0 083	0 068			0.070	0.093	bag 2 bag 3	NO _x (g/mi)
0.003	0.070	0.073	0.068	0.070	0.001	0.059	0.039	0.058	0.009	0.058	0.048	0.061	0.065	0.013	0.079	0.069	0.088	0.003	0.057	0.000	0.050	0 059	0 053	0.005	0.062	0.058	0.065	Wgtd	
		377.3	385.7	399.9			405.8	386.8			389.3	385.6	395.6			385.1	388.6			J0J.T	205.0	1981	3734			393.3	392.5	bag 1	
		365.8	370.4	374.5			0.686	372.3			372.1	375.0	376.1			366.3	367.1			U. + U U	264.2	160 2	340 8			369.2	369.3	bag 2	CO_2
		311.1	313.9	315.0			C.816	314.7			313.8	316.0	314.5			309.7	310.4			011.4	211 /	3127	200 5			310.7	313.4	bag 3	CO ₂ (g/mi)
5.1	358.2	353.1	358.0	363.4	7.7	364.9	3/0.3	359.5	1.8	361.3	359.6	361.0	363.2	1.0	355.3	354.6	356.0	11.3	349.2	0.04.1	25/1	357)	116 2	0.4	358.4	358.1	358.7	Wgtd	
		0.020	0.017	0.019			0.027	0.033			0.023	0.013	0.035			0.017	0.015			0.011	0.011	0 011	0 019			0.010	0.018	bag 1	
		0.002	0.005	0.001			0.008	0.008			0.005	0.008	0.004			0.002	0.003			0.000	0.007	0 007	0 0 1 0			0.009	0.009	bag 2	TDL-N
		0.005	0.008	0.008			0.005	0.011			0.015	0.018	0.027			0.001	0.001			0.011	0.000	0 005	0 001			0.008	0.006	bag 3	TDL-NH (g/mi)
0.001	0.007	0.007	0.008	0.007	0.002	0.012	0.011		0.003	0.013	0.011	0.012	0.017	0.000	0.005	0.005	0.005	0.001	0.008	0.000	0.000	0 007	600.0	0.001	0.010	0.009	0.010	Wgtd	-
		0.001	0.000	0.000			0.006	0.007			0.006	0.004	0.028			N/A	0.000			0.000	0.000	0 000	0 001			0.004	0.006	bag 1	
		0.000	0.000	0.000			0.004	0.004			0.000	0.001	0.005			N/A	0.000			0.000	0.000	0 000	0 001			0.002	0.003	bag 2	FTIR -]
		0.000	0.000	0.000			0.000	0.000			0.001	0.005	0.000			N/A	0.000			0.000	0.000	0 000	0 000			0.000	0.000	bag 3	FTIR - NH (g/mi)
0.000	0.000	0.000	0.000	0.000	0.000	0.003	0.003		0.004	0.004	0.002	0.003	0.008	N/A	0.000	N/A	0.000	0.001	0.000	0.000	0.000	0 000	0 001	0.001	0.002	0.002	0.003	Wgtd	ij
		0.072	0.063	0.045	 		0.031				0.026	0.026	0.023			N/A	0.056			0.000			0 029			0.037	0.024	bag 1 bag 2 bag 3 Wgtd bag 1 bag 2	_
		0.008	0.001	0.007			0.002	0.004			0.000	0.000	0.001			N/A	0.008			0.001	0.000	0 000	0 001			0.001	0.001	bag 2	FTIR - N
		0.037	0.029	0.038			0.019	0.022			0.018	0.019	0.019			N/A	0.037			0.010	0.020	0 000	0 020			0.020	0.023	bag 3 Wgtd	FTIR - NO (g/mi)
0.004	0.025	0.029	0.021	0.023	0.001	0.013	0.012		0.000	0.010	0.010	0.011	0.010	N/A	0.026	N/A	0.026	0.000	0.012				0 012	0.001	0.013	0.014	0.012	Wgtd	ij

CRC E-60: NH₃ Emissions from Late Model Vehicles

75

0.004		0	0.000			0.003	0			6.177				0.015			7	0.017			0.002	0.0					stdev	sto
0.006		0	0.000			0.006	0			405.9				0.045			0	0.310			29	0.029					average	av
0.002 0.003	0.000	0 0.012	000 0.000	00 0.000	00 0.000	0.009 0.000	0.006 0.	0.012 (0.005	402.0	354.1	426.3	405.3	0.030	0.029)2 0.001	0.102	00 0.318	0.070 0.000	1.359 0.	0.030 1.	0.003 0.0	0.002 0	0.138 0	150 (Aged	10206015	_
0.005 0.004	0.001	0 0.012	000 0.000	00 0.000	00 0.000	0.004 0.000	-0.003 0.	0.006 -	0.007	402.5	356.1	425.9	405.7	0.045	2 0.095	38 0.002	0.088	00 0.322	0.061 0.000	1.399 0.		0.003 0.031	0.003 0	0.138 0	150 (Aged	10206011	_
0.013 0.010	0.006	0 0.017	000 0.000	00 0.000	00 0.000	0.005 0.000	0.000 0.	0.005 (0.012	413.0	363.0	438.5	415.4	0.059	3 0.115	0.013	0.101	00 0.290	0.080 0.000	1.202 0.		0.002 0.027	0.003 0	0.120 0	150 (Aged	10206004	_
0.000		S	0.005			0.004	0			7.931				0.001			0	0.110			01	0.001					stdev	sto
0.002		4	0.004			0.012	0			406.5				0.024			ö	0.430			28	0.028					average	av
0.000 0.002	0.000	0 0.010	000 0.000	00 0.000	00 0.000	0.009 0.000	0.007 0.	0.010 (0.010	412.2	360.1	438.8	414.6	0.023	0.017	38 0.000	52 0.088	00 0.352	0.101 0.000	1.444 0.		0.002 0.028	0.003 0	0.123 0	30 (Aged	10205066	10
0.000 0.002	0.000	0.008	0.000 0.007		00 0.014	0.015 0.000	-0.003 0.	0.023 -	0.018	400.9	354.9	424.0	404.5	0.024	0.039	55 0.001	0.065	00 0.508	0.182 0.000	1.996 0.		0.004 0.028	0.004 0	0.122 0	30 (Aged	10205065	10
0.000		9	0.009			0.013	0			5.856				0.005			8	0.098			01	0.001					stdev	sto
0.001		0	0.010			0.021	0			410.2				0.019			9	0.419			29	0.029					average	av
0.000 0.001	0.000	0 0.007	000 0.000	00 0.000	00 0.000	0.006 0.000	-0.003 0.	0.010 -	0.011	416.8	365.0	444.5	416.2	0.023	0.034	55 0.000	0.065	00 0.309	0.122 0.000	1.184 0.		0.004 0.028	0.003 0	0.122 0	5	Aged	10205060	10
0.000 0.001	0.000	3 0.006	000 0.013	24 0.000	01 0.024	0.024 0.001	0.007 0.	0.033 (0.023	405.6	357.1	429.3	410.9	0.014	0.008	57 0.000	0.057	00 0.495	0.253 0.000	1.753 0.	0.030 1.	0.003 0.0	0.002 0	0.136 0	5	Aged	10205054	10
0.000 0.001	0.000	8 0.007	0.000 0.018		0.028	0.031 0.018	0.024 0.	0.033 (0.038	408.2	358.6	432.4	413.4	0.021	0.030	59 0.000	0.059	00 0.453	0.143 0.000	1.827 0.	0.030 1.	0.004 0.0	0.004 0	0.130 0	5	Aged	10205051	10
0.002		0	0.000			0.005	0			5.400				0.016			2	0.162			02	0.002					stdev	sto
0.006		0	0.000			0.014	0			409.8				0.053			ŏ	0.480			35	0.035					average	av
0.005 0.008	0.006	0 0.014	000 0.000	00 0.000	00 0.000	0.015 0.000	0.001 0.	0.025 (0.006	414.1	362.2	440.2	417.6	0.036	0.032	0.010	0.106	00 0.447	0.296 0.000	1.416 0.		0.002 0.035	0.006 0	0.149 0	150 (OE	10205044	10
0.004 0.005	0.000	0 0.019	0.000 0.000		00 0.000	0.008 0.000	-0.001 0.	0.014 -	0.006	411.7	361.9	437.8	412.4	0.057	0.083	64 0.001	38 0.164	00 0.338	0.123 0.000	1.324 0.		0.002 0.033	0.003 0	0.148 0	150 (OE	10205040	10
N/A N/A	N/A	N/A	N/A N/A		N/A N/A	0.018 N	-0.002 0.	0.030 -	0.014	403.8	359.5	425.6	408.0	0.067	4 0.086	0.044	6 0.101	00 0.656	0.510 0.000	1.889 0.	0.036 1.	0.003 0.0	0.007 0	0.155 0	150 (OE	10205039	10
0.000		7	0.017			0.010	0			1.540				0.004			<u>ت</u>	0.103			02	0.002					stdev	sto
0.002		4	0.014			0.023	0			406.0				0.026			δό.	0.458			31	0.031					average	av
0.000 0.002	0.000	2 0.011	000 0.002	04 0.000	00 0.004	0.016 0.000	0.020 0.	0.016 (0.010	407.1	360.2	431.8	407.6	0.028	0.027	0.001	0.096	00 0.385	0.156 0.000	1.467 0.		0.003 0.029	0.003 0	0.129 0	30 (OE	10205031	10
0.000 0.002	0.000	6 0.009	0.000 0.026		0.048	0.030 0.005	0.004 0.	0.044 (0.027	404.9	359.0	428.0	408.3	0.023	0.027	74 0.000	0.074	00 0.530	0.328 0.000	1.737 0.		0.003 0.032	0.003 0	0.143 0	30 (OE	10205027	I0
0.000			0.00			.001	c			U.U.T				0.005			, r	0.00			- OF	c.					ç	0
0 000		ہ د	0 000			0.007				3 004				0.005			ა <mark>1</mark>	0 002			3	0.002					average	ocoring at
			0 000										-	(n n n													010 D2	Cehring av
0.000 0.001	0.000		000 0.000	00 0.000		0.007 0.000	0.017 0.	0.002 (0.004	407.8	359.4	431.4	413.1	0.035	0.008	54 0.002	62 0.154	00 0.262	0.005 0.000	1.248 0.		0.003 0.033	0.003 0	0.145 0	5	OE	205023	Chrysler I0205023
0.000 0.001	0.000	0 0.005	000 0.000	00 0.000	00 0.000	0.004 0.000	0.008 0.	0.001 (0.005	412.2	362.8	436.4	417.3	0.028	3 0.015	0.003	0.107	00 0.265	0.013 0.000	1.243 0.		0.004 0.030	0.003 0	0.134 0	5 (OE	10205020	2001 I0
bag 3 Wgtd	bag 2	d bag 1	bag 3 Wgtd	2 ba	g 1 bag 2	Wgtd bag 1	bag 3 W	bag 2 l	bag 1	Wgtd	ω		bag 1	Wgtd	bag 3	Ъ	td bag 1	, 3 Wgtd	bag 2 bag 3	p.	Wgtd bag 1		bag 2 b	bag 1 b	Fuel S	Cat. F		Vehicle Test
D (g/mi)	FTIR - NO (g/mi)		⊴/mi)	FTIR - NH (g/mi)	FTIR		(g/mi)	TDL-NH (g/mi)	T		(g/mi)	CO. (1	-		NQ ₄ (g/mi)	NO		-	CO (g/mi)			o/mi)	NMHC (g/mi)	Z				

CRC E-60: NH₃ Emissions from Late Model Vehicles

76

																												<	
																									3.2 CL	Acura	2001	Vehicle	
	stdev	average	1020702	1020701	1020701	stdev	average	1020700	1020700	stdev	average	1020606	1020606	stdev	average	1020605	1020604		stdev	average	1020602	1020602	stdev	average	1020601	1020601	1020506	Test	
Invite Number line Contraction Contraction <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>Cat</th><th></th></t<>																												Cat	
NUMC (pm) CO (gm) NO (gm) NO (gm) TDL-NU (gm) TDL-NU (gm) TDL-NU (gm) TDL-NU (gm) TTDL-NU (gm) TTDL																													
NNLC (prior) VC (grior) NC (_							0.1	0.2			0.1	0.1									0.1			0.1	0.1	0.1	-	
																													Ŋ
																													AHC (g
	0	0				0	0			0	0			0	0				0	0			0	0					
	.000	.043				.006	.046			.001	.041			.000	.034			0	000	.031			.003	.036				-	
Nyget Iby Dag Nyget Iby Nyget Ibg Nyget Ibg Nyget Ibg Nyget Ibg Nyget																													CO (8
NO. (gran) CO. (gran) TTLVD. (gran) Vgrd bag2 bag3 Vgrd bag1 bag2 bag3 Vgrd bag3 Vgrd bag1 bag2 bag3 Vgrd bag3 Vgrd bag1 bag2 bag3 Vgrd			0.011	0.013	0.013			0.011	0.017			0.040	0.054			0.014	0.011				0.012	0.008			0.000	0.000	0.000	bag 3	/mi)
	0.053	0.648	0.592	0.655	0.697	0.222	0.732	0.575	0.889	0.005	0.730	0.733	0.726	0.009	0.401	0.407	0.394		0 004	0.295	0.298	0.292	0.069	0.444	0.423	0.387	0.521	Wgtd	
			0.061	0.074	0.065			0.070	0.054			0.061	0.097			0.061	0.065				0.106	0.070			0.063	0.053	0.059	bag 1	
			0.023	0.033	0.014			0.018	0.011			0.035	0.031			0.023	0.010				0.031	0.037			0.036	0.011	0.030		NO,
			0.271	0.078	0.215			0.162	0.201			0.096	0.112			0.113										0.058		bag 3	(g/mi)
	0.023	0.078				0.003	0.070			0.000	0.062			0.00	0.055				0.01	0.065			0.016	0.05					
		~								7				<u> </u>										<u> </u>				-	
Vigen TUL-NH, fig/n Viged $hag 1$ $hag 2$ $hag 3$ Viged $hag 1$ $hag 2$ $hag 3$ Viged $hag 1$ $hag 2$ $hag 3$ <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>C</th></th<>																													C
VILC.NH, (g/m) VILC.NH, (g/m) VILC.NH, (g/m) VILC.NH, (g/m) VILC.NN, (g/m)) ₂ (g/mi)
	0.6	392.				0.1	395.			2.1	408.			3.6	397.				202	402.			4.4	404.					
TDLVH., (g/m) FTIRVH., (g/m) $\mathbf{FTIRVH., (g/m)}$ $\mathbf{brg. 1}$ $\mathbf{brg. 7}$ $\mathbf{brg. 1}$ $\mathbf{brg. 2}$ $\mathbf{brg. 3}$ 0.002 0.003 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001		3					U				S				9					-				7				_	
H, (g/m) Vigid hug 1 hug 2 hug 3 hug 3 <thu 3<="" th=""> hug 3 <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>TDL</th></t<></thu>																													TDL
Vigtal Iag 1 Jag 2 Jag 3 Vigtal Iag 2 Jag 4 N-V.C (g/m) 0.017 0.053 0.007 0.000 0.015 0.007 0.000 0.008 0.015 0.008 0.015 0.008 0.016 0.016																													-NH ₃ (g/
FTIR - NH3 (g/mi) FTIR - N, (g/mi) FTIR - N, (g/mi) bag 1 hag 2 bag 3 Wgrd bag 1 bag 2 hag 3 0.053 0.007 0.000 0.015 0.007 0.000 0.005 0.047 0.007 0.000 0.013 0.004 0.000 0.005 0.047 0.007 0.000 0.013 0.004 0.000 0.005 0.020 0.004 0.000 0.005 0.005 0.000 0.011 0.021 0.004 0.000 0.005 0.000 0.005 0.000 0.015 0.022 0.003 0.000 0.004 0.000 0.005 0.005 0.005 0.011 0.003 0.000 0.012 0.000 0.015 0.005 0.015 0.027 0.012 0.001 0.016 0.014 0.000 0.015 0.027 0.015 0.000 0.017 0.000 0.017 0.000 0.018 0.017 0	0.0	0.0				0.0	0.0			0.0	0.0			0.0	0.0			-	0.0	0.0			0.0	0.0					'mi)
FTIR - VL7. (g/mi) FTIR - V.Q (g/mi) bag2 bag3 Vgtd bag1 bag2 bag3 Vgtd bag2 bag3 lag3 0.007 0.000 0.001 0.007 0.000 0.008 0.000 0.008 0.000 0.005 0.000 0.005 0.000 0.005 0.000 0.001 0.015 0.001 0.015 0.001 0.016 0.001 0.015 0.017 0.001 0.016 0.017 0.001 0.016 0.017 0.016 0.017 0.017 0.017 0.001 0.016 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.017 0.016 0.017 0.016 0.016 <th>03</th> <th>20</th> <th></th> <th></th> <th></th> <th> 115</th> <th>)26</th> <th></th> <th></th> <th>00</th> <th>014</th> <th></th> <th></th> <th>909</th> <th>014</th> <th></th> <th></th> <th>i</th> <th>5</th> <th>09</th> <th></th> <th></th> <th>02</th> <th>)15</th> <th></th> <th></th> <th></th> <th></th> <th></th>	03	20				 115)26			00	014			909	014			i	5	09			02)15					
Vigt hag 1 $hag 2$ hag 3 0.015 0.007 0.000 0.005 0.015 0.007 0.000 0.005 0.011 0.004 0.000 0.005 0.011 0.004 0.000 0.010 0.006 0.005 0.000 0.010 0.006 0.005 0.000 0.010 0.006 0.005 0.000 0.010 0.006 0.005 0.000 0.010 0.001 0.000 0.015 0.001 0.002 0.004 0.000 0.015 0.001 0.004 0.000 0.018 0.001 0.007 0.000 0.017 0.011 0.000 0.017 0.012 0.011 0.000 0.019 0.012 0.011 0.000 0.019 0.012 0.011 0.000 0.019 0.012 0.011 0.000 0.029 0.018 0.011																													FTI
Vigt hag 1 $hag 2$ hag 3 0.015 0.007 0.000 0.005 0.015 0.007 0.000 0.005 0.011 0.004 0.000 0.005 0.011 0.004 0.000 0.010 0.006 0.005 0.000 0.010 0.006 0.005 0.000 0.010 0.006 0.005 0.000 0.010 0.006 0.005 0.000 0.010 0.001 0.000 0.015 0.001 0.002 0.004 0.000 0.015 0.001 0.004 0.000 0.018 0.001 0.007 0.000 0.017 0.011 0.000 0.017 0.012 0.011 0.000 0.019 0.012 0.011 0.000 0.019 0.012 0.011 0.000 0.019 0.012 0.011 0.000 0.029 0.018 0.011																												ıg2 b	R - NH3
FTIR - N ₂ O (g/mi) bag 1 bag 2 bag 3 0.007 0.000 0.008 0.004 0.000 0.010 0.005 0.000 0.010 0.005 0.000 0.010 0.006 0.000 0.010 0.008 0.000 0.010 0.008 0.000 0.015 0.010 0.000 0.015 0.014 0.000 0.015 0.015 0.000 0.011 0.007 0.000 0.017 0.011 0.000 0.019 0.011 0.000 0.019 0.011 0.000 0.019 0.011 0.000 0.019 0.011 0.000 0.029	-	-				_	-			_	_			_	_				_	_			_	_				ag 3 V	(g/mi)
bag 2 bag 3 0.000 0.008 0.000 0.005 0.000 0.010 0.000 0.010 0.000 0.010 0.000 0.010 0.000 0.010 0.000 0.010 0.000 0.015 0.000 0.015 0.000 0.018 0.000 0.018 0.000 0.017 0.000 0.017 0.000 0.019 0.001 0.016 0.002 0.017 0.003 0.019 0.004 0.019 0.005 0.019).008	0.018				0.020	0.031			0.002	0.017).006	0.008			000	2003	0.004			0.006	0.011					
TIIR - N,O (g/mi) bag 2 bag 3 Wg 0.000 0.005 0.00 0.000 0.010 0.00 0.000 0.010 0.00 0.000 0.010 0.00 0.000 0.010 0.00 0.000 0.015 0.00 0.000 0.015 0.00 0.000 0.015 0.00 0.000 0.018 0.00 0.000 0.018 0.00 0.000 0.017 0.00 0.000 0.017 0.00 0.000 0.017 0.00 0.000 0.017 0.00 0.000 0.017 0.00 0.000 0.019 0.00 0.000 0.019 0.00 0.000 0.029 0.01 0.000 0.029 0.00 0.000 0.029 0.00 0.000 0.029 0.00 0.000 0.029 0.00																													F
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0.001																								bag 2	FIR - N ₂
Vig 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00			0.029	0.016	0.019			0.017	0.021			0.018	0.018			0.024	0.015				0.008	0.010			0.010	0.005	0.008	bag 3	O (g/mi
A A	0.002	0.009	0.010	0.008	0.007	 0.001	0.007	0.006	0.007	 0.001	0.008	0.006	0.008	 0.002	0.007	0.008	0.006	0	0 000	0.004	0.004	0.004	 0.000	0.003	0.003	0.003	0.004	Wgtd	

CRC E-60: NH₃ Emissions from Late Model Vehicles

TT

0.017 0.013			0.079 0.005			0.076 0.005				464.3 4.0				0.074 0.021			43	0.652 0.043			0.040 0.002	6					average stdev	
N/A N/A	N/A	N/A		9 0.052	091 0.079	0.077 0.091	0.056 0.	0.070 0	0.123 0	460.4 (411.3	481.7	472.7	0.072	6 0.064	24 0.016	0.224		0.131 0.255	2.454 0.	0.038 2.	0.014 0	0.010	0.141	150	Aged	I0202014	
0.008 0.008	0.000 0.	0.026	99 0.083	3 0.099	0.112 0.063	0.079 0.1	0.101 0.	0.050 0	0.124 0	464.0	412.1	485.5	479.1	0.054	2 0.039	0.002	0.202	0.611	0.073 0.287	2.381 0.	0.038 2.	0.013 0	0.005	0.155	150	Aged	10202011	
0.037 0.026	0.010 0.	0.050	55 0.079	4 0.055	126 0.074	0.071 0.126	0.057 0.	0.061 0	0.113 0	468.5 (412.5	492.4	483.4	0.096	5 0.137	18 0.025	0.218	153 0.697	0.158 0.453	2.361 0.	0.042 2.	0.020 0	0.008	0.158	150	Aged	I0202009	
0.001			0.020			0.011	0.			4.0			-	0.002			11	0.011			0.003	0					stdev	
0.007			0.073			0.059	0.			468.0				0.047			97	0.597			0.037	0					average	
0.003 0.006	0.000 0.	0.026	91 0.087	8 0.091	154 0.058	0.067 0.154	0.079 0.	0.039 0	0.122 0	465.2 (412.3	486.7	481.8	0.048	1 0.019	0.001	89 0.205	87 0.589	0.063 0.187	2.432 0.	0.035 2.	0.009 0	0.004	0.147	30	Aged	10202002	
0.003 0.007	0.000 0.	0.031	60 0.059	2 0.060	101 0.042	0.051 0.101	0.057 0.	0.027 0	0.105 0	470.9	414.0	493.3	490.4	0.045	2 0.028	76 0.002	0.176	28 0.604	0.050 0.128	2.614 0.	0.040 2.	0.008 0	0.004	0.170	30	Aged	10201045	
0.001			0.009			0.008	0.			6.2			-	0.006			03	0.003			0.002	0					stdev	
0.006			0.060			0.054	0.			466.5				0.047			07	0.507			0.033	0					average	
0.004 0.006	0.000 0.	0.023	75 0.066	3 0.075	085 0.053	0.060 0.085	0.074 0.	0.038 0	0.096 0	470.9	416.8	494.0	485.3	0.051	1 0.047	31 0.001	05 0.181	17 0.505	0.065 0.317	1.852 0.	0.034 1.	0.011 0	0.006	0.136	S	Aged	10201041	
0.004 0.007	0.000 0.	0.029	50 0.054	8 0.060	0.084 0.038	0.049 0.0	0.057 0.	0.028 0	0.088 0	462.1 (412.2	485.4	470.4	0.042	1 0.023	72 0.001	0.172	80 0.509	0.065 0.180	2.055 0.	0.032 2.	0.008 0	0.003	0.136	S	Aged	10201036	
0.008			0.005			0.010	0.			5.174				0.011			39	0.039			0.005	0					stdev	
0.015			0.045			0.037	0.			462.8				0.063			48	0.448			0.035	0					average	
0.009 0.009	0.001 0.	0.030	13 0.041	2 0.013	0.053 0.052	0.030 0.0	0.013 0.	0.035 0	0.040 0	459.1 (407.6	481.9	470.5	0.055	3 0.082	50 0.003	20 0.150	0.420	0.066 0.051	1.790 0.	0.032 1.	0.009 0	0.008	0.121	150	OE	10202058	
0.028 0.021	0.009 0.	0.043	15 0.048	0 0.015	0.064 0.060	0.045 0.0	0.020 0.	0.048 0	0.070 0	466.4 (412.7	488.7	481.9	0.070	3 0.109	58 0.013	.75 0.158	70 0.475	0.083 0.170	1.863 0.	0.039 1.	0.021 0	0.011	0.132	150	OE	10202056	
0.000			0.005			0.006	0.			12.7				0.003			33	0.033			0.003	0					stdev	
0.006			0.011			0.019	0.			470.1				0.038			98	0.386			0.034	C					average	
0.001 0.006	0.000 0.	0.027	22 0.014	2 0.022	0.008 0.012	0.023 0.0	0.036 0.	0.014 0	0.031 0	461.2 (409.3	485.5	469.4	0.040	1 0.013	74 0.001	63 0.174	946 0.363	0.028 0.046	1.620 0.	0.032 1.	0.008 0	0.009	0.119	30	OE	10202049	
0.004 0.006	0.000 0.	0.022	0.007	2 0.000	005 0.012	0.015 0.005	0.007 0.	0.015 0	0.025 0	479.1	414.9	505.4	498.5	0.036	0 0.044	14 0.000	09 0.114	0.409	0.040 0.022	1.843 0.	0.036 1.	0.010 0	0.008	0.140	30	OE	10202047	
0.000			0.001			0.002	0.			3.4				0.008			29	0.029			0.001	0					stdev	
0.005			0.010			0.014	0.			465.1				0.037			54	0.454			0.032	C					Windstar average	Windstau
0.002 0.005	0.000 0.	0.021	0.009	0 0.001	019 0.010	0.016 0.019	0.010 0.	0.011 0	0.035 0	462.6 (407.7	485.2	479.2	0.031	0 0.018	24 0.000	33 0.124	0.433	0.030 0.032	1.968 0.	0.031 1.	0.006 0	0.005	0.131	S	OE	10202029	Ford
0.006 0.005	0.000 0.	0.015	0 0.011	5 0.000	0.042 0.005	0.013 0.0	0.006 0.	0.004 0	0.045 0	467.5 (414.4	489.0	484.1	0.042	0 0.073	0.000	.74 0.107	0.474	0.041 0.038	2.134 0.	0.033 2.	0.006 0	0.004	0.140	S	OE	10202024	2001
bag1 bag2 bag3 Wgtd	bag 2 bi		3 Wgtd	2 bag	bag 1 bag 2 bag 3 Wgtd		bag 3 Wgtd bag 1 bag 2 bag 3 Wgtd	ag 2 b	yag 1 b	Wgtd	bag 3	bag 2	bag 1 bag 2	Wgtd	bag 1 bag 2 bag 3 Wgtd	1 bag		g 3 Wgtd	bag 1 bag 2 bag 3	ag 1 b	Wgtd b:	bag 3 V	bag 2	bag 1	Fuel S	Cat.	Test	Vehicle
(g/mi)	FTIR - NO (g/mi)	ম	'mi)	FTIR - NH (g/mi)	FTIR -		(g/mi)	TDL-NH ₆ (g/mi)	TI		g/mi)	CO ₂ (g/			NO _x (g/mi)	NC		÷	CO (g/mi)			(g/mi)	NMHC (g/mi)					
			_			-				-				-			-				-				-			-

CRC E-60: NH₃ Emissions from Late Model Vehicles

78

0.000			0.008)03	0.003			0.402			1	0.001			0.033			1	0.001					stdev	
0.002			0.005)13	0.013			344.5			2	0.022			0.136			6	0.016					average	
006 0.003	0.000 0.006	0.004 0.000	0 0.000	0 0.000	00 0.000	0.000	0.006 0.010	0.014 0	0.006 0	344.7	305.8	356.8	2 366.1	28 0.022	0.000 0.028	0.070 0.0	0.113	0.020	0.099	6 0.274	0.005 0.016	0.001 0	0.068 (150	Aged	10204029	
0.005 0.002	0.000 0.	0.005	1 0.011	8 0.001	0.018	0.005	0.009 0.015	0.018 0	0.015 0	344.2	304.8	5 355.7	1 367.6	25 0.021	0.000 0.025	0.069 0.0	0.159	0.059	0.134	7 0.356	0.005 0.017	0.002 0	0.070 (150	Aged	10204028	
0.001			0.003)04	0.004			3.161			-	0.001			0.001			0	0.000					stdev	
0.002			0.003			90(0.006			346.1			2	0.022			0.181			6	0.016					average	
0.003 0.001	0.000 0.	0.002	0 0.000	1 0.000	0.001	0.000	0.001 0.003	0.004 0	0.004 0	343.9	305.8	354.1	1 368.7	19 0.021	0.000 0.019	0.075 0.0	0.181	0.088	0.165	6 0.346	0.004 0.016	0.002 0	0.069 (30	Aged	10204023	
0.004 0.002	0.000 0.	0.004	0 0.005	0 0.000	0 0.010	0.000	0.004 0.009	0.014 0	0.010 0	348.3	308.1	5 358.4	3 376.6	29 0.023	0.000 0.029	0.073 0.0	0.180	0.060	0.198	6 0.291	0.006 0.016	0.003 0	0.061 (30	Aged	10204019	
N/A			N/A)02	0.002			1.420			ω	0.003			0.003			1	0.001					stdev	
0.001			0.001)03	0.003			344.8				0.021			0.189			6	0.016					average	
0.003 0.001	0.000 0.	0.003	0 0.001	1 0.000	0.001	0.000	-0.001 0.002	0.004 -0	0.001 0	343.8	305.3	352.9	3 372.3	27 0.023	0.000 0.027	0.077 0.0	0.191	0.087	0.198	0.311	0.004 0.017	0.001 0	0.073 (S	Aged	I0204015	
N/A N/A	N/A N	N/A	N/A	N/A	A N/A)04 N/A	0.000 0.004	0.005 0	0.009 0	345.8	306.2) 356.0	9 373.0	20 0.019	0.001 0.020	0.061 0.0	0.187	0.083	0.199	6 0.293	0.004 0.016	0.003 0	0.066 (5	Aged	10204011	
0.000			0.000			101	0.001			1.416			4	0.004			0.018			2	0.002					stdev	
0.002			0.000)03	0.003			345.7			0	0.020			0.101			0	0.020					average	
0.003 0.002	0.000 0.	0.004	0 0.000	0 0.000	0.000	0.000	0.001 0.004	0.004 0	0.006 0	344.7	305.4	357.2	9 365.2	15 0.019	0.001 0.015	0.070 0.0	0.111	0.003	0.108	1 0.259	0.004 0.021	0.004 0	0.085 (150	OE	10205007	
0.004 0.002	0.000 0.	0.004	0 0.000	0 0.000	0.000	0.000	0.001 0.003	0.003 0	0.006 0	347.3	305.9	358.9	4 373.3	32 0.024	0.000 0.032	0.073 0.0	0.081	0.001	0.076	0.201	0.004 0.021	0.003 0	0.089 (150	OE	10204075	
0.001 0.001	0.000 0.	0.005	0 0.000	0 0.000	0.000	0.000	-0.001 0.002	0.004 -0	0.002 0	345.2	306.1	1 356.5	7 368.4	13 0.017	0.000 0.013	0.063 0.0	0.112	0.013	0.113	0.240	0.003 0.017	0.002 0	0.074 (150	OE	10204069	
0.000			0.000			103	0.003			1.974			2	0.002			0.004			3	0.003					stdev	
0.001			0.000			102	0.002			345.0			~	0.018			0.145			0	0.019					average	
001 0.001	0.000 0.001	0.005	0.000	0 0.000	0.000	0.000	-0.002 0.000	0.000 -0	0.001 0	346.4	307.3	358.0	6 369.3	09 0.016	0.000 0.009	0.066 0.0	0.142	0.049	0.126	0.305	0.006 0.021	0.006 0	0.077 (30	OE	10204060	
0.001 0.001	0.000 0.	0.003	0 0.000	0 0.000	0.000	0.000	-0.001 0.003	0.004 -0	0.008 0	343.6	303.5	356.2	9 365.5	20 0.019	0.000 0.020	0.064 0.0	0.148	0.038	0.152	7 0.284	0.001 0.017	0.001 0	0.077 (30	OE	10204056	
0 001			0 000			ŝ	000			0 6			در	200.0			0 010			л	200.0					etdev	
0.002			0.000			102	0.002			344.4			0	0.020			0.167			3	0.023					average	
0.006 0.003	0.000 0.	0.006	0.000	0 0.000	0.000	0.000	0.001 0.002	0.002 0	0.001 0	346.5	307.5	356.8	4 372.7	30 0.024	0.000 0.030	0.075 0.0	0.162	0.123	0.127	3 0.302	0.004 0.023	0.003 0	0.097 (S	OE	10204051	Accord
0.002 0.001	0.000 0.	0.004	0 0.000	0 0.000	0 0.000	0.000	0.000 0.002	0.002 0	0.004 0	344.1	305.2	354.9	8 368.5	13 0.018	0.000 0.013	0.069 0.0	0.160	0.090	0.153	8 0.271	0.007 0.028	0.009 0	0.101 (S	OE	I0204045	Honda
0.003 0.002	0.000 0.	0.006	0 0.000	0 0.000	0.000	0.000	-0.002 0.003	0.003 -0	0.008 0	342.5	302.5	5 353.2	9 368.6	20 0.019	0.000 0.020	0.065 0.0	0.178	0.089	0.164	8 0.333	0.002 0.018	0.001 0	0.082 (S	OE	I0204042	2000
bag 3 Wgtd	bag 2 bi	bag 3 Wgtd bag 1 bag 2	3 Wgtd		bag 1 bag 2	gtd bag	bag 1 bag 2 bag 3 Wgtd	ag 2 b	bag 1 t	bag 3 Wgtd		bag 2	d bag 1	3 Wgtd	bag 2 bag 3	bag 1 ba	Wgtd 1	bag 3	bag 1 bag 2		bag 3 Wgtd	bag 2 b	bag 1 l	Fuel S	Cat.	Test	Vehicle
(g/mi)	FTIR - NO (g/mi)	Ŀ,	mi)	FTIR - NH (g/mi)	FTIR -		(g/mi)	TDL-NH (g/mi)	Т		ିହ	CO ₂ (g/		-	NO _x (g/mi)	L		CO (g/mi)	CO		g/mi)	NMHC (g/mi)	-				
;		_	,			_	;		1	_	;	2	-		;		_		1	-				_			-

CRC E-60: NH₃ Emissions from Late Model Vehicles

79

																												Sentra	Nissan	2001	Vehicle		-
stdev	average	10205055	10205050	10205049	stdev	average	10205045	10205035	10205029	stdev	average	10205026	10205022	10205021	stdev	c	average	10207041	10207039	10207004	stdev	ауегаде	I0206067	I0206062	10206032	stdev	average	10205069		10205062	Test		
		Aged	Aged	Aged			Aged	Aged	Aged			Aged	Aged	Aged			c T	OE	OE	OE			OE	OE	OE			OE	OE	OE	Cat.		
		150	150	150			30	30	30			S	5	5				150	150	150			30	30	30			S	S	5	Fuel S		
		0.047	0.051	0.087			0.041	0.041	0.075			0.042	0.032	0.054			0	0.032	0.039	0.073			0.025	0.049	0.030			0.039	0.034	0.102	bag 1		-
		0.002	0.002	0.002			0.002	0.002	0.001			0.002	0.002	0.002				0.002	0.001	0.001			0.002	0.002	0.001			0.002	0.001	0.002	bag 2	NMHC (g/mi)	
		0.002	0.002	0.002			0.003	0.003	0.002			0.002	0.001	0.003			01008	0.002	0.001	0.001			0.002	0.002	0.002			0.002	0.002	0.002	bag 3	(g/mi)	
0.005	0.014	0.011	0.012	0.020	0.004	0.012	0.010	0.010	0.017	0.003	0.011	0.011	0.008	0.013	0.004		0.011	0.008	0.009	0.016	0.003	600.0	0.007	0.012	0.007	0.008	0.014	0.010	0.008	0.023	Wgtd		
		1.097	1.268	1.421			0.634	0.778	0.596			0.671	0.650	1.019				0.649	0.804	0.491			0.624	1.181	0.519			0.884	0.670	0.951	bag 1		
		0.050	0.039	0.087			0.034	0.031	0.037			0.034	0.029	0.031				0.014	0.017	0.014			0.020	0.028	0.015			0.000	0.000	0.000	bag 2	CO (g/mi)	
		0.045	0.014	0.070			0.027	0.017	0.013			0.039	0.010	0.024				0.016	0.026	0.027			0.027	0.015	0.014			0.000	0.000	0.000	bag 3		
0.049	0.304	0.266	0.287	0.359	 0.019	0.161	0.156	0.182	0.146	 0.044	0.184	0.167	0.152	0.234	0.034		0.148	0.146	0.183	0.116	0.076	0.176	0.147	0.263	0.119	0.030	0.173	0.183	0.139	0.197	Wgtd		_
		0.026	0.027	0.011			0.047	0.025	0.017			0.024	0.060	0.005				0.027	0.018	0.016			0.055	0.013	0.013			0.024	0.016	0.025	bag 1		
		0.000	0.000	0.000			0.000	0.000	0.000			0.000	0.000	0.000			0	0.000	0.000	0.000			0.000	0.000	0.001			0.000	0.000	0.000	bag 2	NO _x (g/mi)	
		0.005	0.007	0.005			0.011	0.005	0.011			0.008	0.007	0.004			000	0.006	0.007	0.005			0.005	0.004	0.006			0.006	0.009	0.007	bag 3	g/mi)	
0.002	0.006	0.007	0.007	0.004	0.004	0.009	0.013	0.006	0.007	0.006	0.008	0.007	0.014	0.002	0.001		0.006	0.007	0.006	0.005	0.005	0 007	0.013	0.004	0.005	0.001	0.007	0.007	0.006	0.007	Wgtd		
		354.9	353.1	356.0			357.6	355.3	363.3			356.0	355.0	358.5				354.4	353.6	351.3			357.6	354.1	352.9			353.0	358.1	360.1	bag 1		_
		327.9	329.4	330.5			330.2	330.0	336.3			330.7	330.3	334.0			00000	330.0	328.2	321.9			330.5	332.7	327.5			328.9	332.2	331.9	bag 2	CO_2	
		296.1	295.1	296.0			293.3	300.7	301.0			298.2	298.7	301.2				297.8	300.8	292.2			304.6	303.3	298.7			296.4	299.5	298.8	bag 3	CO ₂ (g/mi)	
0.9	325.3	324.8	324.9	326.3	3.4	328.3	325.7	327.1	332.2	1.8	327.9	327.0	326.7	330.0	3.6		324.0	326.2	325.9	319.8	2.4	327 6	329.0	329.1	324.9	2.1	327.4	325.0	328.6	328.6	Wgtd		
		0.013	0.021	0.031			0.001	0.006	0.013			0.005	0.010	0.009			0.00	0.007	0.011	0.011			0.011	0.009	0.008			0.010	0.008	0.006	bag 1		-
		0.008	0.003	0.004			0.001	0.000	0.001			0.001	0.002	0.000				0.002	0.002	0.002			0.004	0.003	0.001			0.001	0.005	0.002	bag 2	TDL-NI	
		0.002	0.003	0.004			0.000	-0.001	0.001			-0.001	0.000	0.001			0	0.000	0.000	0.001			0.001	0.001	0.000			0.000	0.003	0.000	bag 3	TDL-NH ₃ (g/mi)	
0.002	0.008	0.007	0.006	0.010	0.002	0.002	0.001	0.001	0.004	0.001	0.002	0.001	0.003	0.002	0.000		0.003	0.003	0.003	0.003	0.001	0 003	0.005	0.003	0.002	0.001	0.003	0.003	0.005	0.002	Wgtd		
		0.002	N/A	0.007			0.000	0.000	0.000			0.000	0.000	N/A			0	0.000	0.000	0.000			0.000	0.000	0.000			0.000	0.000	0.000	bag 1		-
		0.002	N/A	0.002			0.000	0.000	0.000			0.000	0.000	N/A			0	0.000	0.000	0.000			0.000	0.000	0.000			0.000	0.000	0.000	bag 2	FTIR - N	
		0.000	N/A	0.000			0.000	0.000	0.000			0.000	0.000	N/A			-	0.000	0.000	0.000			0.000	0.000	0.000			0.000	0.000	0.000	bag 3	FTIR - NH 3 (g/mi)	
0.001	0.002	0.002	N/A	0.003	 0.000	0.000	0.000	0.000	0.000	 N/A	0.000	0.000	0.000	N/A	0.000		0.000	0.000	0.000	0.000	 0.000	0 000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	Wgtd		-
		0.003	N/A	0.004			0.001	0.005	0.002			0.003	0.001	N/A			0	0.008	0.006	0.007	 		0.011	0.003	0.003			0.004	0.002	0.007	bag 1		-
		0.000	N/A	0.000			0.000	0.000	0.000			0.000	0.000	N/A			0	0.000	0.001	0.000			0.000	0.000	0.000			0.000	0.000	0.000	bag 2	FTIR - N	
		0.000	N/A	0.000			0.000	0.000	0.000			0.000	0.000	N/A			0	0.000	0.000	0.000			0.000	0.000	0.000			0.000	0.000	0.000	bag 3	FTIR - N ₂ O (g/mi)	
0.000	0.001	0.001	N/A	0.001	0.000	0.001	0.000	0.001	0.000	N/A	0.000	0.001	0.000	N/A	0.000		0.002	0.002	0.002	0.002	0.001	0 001	0.002	0.001	0.001	0.001	0.001	0.001	0.000	0.002	Wgtd	ij	

University of California, Riverside, CE-CERT

					Ve
					Vehicle 2000 VW Bora
10203068 10204002 average stdev	10203029 10203043 average stdev	10202059 10202061 average stdev	10205025 10205030 10205034 average stdev	I0204070 I0204076 average stdev	Test 10204046 10204053 10204055 average stdev
Aged Aged	Aged Aged	Aged Aged	O E O	OE OE	OE Cat.
150 150	30 30	ა ა	150 150 150	30 30	Fuel S 5 5
0.518 0.524	0.489 0.506	0.545 0.558	0.559 0.446 0.587	0.572 0.504	bag 1 0.449 0.492 0.398
0.003 0.003	0.004 0.003	0.003 0.002	0.003 0.003 0.004	0.004	NMH bag 2 0.004 0.002 0.003
0.005 0.004	0.004 0.004	0.005 0.015	0.002 0.003 0.003	0.003 0.003	NMHC (g/mi) bag 2 bag 3 0.004 0.003 0.002 0.002 0.003 0.002
0.110 0.111 0.111 0.111	0.105 0.108 0.107 0.002	0.116 0.121 0.119 0.004	0.118 0.095 0.125 0.112 0.112	0.121 0.107 0.114 0.010	Wgtd 0.096 0.103 0.084 0.094 0.010
4.342 3.721	3.583 3.994	3.587 3.253	3.260 2.839 3.181	3.920 2.936	bag 1 2.723 3.815 2.935
0.097 0.115	0.161 0.220	0.318 0.204	0.205 0.286 0.221	0.245 0.195	
0.061 0.062	0.088 0.040	0.145 0.083	0.067 0.070 0.066	0.124 0.067	CO (g/mi) bag 2 bag 3 0.194 0.076 0.225 0.069 0.163 0.098
0.966 0.848 0.907 0.083	0.849 0.953 0.901 0.074	0.935 0.803 0.869 0.093	0.799 0.756 0.791 0.782 0.023	0.973 0.727 0.850 0.174	Wgtd 0.685 0.943 0.719 0.782 0.140
0.522 0.460	0.468 0.447	0.365 0.374	0.286 0.400 0.244	0.283 0.317	bag 1 0.490 0.284 0.402
0.052 0.013	0.043 0.045	0.028 0.030	0.002 0.006 0.008	0.009 0.004	NQ bag 2 0.007 0.020 0.007
0.102 0.098	0.118 0.105	0.145 0.139	0.034 0.053 0.015	0.045 0.031	NQ (g'mi) ag 2 bag 3 .007 0.016 .020 0.020 .007 0.048
0.163 0.129 0.146 0.024	0.152 0.145 0.149 0.005	0.130 0.131 0.131 0.131 0.001	0.069 0.101 0.059 0.076 0.022	0.076 0.076 0.076 0.076	Wgtd 0.110 0.075 0.100 0.095 0.018
294.4 297.5	301.2 300.4	301.2 301.6	295.7 306.1 318.5	301.7 304.7	bag 1 297.4 299.4 301.2
318.4 324.8	328.5 322.1	325.6 324.9	323.3 337.0 344.6	330.3 340.2	CO2 bag 2 319.0 319.5 324.9
276.9 278.0	280.1 277.3	281.8 280.5	273.5 280.8 293.9	280.1 278.1	CO ₂ (g/mi) 19.0 274.0 19.5 275.6 14.9 277.4
302.0 306.3 304.2 3.0	309.5 305.3 307.4 3.0	308.5 307.9 308.2 0.5	303.9 315.2 325.2 314.8 10.7	310.6 315.9 313.2 3.7	(g/mi) bag 3 Wgtd 274.0 302.4 275.6 303.3 277.4 306.9 304.2 2.4
0.031 0.027	0.020 0.037	0.043 0.033	0.026 0.009 0.015		bag 1 0.016 0.031 0.010
0.003	0.006 0.003	0.009 0.005	0.006 0.005 0.004	0.048 0.008 0.024 0.005	TDL-N bag 2 0.001 0.002 0.002
0.001 0.002	0.002	0.002 0.003	-0.001 0.001 0.001	0.002 0.001	TDL-NH(g/mi) bag 2 bag 3 0.001 0.001 0.002 0.001 0.002 0.001
0.008 0.008 0.008 0.008	0.008 0.009 0.008 0.001	0.014 0.010 0.012 0.003	0.008 0.005 0.006 0.006 0.002	0.014 0.008 0.011 0.011	Wgtd 0.004 0.003 0.003 0.005
	0.003 N/A		0.002 0.000 0.000	0.015 0.000	bag 1 0.001 0.020 0.000
0.005	0.004 N/A	0.013 0.005	0.001 0.000 0.000	0.012 0.000	FTIR - 1 0.000 0.005 0.000
0.008 0.005 0.000 0.000 0.000 0.000	0.000 N/A	0.001	0.000 0.000 0.000	0.015 0.012 0.000 0.000 0.000 0.000	FTIR - NH (g/mi) bag 1 bag 2 bag 3 0.001 0.000 0.000 0.020 0.005 0.000 0.000 0.000 0.000
0.004 0.000 0.002 0.003	0.003 N/A 0.003 N/A	0.014 0.007 0.010 0.010	0.001 0.000 0.000 0.000 0.000		ij Wgtd 0.000 0.007 0.000 0.002 0.002
0.035 0.036	0.033 N/A	0.029 0.024	0.036 0.036 0.027	0.033 0.037	bag 1 0.023 0.034
0.035 0.001 0.036 0.000	0.000 N/A	0.029 0.000 0.024 0.000	0.000 0.000 0.000	0.000	FTIR - 1 0.000 0.000 0.000
0.007	0.008 N/A	0.009	0.002	0.002	FTIR - NO (g/mi) bag 2 bag 3 0.000 0.000 0.000 0.001 0.000 0.002
0.010 0.009 0.010 0.000	0.009 N/A 0.009 N/A	0.009 0.007 0.008 0.001	0.008 0.008 0.006 0.007 0.001	0.007 0.008 0.008 0.000	ni) 0.005 0.007 0.007 0.007
		· · · ·			

CRC E-60: NH₃ Emissions from Late Model Vehicles

81

																										Megane	Renault	2001	Vehicle		-
stdev	average	10204008	10204003	10203067	stdev	average	10203049	10203044	stdev	average	10203025	10203023	stdev	average	10205008	10205002	stdev	average	10205056	10205052	10204067	10204064	stdev	average	10205046	10205041	10204040	10204039	Test		
		Aged	Aged	Aged			Aged	Aged			Aged	Aged			OE	OE			OE	OE	OE	OE			OE	OE	OE	OE	Cat.		
		150	150	150			30	30			s	S			150	150			30	30	30	30			5	5	5	s	Fuel S		
		0.356	0.260	0.293			0.256	0.255			0.277	0.247			0.267	0.324			0.226	0.250	0.227	0.215			0.231	0.220	0.208	0.228	bag 1		•
		0.004	0.002	0.003			0.003	0.002			0.004	0.003			0.003	0.005			0.003	0.003	0.004	0.003			0.003	0.003	0.003	0.002	bag 2	NMHC (g/mi)	
		0.035	0.029	0.017			0.010	0.007			0.007	0.008			0.005	0.004			0.004	0.004	0.004	0.004			0.005	0.003	0.003	0.003	bag 3	(g/mi)	
c10 0	0.072	0.085	0.063	0.067	0.001	0.057	0.057	0.056	0.004	0.058	0.061	0.055	0.009	0.065	0.058	0.071	0.003	0.050	0.050	0.054	0.050	0.047	0.002	0.048	0.051	0.048	0.045	0.049	Wgtd		
		1.700	1.486	1.435			1.211	1.194			1.342	1.369			0.877	1.172			0.980	0.914	1.124	0.858			1.050	0.930	0.824	1.146	bag 1		
		0.025	0.054	0.027			0.028	0.040			0.051	0.038			0.008	0.014			0.014	0.008	0.011	0.006			0.002	0.035	0.015	0.020	bag 2	CO (g/mi)	
		0.354	0.259	0.167			0.203	0.091			0.080	0.139			0.026	0.023			0.034	0.023	0.031	0.028			0.023	0.047	0.038	0.030	bag 3	t∕mi)	
C50 0	0.409	0.462	0.407	0.358	0.019	0.308	0.321	0.294	0.010	0.334	0.327	0.341	0.045	0.225	0.193	0.257	0.025	0.214	0.220	0.200	0.247	0.189	0.027	0.223	0.225	0.223	0.189	0.256	Wgtd		-
		0.049	0.023	0.048			0.042	0.047			0.024	0.028			0.031	0.048			0.050	0.031	0.025	0.031			0.029	0.028	0.025	0.023	bag 1		
		0.031	0.022	0.034			0.049	0.031			0.032	0.028			0.034	0.031			0.030	0.029	0.028	0.036			0.042	0.038	0.030	0.035	bag 2	NO _x (g/mi)	
		0.036	0.044	0.073			0.043	0.056			0.042	0.050			0.120	0.067			0.055	0.149	0.068	0.088			0.056	0.054	0.029	0.040	bag 3	g/mi)	
0 010	0.037	0.036	0.028	0.048	0.004	0.044	0.046	0.041	0.001	0.034	0.033	0.034	0.009	0.051	0.057	0.044	0.010	0.048	0.041	0.062	0.039	0.049	0.006	0.037	0.043	0.040	0.029	0.034	Wgtd		
		301.4	295.5	311.1			305.3	306.4			304.9	301.4			301.6	327.9			298.0	298.1	299.0	298.9			305.2	313.6	297.7	303.3	bag 1		
		292.7	290.6	301.9			293.2	297.8			302.5	309.8			291.1	315.6			293.9	290.5	299.0	300.6			289.8	318.0	298.1	292.6	bag 2	CO ₂ (g/mi)	
		262.6	262.3	264.6			263.3	266.2			268.9	263.9			263.6	278.7			261.0	256.7	264.4	263.3			261.7	276.2	260.1	263.1	bag 3	g/mi)	
5 1	287.9	286.2	283.9	293.6	2.414	289.2	287.5	290.9	1.206	294.6	293.8	295.5	15.782	296.9	285.7	308.0	3.389	287.0	285.7	282.8	289.5	290.0	9.67	291.3	285.3	305.8	287.6	286.7	Wgtd		_
		0.035	0.037	0.025			0.039	0.051			0.054	0.052			0.024	0.022			0.037	0.034	0.021	0.019			0.015	0.016	0.025	0.022	bag 1		-
		0.007	0.005	0.003			0.006	0.008			0.011	0.008			0.002	0.005			0.003	0.004	0.002	0.001			0.001	0.003	0.004	0.003	bag 2	TDL-NE	
		0.009	0.007	0.005			0.018	0.013			0.012	0.026			0.001	0.001			0.001	0.000	0.002	0.000			0.000	0.000	0.002	-0.001	bag 3	TDL-NH 3 (g/mi)	
0 003	0.011	0.013	0.012	0.008	0.002	0.017	0.016	0.018	0.001	0.021	0.021	0.022	0.001	0.007	0.006	0.007	0.003	0.007	0.009	0.009	0.006	0.004	 0.002	0.005	0.004	0.005	0.007	0.006	Wgtd		
		0.004	0.009	0.008	 _		N/A	N/A	 		0.033	0.037			0.000	0.000	 		0.004	0.005	0.002	0.001	 _		0.000	0.000	0.000	0.003	bag 1	Ŧ	
		0.006	0.008	0.002			N/A	N/A			0.019	0.021			0.000	0.000			0.001	0.000	0.000	0.000			0.000	0.000	0.000	0.002	bag 2	FTIR - NH 3 (g/mi)	
		0.000	0.000	0.000			N/A	N/A			0.009	0.021			0.000	0.000			0.000	0.000	0.000	0.000			0.000	0.000	0.000	0.000	bag 3	H 3 (g/mi	
0 002	0.004	0.004	0.006	0.003	N/A	N/A	N/A	N/A	0.004	0.022	0.019	0.025	0.000	0.000	0.000	0.000	0.000	0.001	0.001	0.001	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.002	Wgtd	-	_
		0.017	0.012	0.011			N/A	N/A			0.004	0.007			0.004	0.008			0.002	0.004	0.002	0.004			0.005	0.004	0.003	0.002	bag 1	-	
		0.000	0.000	0.001			N/A	N/A			0.001	0.002			0.000	0.000			0.001	0.000	0.000	0.002			0.001	0.000	0.001	0.001	bag 2	7TIR - N	
		0.008	0.007	0.011			N/A	N/A			0.004	0.004			0.015	0.006			0.007	0.010	0.008	0.008			0.007	0.003	0.005	0.004	bag 3	FTIR - N ₂ O (g/mi)	
0.001	0.005	0.006	0.005	0.006	N/A	N/A	N/A	N/A	0.001	0.003	0.002	0.004	0.001	0.004	0.005	0.003	0.001	0.003	0.003	0.003	0.003	0.004	0.001	0.002	0.004	0.002	0.003	0.002	Wgtd)	

University of California, Riverside, CE-CERT

Appendix F. FTP Statistical Analysis Results

			NMHC	THC	СО	NO _x	NH ₃	N ₂ O
			p-value	p-value	p-value	p-value	p-value	p-value
		Vehicle	0.0107	0.0110	0.0110	0.0135	0.0146	0.0140
		Catalyst age	0.5630	0.1137	0.0256	0.4406	0.0212	0.2463
	No	Fuel sulfur level	0.0329	< 0.0001	0.7118	0.0024	0.4059	< 0.0001
	outliers	Vehicle*Catalyst	0.0350	0.0234	0.1185	0.0195	0.0738	0.0732
		Vehicle*Fuel	-	-	-	0.0074	0.3845	0.1179
Logarithmic		Catalyst*Fuel	0.0806	0.0427	0.8674	0.8163	0.8973	0.8220
Logantinine		Vehicle	0.0106	0.0109	0.0110	0.0134	0.0145	0.0139
		Catalyst age	0.5746	0.1154	0.0266	0.4521	0.0211	0.2455
	All Data	Fuel sulfur level	0.0361	< 0.0001	0.6758	0.0021	0.4053	< 0.0001
	All Data	Vehicle*Catalyst	0.0382	0.0246	0.1189	0.0190	0.0701	0.0694
		Vehicle*Fuel	-	-	-	0.0069	0.3865	0.1097
		Catalyst*Fuel	0.0847	0.0513	0.8238	0.8306	0.8801	0.7269
		Vehicle	0.0118	0.0128	0.0119	0.0465	0.0710	0.0513
		Catalyst age	0.6483	0.1906	0.1112	0.3897	0.2680	0.0456
	No	Fuel sulfur level	0.0794	0.0011	0.2698	0.0200	0.3819	0.0649
	outliers	Vehicle*Catalyst	0.0281	0.0208	0.1191	0.0137	0.0175	0.4376
		Vehicle*Fuel	0.2930	0.2453	-	0.0060	-	0.0006
Arithmetic		Catalyst*Fuel	0.5901	0.4431	0.6693	0.1670	0.4370	0.8133
Antimiette		Vehicle	0.0115	0.0125	0.0118	0.0456	0.0710	0.0513
		Catalyst age	0.6711	0.1912	0.1125	0.4009	0.2664	0.0454
	All Data	Fuel sulfur level	0.0774	0.0010	0.2117	0.0173	0.3960	0.0633
		Vehicle*Catalyst	0.0384	0.0230	0.1172	0.0135	0.0174	0.3737
		Vehicle*Fuel	0.3921	0.2522	-	0.0053	-	0.0006
		Catalyst*Fuel	0.6289	0.5653	0.4472	0.2277	0.3809	0.9253

Statistical Analysis for FTP Emissions Results Excluding the European Vehicles

Statistical Analysis Results for Individual Bags

No Outliers logarithm arithmetic p-value p-value Vehicle 0.0126 0.0329 Catalyst age 0.0069 0.3622 Fuel sulfur level 0.5945 0.5747 Vehicle*Catalyst 0.0640 0.0225 Vehicle*Fuel --Catalyst*Fuel 0.4928 0.2612

ANOVA Analyses for FTP Bag 1 NH₃ Emissions

ANOVA Analyses for FTP Bag 2 NH₃ Emissions

	No Ou	tliers
	logarithm	arithmetic
	p-value	p-value
Vehicle	0.0136	0.0468
Catalyst age	0.0272	0.1391
Fuel sulfur level	0.0944	0.6818
Vehicle*Catalyst	0.4086	0.0282
Vehicle*Fuel	-	0.1106
Catalyst*Fuel	0.4966	0.1696

ANOVA Analyses for FTP Bag 3 NH₃ Emissions

No Ou	tliers
logarithm	arithmetic
p-value	p-value
0.0665	0.2855
0.4439	0.4746
0.2115	0.3010
0.0368	0.0213
-	0.4883
0.0652	0.5246
	p-value 0.0665 0.4439 0.2115 0.0368

[&]quot;-" = no interaction

Statistical Analysis Results for Individual Bags

ANOVA Analyses for FTP Bag 1 NMHC Emissions

	No Outliers						
	logarithm	arithmetic					
	p-value	p-value					
Vehicle	0.0107	0.0119					
Catalyst age	0.6337	0.7521					
Fuel sulfur level	0.1054	0.2070					
Vehicle*Catalyst	0.0398	0.0296					
Vehicle*Fuel	-	-					
Catalyst*Fuel	0.0418	0.3909					

ANOVA Analyses for FTP Bag 2 NMHC Emissions

	No Ou	tliers
	logarithm	arithmetic
	p-value	p-value
Vehicle	0.0160	0.0137
Catalyst age	0.9052	0.5188
Fuel sulfur level	0.0260	0.0063
Vehicle*Catalyst	0.0985	-
Vehicle*Fuel	0.2235	-
Catalyst*Fuel	0.5167	0.6605

ANOVA Analyses for FTP Bag 3 NMHC Emissions

	No Ou	ıtliers
	logarithm	arithmetic
	p-value	p-value
Vehicle	0.0124	0.0137
Catalyst age	0.0085	0.0537
Fuel sulfur level	0.0555	0.0101
Vehicle*Catalyst	0.0379	0.0439
Vehicle*Fuel	0.0229	0.0684
Catalyst*Fuel	0.4006	0.4996

Statistical Analysis Results for Individual Bags

ANOVA Analyses for FTP Bag 1 THC Emissions

	No Outliers							
	logarithm	arithmetic						
	p-value	p-value						
Vehicle	0.0107	0.0119						
Catalyst age	0.3867	0.5316						
Fuel sulfur level	0.0468	0.1290						
Vehicle*Catalyst	0.0326	0.0273						
Vehicle*Fuel	-	-						
Catalyst*Fuel	0.0263	0.3606						

ANOVA Analyses for FTP Bag 2 THC Emissions

	No Ou	tliers
	logarithm	arithmetic
	p-value	p-value
Vehicle	0.0182	0.0302
Catalyst age	0.2814	0.0905
Fuel sulfur level	0.0220	0.0008
Vehicle*Catalyst	0.0257	0.0192
Vehicle*Fuel	0.0628	0.0064
Catalyst*Fuel	0.3977	0.8519

ANOVA Analyses for FTP Bag 3 THC Emissions

	No Ou	tliers
	logarithm	arithmetic
	p-value	p-value
Vehicle	0.0117	0.0189
Catalyst age	0.0019	0.0231
Fuel sulfur level	< 0.0001	< 0.0001
Vehicle*Catalyst	0.0235	0.0185
Vehicle*Fuel	0.1107	0.0927
Catalyst*Fuel	0.5961	0.7134

Statistical Analysis Results for Individual Bags

ANOVA Analyses for FTP Bag 1 CO Emissions

	No Outliers				
	logarithm arithmeti				
	p-value p-value				
Vehicle	0.0103	0.0111			
Catalyst age	0.0328	0.1222			
Fuel sulfur level	0.7357	0.4895			
Vehicle*Catalyst	0.0770	0.1192			
Vehicle*Fuel	-	-			
Catalyst*Fuel	0.3054	0.4137			

ANOVA Analyses for FTP Bag 2 CO Emissions

	No Ou	tliers		
	logarithm arithmeti			
	p-value p-value			
Vehicle	0.0142	0.0145		
Catalyst age	0.2814	0.3814		
Fuel sulfur level	0.0220	0.2912		
Vehicle*Catalyst	-	-		
Vehicle*Fuel	-	-		
Catalyst*Fuel	0.3977	0.1359		

ANOVA Analyses for FTP Bag 3 CO Emissions

	No Outliers				
	logarithm arithmetic				
	p-value p-value				
Vehicle	0.0537	0.1155			
Catalyst age	0.0347	0.1442			
Fuel sulfur level	0.1152	0.0198			
Vehicle*Catalyst	0.2595	0.0772			
Vehicle*Fuel	0.2006	-			
Catalyst*Fuel	0.4500	0.7390			
Catalyst*Fuel	0.4500	0.7390			

Statistical Analysis Results for Individual Bags

ANOVA Analyses for FTP Bag 1 NO_x Emissions

	No Outliers			
	logarithm arithmetic			
	p-value p-value			
Vehicle	0.0119	0.0123		
Catalyst age	0.6204	0.8133		
Fuel sulfur level	0.0388	0.0092		
Vehicle*Catalyst	0.0486	0.0399		
Vehicle*Fuel	0.0362	0.1748		
Catalyst*Fuel	0.3813	0.5020		

ANOVA Analyses for FTP Bag 2 NO_x Emissions

	No Ou	tliers
	logarithm	arithmetic
	p-value	p-value
Vehicle	0.0185	0.1175
Catalyst age	0.2879	0.3597
Fuel sulfur level	0.0227	0.1860
Vehicle*Catalyst	0.0690	0.0114
Vehicle*Fuel	0.0117	0.0034
Catalyst*Fuel	0.6881	0.3407

ANOVA Analyses for FTP Bag 3 NO_x Emissions

	No Ou	tliers		
	logarithm	arithmetic		
	p-value p-value			
Vehicle	0.0174	0.0416		
Catalyst age	0.4861	0.3840		
Fuel sulfur level	0.0051	0.0037		
Vehicle*Catalyst	0.1277	0.0297		
Vehicle*Fuel	0.2567	0.1038		
Catalyst*Fuel	0.9962	0.3066		

FTP Statistical Analysis Results

Statistical Analysis Results for Individual Bags

ANOVA Analyses for FTP Bag 1 N₂O Emissions

	No Outliers				
	logarithm arithmetic				
	p-value	p-value			
Vehicle	0.0168	0.0242			
Catalyst age	0.4536	0.4581			
Fuel sulfur level	< 0.0001	0.0040			
Vehicle*Catalyst	0.0230	0.0534			
Vehicle*Fuel	0.1115	0.0010			
Catalyst*Fuel	0.7401	0.4845			

ANOVA Analyses for FTP Bag 2 N₂O Emissions

	No Outliers				
	logarithm arithmeti				
	p-value p-value				
Vehicle	0.0316	0.0741			
Catalyst age	0.3929	0.8716			
Fuel sulfur level	0.0571	0.2488			
Vehicle*Catalyst	-	-			
Vehicle*Fuel	0.2634	0.0007			
Catalyst*Fuel	0.5663	0.1469			

ANOVA Analyses for FTP Bag 3 N₂O Emissions

logarithm	arithmetic		
	uninnene		
p-value p-value			
0.0205	0.0398		
0.0357	0.0994		
0.0002	0.0219		
-	0.3254		
0.0457	0.0050		
atalyst*Fuel 0.8808 0.203			
	0.0205 0.0357 0.0002 - 0.0457		

Sta	Statistical Analysis Results for FTP Emissions Including the European Vehicles								
			NMHC	THC	CO	NO _x	NH ₃	N ₂ O	
			p-value	p-value	p-value	p-value	p-value	p-value	
		Vehicle	0.0060	0.0062	0.0065	0.0083	0.0090	0.0087	
		Catalyst age	0.3715	0.0574	0.0084	0.3217	0.0072	0.1698	
	No	Fuel sulfur level	0.0135	< 0.0001	0.5905	0.0021	0.6112	< 0.0001	
	outliers	Vehicle*Catalyst	0.0346	0.0206	0.0740	0.0115	0.0610	0.0607	
		Vehicle*Fuel	-	-	-	0.0041	0.4070	0.0545	
Logarithmic		Catalyst*Fuel	0.3309	0.1714	0.8407	0.6832	0.9087	0.8609	
Logaritinine		Vehicle	0.0060	0.0061	0.0064	0.0083	0.0090	0.0087	
		Catalyst age	0.3794	0.0581	0.0088	0.3304	0.0072	0.1682	
	All	Fuel sulfur level	0.0129	< 0.0001	0.5476	0.0018	0.6104	< 0.0001	
	Data	Vehicle*Catalyst	0.0376	0.0217	0.0742	0.0112	0.0612	0.0567	
		Vehicle*Fuel	-	-	-	0.0037	0.4095	0.0496	
		Catalyst*Fuel	0.3238	0.1998	0.8527	0.6727	0.8962	0.7717	
		Vehicle	0.0063	0.0069	0.0069	0.0328	0.0529	0.0389	
		Catalyst age	0.3890	0.0883	0.0514	0.2540	0.2016	0.0259	
	No	Fuel sulfur level	0.0281	0.0003	0.2356	0.0182	0.5259	0.0602	
	outliers	Vehicle*Catalyst	0.0394	0.0197	0.1026	0.0083	0.0113	-	
		Vehicle*Fuel	0.4631	0.2727	-	0.0040	-	0.0002	
Arithmetic		Catalyst*Fuel	0.8967	0.7086	0.7487	0.1674	0.3483	0.7893	
Anumetic		Vehicle	0.0062	0.0068	0.0068	0.0323	0.0528	0.0389	
		Catalyst age	0.4008	0.0874	0.0516	0.2621	0.2010	0.0253	
	All	Fuel sulfur level	0.0230	0.0002	0.1811	0.0158	0.5408	0.0587	
	Data	Vehicle*Catalyst	0.0500	0.0226	0.1021	0.0081	0.0112	-	
		Vehicle*Fuel	-	0.2985	-	0.0034	-	0.0002	
		Catalyst*Fuel	0.9351	0.9720	0.5413	0.2183	0.3101	0.9053	

Statistical Analysis Results for FTP Emissions Including the European Vehicles

	FTP THC Emissions Results (g/mi)						
Fuel Averages				Catalyst A	Averages		
	European European			European	European		
	Excluded	Included		Excluded	Included		
5	0.053	0.058	OE	0.052	0.058		
30	0.052	0.058	Aged	0.057	0.064		
150	0.059	0.066	0				

Appendix G. THC Emissions Results

FTP THC Emissions Results for Individual Bags (g/mi)

	Fuel Averages				Cat	alyst Ave	rages
	Bag 1 Bag 2 Bag 3				Bag 1	Bag 2	Bag 3
5	0.219	0.007	0.016	OE	0.213	0.007	0.016
30	0.210	0.008	0.016	Aged	0.221	0.010	0.022
150	0.223	0.012	0.024	U			

US06 THC Emissions Results (g/mi)

	Fuel Av	rerages		Catalyst A	Averages
	European	European		European	European
	Excluded	Included		Excluded	Included
5	0.024	0.023	OE	0.034	0.033
30	0.037	0.035	Aged	0.046	0.044
150	0.059	0.058			

Vehicle	Test	Date	 Mileage	Catalyst	Fuel	NMHC	age Catalyst Fuel NMHC CO NO	NOx	CO ₂	TDL - NH ₃	FTIR -NH ₃	FTIR -N ₂ O
						US06	US06	US06	US06	US06	US06	US06
						g/mi	g/mi	g/mi	g/mi	g/mi	g/mi	g/mi
2001 Ford Taurus SES	10204010	4/4/2002	23,680	OE	5	0.034	3.610	0.003	365.1	0.022	0.025	0.000
	10204014	4/5/2002	23,699	OE	S	0.033	2.870	0.004	360.2	0.020	N/A	N/A
	average					0.034	3.240	0.004	362.7	0.021	0.025	0.000
	stdev					0.001	0.523	0.001	3.499	0.002	N/A	N/A
	10204020	4/9/2002	23,801	OE	30	0.030	2.785	0.004	357.1	0.029	0.022	0.000
	I0204024	4/10/2002	23,820	OE	30	0.042	3.492	0.008	348.5	0.033	0.026	0.000
	average					0.036	3.139	0.006	352.8	0.031	0.024	0.000
	stdev					0.008	0.500	0.003	6.109	0.003	0.003	0.000
	I0204033	4/12/2002	23,951	OE	150	0.059	4.515	0.000	351.6	0.040	0.032	0.003
	10204036	4/16/2002	23,978	OE	150	0.055	4.209	0.025	355.7	0.039	0.029	0.005
	average					0.057	4.362	0.013	353.7	0.040	0.031	0.004
	stdev					0.003	0.216	0.018	2.907	0.001	0.002	0.002
	I0204048	4/18/2002	24,154	Aged	S	0.031	2.680	0.000	359.2	0.035	0.025	0.000
	I0204050	4/19/2002	24,173	Aged	S	0.037	3.256	0.005	354.8	0.039	0.029	0.000
	average					0.034	2.968	0.003	357.0	0.037	0.027	0.000
	stdev					0.004	0.407	0.004	3.096	0.003	0.003	0.000
	I0204057	4/23/2002	24,273	Aged	30	0.050	3.600	0.016	351.0	0.050	0.031	0.001
	10204059	4/24/2002	24,322	Aged	30	0.070	5.532	0.010	357.8	0.044	0.032	0.001
	10204063	4/25/2002	24,341	Aged	30	0.062	4.350	0.013	353.8	0.041	0.024	0.001
	average					0.061	4.494	0.013	354.2	0.045	0.029	0.001
	stdev					0.010	0.974	0.003	3.417	0.004	0.004	0.000
	I0204068	4/26/2002	24,441	Aged	150	0.098	6.929	0.058	359.0	0.057	0.042	0.007
	10204074	4/30/2002	24,468	Aged	150	0.081	4.400	0.074	351.7	0.062	0.041	0.009
	average					0.090	5.665	0.066	355.4	0.060	0.042	0.008
	otday					0 012	1 700	0 011	5 150	0 001	0 00 1	cuu u

CRC E-60: NH₃ Emissions from Late Model Vehicles

Vehicle	Test	Date	Mileage	- Catalyst	Fuel	ze Catalyst Fuel NMHC CO NO _v	CO	NOx	C0,	TDL - NH ₃	FTIR -NH ₃	FTIR -N ₂ O
			1			US06	US06	US06	US06	US06	US06	US06
						g/mi	g/mi	g/mi	g/mi	g/mi	g/mi	g/mi
2001 Chevy Cavalier	I0206012	6/5/2002	22,613	OE	5	0.004	0.909	0.100	288.3	0.010	0.000	0.000
	I0206016	6/62002	22,633	OE	S	0.004	1.554	0.058	284.8	0.025	0.016	0.000
	I0206017	6/7/2002	22,652	OE	S	0.005	1.073	0.067	287.1	0.008	0.002	0.000
	average					0.004	1.179	0.075	286.7	0.014	0.006	0.000
	stdev					0.001	0.335	0.022	1.8	0.009	0.008	0.000
	10206024	6/13/2002	22,760	OE	30	0.009	1.958	0.138	281.6	0.022	0.023	0.001
	10206029	6/14/2002	22,779	OE	30	0.010	3.305	0.101	281.9	0.036	0.036	0.000
	average					0.010	2.63	0.120	281.8	0.029	0.029	0.001
	stdev					0.001	0.95	0.026	0.2	0.010	0.009	0.001
	10206057	6/25/2002	22,954	OE	150	0.016	2.613	0.130	291.7	0.037	0.035	0.004
	10206058	6/26/2002	22,973	OE	150	0.013	2.048	0.163	291.1	0.031	N/A	N/A
	average					0.015	2.33	0.147	291.4	0.034	0.035	0.004
	stdev					0.002	0.40	0.023	0.5	0.004	N/A	N/A
	I0206068	6/28/2002	23,126	Aged	S	0.007	2.863	0.108	296.4	0.041	0.039	0.000
	I0207003	7/2/2002	23,153	Aged	S	0.004	1.927	0.058	283.1	0.026	0.018	0.001
	average					0.006	2.40	0.083	289.8	0.033	0.028	0.000
	stdev					0.002	0.66	0.035	9.4	0.010	0.015	0.000
	10207009	7/3/2002	23,254	Aged	30	0.014	2.483	0.082	278.9	0.034	0.037	0.001
	I0207017	7/10/2002	23,288	Aged	30	0.008	1.311	0.098	277.1	0.023	0.021	0.001
	average					0.011	1.90	0.090	278.0	0.028	0.029	0.001
	stdev					0.004	0.83	0.011	1.3	0.008	0.012	0.000
	I0207021	7/11/2002	23,419	Aged	150	0.020	2.097	0.139	277.1	0.040	0.032	0.004
	I0207024	7/12/2002	23,438	Aged	150	0.024	3.078	0.131	266.8	0.039	0.033	0.004
	average					0.022	2.588	0.135	271.9	0.040	0.033	0.004
	otday					0 0 03	0 60/	0 006	r r	0 000	0 001	0 000

University of California, Riverside, CE-CERT

Vehicle	Test	Date	Mileage	Catalvet	Finel	oe Catalost Fuel NMHC CO		NO	CO,	TDL - NH	FTIR -NH	FTIR -N.O
						US06	US06	0SOQ	JOSU J	US06 Ŭ	US06	US06
						g/mi	g/mi	g/mi	g/mi	g/mi	g/mi	g/mi
2001 Chevy Silverado	10207038	7/17/2002	8,507	OE	5	0.039	0.784	0.061	484.8	0.022	0.022	0.000
	10207040	7/18/2002	8,526	OE	S	0.043	0.949	0.067	490.5	0.034	0.031	0.000
	average					0.041	0.867	0.064	487.7	0.028	0.027	0.000
	stdev					0.003	0.12	0.004	4.1	0.008	0.006	0.000
	10207043	7/23/2002	8,634	OE	30	0.059	0.934	0.103	475.5	0.072	0.072	0.002
	10207044	7/24/2002	8,653	OE	30	0.049	0.782	0.082	474.9	0.056	0.059	0.001
	average					0.054	0.858	0.093	475.2	0.064	0.066	0.001
	stdev					0.007	0.11	0.015	0.5	0.011	0.009	0.001
	10207046	7/25/2002	8,784	OE	150	0.073	1.164	0.143	477.3	0.130	0.133	0.006
	10207047	7/26/2002	8,803	OE	150	0.071	1.130	0.144	482.6	0.127	0.124	0.006
	10207050	7/30/2002	8,830	OE	150	0.072	1.109	0.151	481.8	0.137	0.121	0.006
	average					0.072	1.134	0.146	480.6	0.131	0.126	0.006
	stdev					0.001	0.028	0.004	2.9	0.005	0.006	0.000
	10208001	8/1/2002	8,972	Aged	S	0.031	1.023	0.088	474.4	0.091	0.120	0.000
	10208003	8/2/2002	8,991	Aged	S	0.034	1.190	0.086	474.3	0.116	0.138	0.001
	10208007	8/6/2002	9,018	Aged	s	0.034	1.112	0.098	470.8	0.127	0.138	0.002
	average					0.033	1.108	0.091	473.2	0.111	0.132	0.001
	stdev					0.002	0.084	0.006	2.1	0.018	0.010	0.001
	10208008	8/8/2002	9,134	Aged	30	0.044	1.305	0.206	468.0	0.218	0.233	0.007
	10208009	8/9/2002	9,153	Aged	30	0.046	1.227	0.168	472.4	0.196	0.218	0.008
	10208012	8/13/2002	9,210	Aged	30	0.045	1.318	0.169	473.8	0.177	0.200	0.004
	average					0.045	1.283	0.181	471.4	0.197	0.217	0.006
	stdev					0.001	0.049	0.022	3.0	0.021	0.016	0.002
	10208013	8/14/2002	9,301	Aged	150	0.076	1.575	0.418	471.5	0.225	0.217	0.026
	10208014	8/15/2002	9,320	Aged	150	0.069	1.643	0.394	478.3	0.208	0.215	0.017
	average					0.073	1.609	0.406	474.9	0.216	0.216	0.021
						0 0 0 2	0.02	0 017	40	0 010	0 001	700 0

University of California, Riverside, CE-CERT

:	3	;	 Ap	т хіліаd	- Den			53	2			
	1031	Date	mincage	Catalyst	T UCI	US06	US06	US06	US06	US06	US06	
						g/mi	g/mi	g/mi	g/mi	g/mi	g/mi	g/mi
2000 Jeep	10206005	6/5/2002	29,704	OE	s	0.045	7.325	0.034	512.2	0.221	0.224	0.006
Grand Cherokee	10206014	6/6/2002	29,723	OE	S	0.045	4.499	0.046	509.8	0.290	0.257	0.006
	average					0.045	5.91	0.040	511.0	0.255	0.240	0.006
	stdev					0.000	2.00	0.008	1.7	0.049	0.023	0.000
	I0206022	6/13/2002	29,830	OE	30	0.053	11.328	0.09	525.2	0.167	0.160	0.017
	10206025	6/14/2002	29,849	OE	30	0.047	4.337	0.097	523.2	0.296	0.265	0.014
	average					0.050	7.83	0.094	524.2	0.231	0.212	0.015
	stdev					0.004	4.94	0.005	1.4	0.092	0.074	0.002
	10206031	6/15/2002	29,979	OE	150	0.062	6.802	0.329	521.5	0.214	0.130	0.054
	10206048	6/19/2002	30,005	OE	150	0.088	9.172	0.331	519.2	0.302	0.268	0.044
	10206056	6/25/2002	30,057	OE	150	0.117	16.367	0.259	512.0	0.331	0.395	0.034
	average					0.089	10.78	0.306	517.6	0.282	0.264	0.044
	stdev					0.028	4.98	0.041	4.9	0.061	0.133	0.010
	10207002	7/2/2002	30,226	Aged	S	0.015	3.787	0.026	489.7	0.187	0.164	0.002
	10207006	7/3/2002	30,245	Aged	S	0.014	3.588	0.013	486.8	0.136	0.139	0.003
	10207014	7/10/2002	30,271	Aged	S	0.018	6.367	0.018	486.7	0.216	0.190	0.002
	average					0.016	4.581	0.019	487.7	0.162	0.152	0.002
	stdev					0.002	1.550	0.007	1.7	0.036	0.018	0.000
	10207022	7/11/2002	30,372	Aged	30	0.056	1.751	0.166	483.4	0.203	0.197	0.019
	10207025	7/12/2002	30,391	Aged	30	0.039	4.344	0.116	462.8	0.212	0.197	0.015
	average					0.048	3.048	0.141	473.1	0.207	0.197	0.017
	stdev					0.012	1.834	0.035	14.6	0.006	0.000	0.003
	10207035	7/16/2002	30,528	Aged	150	0.095	12.165	0.308	487.9	0.194	0.153	0.055
	10207037	7/17/2002	30,547	Aged	150	0.099	12.143	0.300	491.4	0.210	0.185	0.044
	average					0.097	12.15	0.304	489.7	0.202	0.169	0.050
	stdev					0.003	0.02	0.006	2.4	0.011	0.023	0.007

University of California, Riverside, CE-CERT

University of California, Riverside, CE-CERT

			1	Appendix H. Detailed US06 Emission Results	H. Det	tailed US()6 Emissio	on Results	•4			
Vehicle	Test	Date	Mileage	Catalyst	Fuel	NMHC	СО	NOx	CO_2	TDL - NH ₃	FTIR -NH ₃	FTIR -N ₂ O
						US06	US06	US06	US06	US06	US06	US06
						g/mi	g/mi	g/mi	g/mi	g/mi	g/mi	g/mi
2001 Dodge Neon	I0203021	3/12/2002	19,067	OE	5	0.004	5.495	0.028	278.9	0.044	0.024	0.000
	I0203024	3/13/2002	19,086	OE	5	0.002	3.842	0.038	275.6	0.025	0.014	0.000
	average					0.003	4.669	0.033	277.2	0.034	0.019	0.000
	stdev					0.001	1.169	0.007	2.317	0.014	0.007	0.000
	10203046	3/21/2002	19,378	OE	30	0.006	9.171	0.041	286.1	0.049	N/A	N/A
	I0203050	3/22/2002	19,398	OE	30	0.004	4.879	0.047	281.9	0.030	0.017	0.000
	average					0.005	7.025	0.044	284.0	0.039	0.017	0.000
	stdev					0.001	3.035	0.004	2.945	0.013	N/A	N/A
	10203030	3/14/2002	19,187	OE	150	0.009	4.615	0.072	272.3	0.047	0.036	0.002
	10203034	3/15/2002	19,206	OE	150	0.010	4.144	0.076	268.9	0.046	0.030	0.003
	I0203039	3/19/2002	19,233	OE	150	0.021	9.241	0.106	285.2	0.064	0.039	0.003
	average					0.013	6.000	0.085	275.5	0.052	0.035	0.003
	stdev					0.007	2.817	0.019	8.611	0.010	0.005	0.001
	10202043	2/20/2002	18,634	Aged	S	0.009	8.182	0.049	287.8	0.048	0.036	0.000
	10202046	2/21/2002	18,654	Aged	S	0.006	7.111	0.028	284.8	0.034	0.019	0.000
	average					0.008	7.647	0.039	286.3	0.041	0.028	0.000
	stdev					0.002	0.757	0.015	2.111	0.010	0.011	0.000
	10202050	2/22/2002	18,752	Aged	30	0.010	7.266	0.056	279.9	0.030	0.031	0.007
	10202053	2/26/2002	18,778	Aged	30	0.009	8.368	0.082	296.1	0.028	0.020	0.000
	average					0.010	7.817	0.069	288.0	0.029	0.025	0.003
	stdev					0.001	0.779	0.018	11.45	0.002	0.008	0.005
	10202062	2/28/2002	18,875	Aged	150	0.038	9.373	0.088	286.2	0.045	0.046	0.001
	I0203001	3/1/2002	18,895	Aged	150	0.019	5.957	0.050	277.6	0.035	0.022	0.001
	10203008	3/5/2002	18,922	Aged	150	0.040	10.873	0.091	286.8	0.074	0.063	0.000
	average					0.032	8.734	0.076	283.5	0.051	0.044	0.001
	stdev					0.012	2.519	r c 0 0	5 172	0 0 0 1	0 0 0 0	0.001

University of California, Riverside, CE-CERT

			A	Appendix H. Detailed US06 Emission Results	I. Det:	ailed US0	6 Emissio	n Results				
Vehicle	Test	Date	Mileage	Catalyst	Fuel	NMHC	CO	NOx	CO_2	TDL - NH3	FTIR -NH ₃	FTIR -N ₂ O
						US06	US06	US06	US06	US06	US06	US06
						g/mi	g/mi	g/mi	g/mi	g/mi	g/mi	g/mi
2001 Toyota Camry	I0203007	3/5/2002	22,946	OE	5	0.008	4.133	0.039	319.2	0.157	0.106	0.002
	I0203010	3/6/2002	22,515	OE	ა	0.009	5.548	0.032	317.1	0.178	0.124	0.001
	average					0.009	4.841	0.036	318.2	0.168	0.115	0.002
	stdev					0.001	1.001	0.005	1.500	0.014	0.013	0.000
	10203017	3/8/2002	22,614	OE	30	0.021	7.305	0.070	316.6	0.180	0.115	0.003
	I0203022	3/12/2002	22,642	OE	30	0.027	8.081	0.072	319.4	0.179	0.113	0.003
	10203026	3/13/2002	22,660	OE	30	0.020	6.996	0.083	309.7	0.144	0.094	0.005
	average					0.023	7.461	0.075	315.3	0.167	0.107	0.004
	stdev					0.004	0.559	0.007	4.978	0.020	0.011	0.001
	10203041	2/19/2002	22,779	OE	150	0.033	4.675	0.143	308.2	0.115	0.072	0.008
	I0203045	2/20/2002	22,798	OE	150	0.032	4.933	0.121	304.2	0.114	N/A	N/A
	average					0.033	4.804	0.132	306.2	0.115	0.072	0.008
	stdev					0.001	0.182	0.016	2.869	0.001	N/A	N/A
	10201046	1/31/2002	22,055	Aged	S	0.020	9.259	0.054	331.2	0.179	0.172	0.002
	I0202001	2/1/2002	22,074	Aged	ა	0.009	4.844	0.027	315.9	0.077	0.074	0.000
	I0202008	2/5/2002	22,100	Aged	S	0.009	3.897	0.034	317.8	0.098	0.097	0.001
	average					0.013	6.000	0.038	321.6	0.118	0.114	0.001
	stdev					0.006	2.862	0.014	8.353	0.054	0.051	0.001
	10202016	2/7/2002	22,199	Aged	30	0.035	8.190	0.069	321.8	0.135	0.102	0.004
	I0202018	2/8/2002	22,217	Aged	30	0.021	4.512	0.064	321.8	0.152	0.124	0.002
	average					0.028	6.351	0.067	321.8	0.144	0.113	0.003
	stdev					0.010	2.601	0.004	0.014	0.012	0.015	0.002
	10202036	2/14/2002	22,310	Aged	150	0.079	12.189	0.179	323.1	0.103	0.084	0.007
	I0202037	2/15/2002	22,329	Aged	150	0.053	7.550	0.160	313.1	0.113	0.075	0.006
	I0202057	2/27/2002	22,355	Aged	150	0.053	9.054	0.152	310.2	0.107	0.081	0.008
	average					0.062	9.598	0.164	315.5	0.107	0.080	0.007
	stdev					0.015	2 367	0 01 /	077 2	0 00 5	0 004	0 001

University of California, Riverside, CE-CERT

Vehicle	Test	Date	Mileage	Catalyst	Fuel	age Catalyst Fuel NMHC CO NO.	00	NOv	CO,	TDL - NH	FTIR -NH	FTIR -N-O
			(US06	US06	US06	US06	US06	US06	US06
						g/mi	g/mi	g/mi	g/mi	g/mi	g/mi	g/mi
2001 Chrysler Sebring	10205020	5/8/2002	19,808	OE	5	0.012	21.78	0.017	376.6	0.114	0.144	0.000
	10205023	5/9/2002	19,827	OE	ა	0.007	15.05	0.022	374.2	0.125	0.102	0.000
	average					0.010	18.41	0.020	375.4	0.119	0.123	0.000
	stdev					0.004	4.76	0.004	1.759	0.007	0.030	0.000
	10205027	5/10/2002	19,928	OE	30	0.019	17.26	0.064	371.9	0.141	0.140	0.000
	10205031	5/14/2002	19,954	OE	30	0.016	16.74	0.067	373.0	0.135	0.130	0.000
	average					0.018	17.00	0.066	372.4	0.138	0.135	0.000
	stdev					0.002	0.37	0.002	0.801	0.004	0.007	0.000
	I0205039	5/16/2002	20,087	OE	150	0.022	13.26	0.177	380.2	0.096	N/A	N/A
	10205040	5/17/2002	$20,\!106$	OE	150	0.016	10.67	0.098	375.4	0.105	0.084	0.000
	10205044	5/21/2002	20,132	OE	150	0.025	13.81	0.086	376.5	0.134	0.108	0.000
	average					0.021	12.58	0.120	377.4	0.112	0.096	0.000
	stdev					0.005	1.68	0.049	2.506	0.020	0.017	0.000
	10205051	5/23/2002	20,275	Aged	S	0.018	22.82	0.078	377.9	0.136	0.120	0.000
	10205054	5/24/2002	20,295	Aged	S	0.007	12.93	0.055	378.3	0.085	0.078	0.000
	10205060	5/29/2002	20,321	Aged	σ	0.010	14.06	0.035	380.5	0.069	0.074	0.000
	average					0.012	16.60	0.056	378.9	0.097	0.090	0.000
	stdev					0.006	5.41	0.022	1.376	0.035	0.025	0.000
	10205065	5/30/2002	20,421	Aged	30	0.022	16.62	0.124	367.9	0.077	0.107	0.000
	10205066	5/31/2002	20,440	Aged	30	0.015	15.21	0.093	375.0	0.113	0.092	0.000
	average					0.019	15.92	0.109	371.4	0.095	0.100	0.000
	stdev					0.005	0.997	0.022	5.020	0.026	0.010	0.000
	10206004	6/4/2002	20,578	Aged	150	0.065	19.937	0.154	376.3	0.102	0.089	0.000
	10206011	6/5/2002	20,597	Aged	150	0.035	12.668	0.162	368.6	0.137	0.135	0.000
	10206015	6/6/2002	20,616	Aged	150	0.038	12.331	0.147	366.9	0.163	0.135	0.000
	average					0.046	14.979	0.154	370.6	0.134	0.120	0.000
	etdev					C 017	1 202	0000	F 010	0000		0000

University of California, Riverside, CE-CERT

			Appe	endix H.	Detai	Appendix H. Detailed US06 Emission Results	Emission R	esults				
Vehicle	Test	Date	Mileage	Catalyst	Fuel	NMHC	CO	NOx	CO_2	TDL - NH3	FTIR -NH ₃	FTIR -N ₂ O
						US06	US06	US06	US06	US06	US06	US06
						g/mi	g/mi	g/mi	g/mi	g/mi	g/mi	g/mi
2001 Acura 3.2CL	10205061	5/29/2002	20,648	OE	5	0.006	7.487	0.106	346.6	0.079	0.072	0.000
	I0206010	6/5/2002	20,715	OE	S	0.006	5.635	0.125	342.9	0.055	0.045	0.000
	I0206013	6/6/2002	20,734	OE	S	0.005	7.901	0.163	342.0	0.059	0.051	0.000
	average					0.006	7.008	0.131	343.8	0.064	0.056	0.000
	stdev					0.001	1.207	0.029	2.5	0.013	0.014	0.000
	I0206023	6/13/2002	20,863	OE	30	0.023	8.067	0.039	332.8	0.067	0.058	0.000
	I0206027	6/14/2002	20,883	OE	30	0.024	8.094	0.096	338.0	0.111	0.088	0.000
	average					0.024	8.08	0.068	335.4	0.089	0.073	0.000
	stdev					0.001	0.02	0.040	3.7	0.031	0.021	0.000
	10206049	6/19/2002	21,017	OE	150	0.048	11.33	0.279	334.4	0.144	0.111	0.004
	10206055	6/25/2002	21,071	OE	150	0.098	13.28	0.143	334.8	0.183	0.140	0.006
	average					0.073	12.31	0.211	334.6	0.163	0.125	0.005
	stdev					0.035	1.38	0.096	0.3	0.028	0.020	0.001
	10206064	6/27/2002	21,216	Aged	S	0.007	15.603	0.062	360.2	0.114	0.142	0.000
	10206069	6/28/2002	21,236	Aged	S	0.005	11.983	0.043	348.0	0.087	0.121	0.000
	average					0.006	13.79	0.053	354.1	0.101	0.131	0.000
	stdev					0.001	2.56	0.013	8.6	0.019	0.015	0.000
	10207005	7/2/2002	21,339	Aged	30	0.015	7.572	0.149	322.9	0.122	0.118	0.001
	10207007	7/3/2002	21,359	Aged	30	0.017	7.049	0.247	324.6	0.080	0.086	0.002
	average					0.016	7.31	0.198	323.7	0.101	0.102	0.002
	stdev					0.001	0.37	0.069	1.2	0.030	0.023	0.001
	10207015	7/9/2002	21,493	Aged	150	0.071	8.184	0.085	330.1	0.113	0.096	0.008
	10207016	7/10/2002	21,513	Aged	150	0.084	14.051	0.101	324.5	0.131	0.116	0.008
	10207020	7/11/2002	21,533	Aged	150	0.081	12.823	0.13	319.9	0.102	0.097	0.009
	average					0.079	11.686	0.105	324.8	0.115	0.103	0.008
	stdev					0.007	3.094	0.023	5.1	0.015	0.011	0.001

University of California, Riverside, CE-CERT

			Apj	pendix H	. Deta	Appendix H. Detailed US06 Emission Results	Emission F	Results				
Vehicle	Test	Date	Mileage	Catalyst	Fuel	NMHC	CO	NOx	CO_2	TDL - NH ₃	FTIR -NH ₃	FTIR -N ₂ O
						US06	US06	US06	US06	US06	US06	US06
						g/mi	g/mi	g/mi	g/mi	g/mi	g/mi	g/mi
2001 Ford Windstar	10202024	2/12/2002	21,675	OE	5	0.014	1.082	0.039	442.1	0.072	0.072	0.000
	10202029	2/13/2002	21,695	OE	δ	0.013	0.865	0.038	445.9	0.066	0.072	0.000
	average					0.014	0.974	0.039	444.0	0.069	0.072	0.000
	stdev					0.001	0.153	0.001	2.658	0.004	0.000	0.000
	I0202047	2/21/2002	21,790	OE	30	0.020	2.210	0.097	442.5	0.066	0.063	0.002
	10202049	2/22/2002	21,810	OE	30	0.017	1.988	0.067	437.9	0.055	0.056	0.001
	average					0.019	2.099	0.082	440.2	0.060	0.059	0.002
	stdev					0.002	0.157	0.021	3.315	0.008	0.005	0.001
	I0202056	2/26/2002	21,907	OE	150	0.024	1.609	0.172	439.7	0.078	0.082	0.012
	10202058	2/27/2002	21,927	OE	150	0.024	1.812	0.129	431.5	0.077	0.088	0.007
	average					0.024	1.711	0.151	435.6	0.077	0.085	0.010
	stdev					0.000	0.144	0.030	5.761	0.001	0.004	0.004
	I0201036	1/25/2002	21,261	Aged	5	0.017	7.535	0.067	449.9	0.129	0.145	0.001
	10201041	1/29/2002	21,287	Aged	S	0.024	8.295	0.082	458.4	0.152	0.185	0.001
	average					0.021	7.915	0.075	454.1	0.140	0.165	0.001
	stdev					0.005	0.537	0.011	6.000	0.016	0.029	0.000
	I0201045	1/31/2002	21,383	Aged	30	0.038	9.504	0.188	448.7	0.162	0.189	0.007
	10202002	2/1/2002	21,402	Aged	30	0.037	11.771	0.118	446.4	0.134	0.162	0.004
	average					0.038	10.638	0.153	447.5	0.148	0.176	0.006
	stdev					0.001	1.603	0.049	1.626	0.019	0.020	0.002
	10202009	2/5/2002	21,498	Aged	150	0.027	2.661	0.340	445.5	0.097	0.101	0.022
	10202011	2/6/2002	21,512	Aged	150	0.020	1.690	0.329	445.0	0.100	0.108	0.015
	10202014	2/7/2002	21,536	Aged	150	0.027	3.457	0.276	440.0	0.121	0.117	N/A
	average					0.025	2.603	0.315	443.5	0.106	0.109	0.019
	stdev					0.004	0 88 5	0 02/	2 012	0 013	800.0	0.005

University of California, Riverside, CE-CERT

Vehicle	Test	Date	Mileage	Catalyst	Fuel	NMHC	CO	NOx	CO ₂	TDL - NH	FTIR -NH ₃	FTIR -N ₂ O
						US06	US06	US06	US06	US06	US06	US06
2000 Honda Accord EX	10204042	4/17/2002	12,361	OE	S	<u>چ</u> ، الله 0.003	₹/mm 1.011	<u>8</u> /	ع /101 308.6	<u>s</u> /ш	<u>8</u> /	<u>8</u> /
	10204045	4/18/2002	12,380	OE	S	0.006	0.524	0.006	315.3	0.000	0.000	0.000
	10204051	4/19/2002	12,400	OE	S	0.004	1.402	0.006	313.5	0.009	0.000	0.000
	average					0.004	0.979	0.006	312.5	0.004	0.000	0.000
	stdev					0.002	0.440	0.001	3.454	0.004	0.000	0.000
	10204056	4/23/2002	12,508	OE	30	0.004	1.128	0.005	319.9	0.010	0.002	0.000
	10204060	4/24/2002	12,528	OE	30	0.008	1.206	0.005	312.4	0.004	0.004	0.000
	average					0.006	1.167	0.005	316.1	0.007	0.003	0.000
	stdev					0.003	0.055	0.000	5.301	0.004	0.002	0.000
	10204069	4/26/200	12,659	OE	150	0.004	1.893	0.012	311.2	0.014	0.009	0.001
	10204075	4/30/200	12,686	OE	150	0.004	0.248	0.010	310.0	0.001	0.000	0.000
	10205007	5/2/2002	12,712	OE	150	0.004	0.253	0.008	309.4	0.005	0.000	0.000
	average					0.004	0.798	0.010	310.2	0.007	0.003	0.000
	stdev					0.000	0.948	0.002	0.885	0.006	0.005	0.000
	10204011	4/4/2002	11,958	Aged	S	0.003	0.922	0.012	313.8	0.005	N/A	N/A
	10204015	4/5/2002	11,977	Aged	5	0.003	0.340	0.004	307.7	-0.001	0.000	0.000
	average					0.003	0.631	0.008	310.7	0.002	0.000	0.000
	stdev					0.000	0.412	0.006	4.277	0.004	N/A	N/A
	10204019	4/9/2002	12,078	Aged	30	0.004	0.344	0.008	311.7	0.001	0.000	0.000
	10204023	4/10/2002	12,098	Aged	30	0.002	0.556	0.007	311.4	0.002	0.000	0.000
	average					0.003	0.450	0.008	311.6	0.002	0.000	0.000
	stdev					0.001	0.150	0.001	0.187	0.001	0.000	0.000
	10204028	4/11/2002	12,198	Aged	150	0.004	1.041	0.012	310.2	0.006	0.005	0.001
	10204029	4/12/2002	12,217	Aged	150	0.002	1.404	0.011	315.5	0.018	0.012	0.000
	average					0.003	1.223	0.012	312.9	0.012	0.009	0.000
	stdev					0.001	0 257	0 001	3.783	800.0	0 005	0.001

University of California, Riverside, CE-CERT

			Api	oendix H	. Det:	ailed US0	Appendix H. Detailed US06 Emission Results	Results				
Vehicle	Test	Date	Mileage	Catalyst	Fuel	NMHC	СО	NOx	CO_2	TDL - NH ₃	FTIR -NH ₃	FTIR -N ₂ O
						US06	US06	US06	US06	US06	US06	US06
2001 Niccan Contra	10205062	5/20/2002	7 11 7	OF	л	200 U	3 407	0 00 0	9 90 E	0 004	0 005	0 0 0 0
	10205064	5/30/2002	7,113	OE	S	0.003	1.996	0.005	329.8	0.004	0.000	0.000
	10205069	5/31/2002	7,132	OE	S	0.002	1.75	0.003	326.4	0.009	0.000	0.000
	average					0.002	2.413	0.003	327.6	0.005	0.002	0.000
	stdev					0.001	0.943	0.002	1.9	0.003	0.003	0.000
	I0206032	6/15/2002	7,243	OE	30	0.002	3.726	0.004	329.6	0.028	0.023	0.000
	10206062	6/27/2002	7,291	OE	30	0.002	6.832	0.004	331.4	0.030	0.035	0.000
	10206067	6/28/2002	7,345	OE	30	0.002	6.129	0.005	331.5	0.030	0.044	0.000
	average					0.002	5.562	0.004	330.8	0.030	0.034	0.000
	stdev					0.000	1.629	0.001	1.1	0.001	0.011	0.000
	I0207004	7/2/2002	7,446	OE	150	0.002	3.878	0.005	310.9	0.024	0.013	0.000
	10207039	7/17/2002	7,472	OE	150	0.002	3.274	0.006	318.2	0.029	0.018	0.000
	10207041	7/19/2002	7,507	OE	150	0.002	4.513	0.009	317.3	0.031	0.015	0.000
	average					0.002	3.888	0.007	315.4	0.028	0.015	0.000
	stdev					0.000	0.620	0.002	4.0	0.004	0.002	0.000
	I0205021	5/8/2002	6,592	Aged	S	0.003	3.846	0.002	329.5	0.019	N/A	N/A
	10205022	5/9/2002	6,611	Aged	S	0.003	4.545	0.003	325.5	0.015	0.003	0.000
	10205026	5/10/2002	6,631	Aged	S	0.003	4.069	0.003	327.3	0.016	0.008	0.000
	average					0.003	4.153	0.003	327.4	0.017	0.006	0.000
	stdev					0.000	0.357	0.001	1.973	0.002	0.003	0.000
	I0205029	5/14/2002	6,733	Aged	30	0.002	2.868	0.003	325.3	0.015	0.005	0.000
	10205035	5/15/2002	6,733	Aged	30	0.003	5.862	0.002	323.1	0.034	0.037	0.000
	10205045	5/21/2002	6,810	Aged	30	0.003	3.482	0.005	319.4	0.021	0.010	0.000
	average					0.003	4.071	0.003	322.6	0.023	0.017	0.000
	stdev					0.001	1.581	0.002	2.985	0.010	0.017	0.000
	I0205049	5/22/2002	6,911	Aged	150	0.002	3.712	0.019	321.7	0.031	0.022	0.000
	10205050	5/23/2002	6,930	Aged	150	0.002	4.101	0.014	321.1	0.039	N/A	N/A
	10205055	5/24/2002	6,950	Aged	150	0.003	3.269	0.018	324.1	0.023	0.020	0.000
	average					0.002	3.694	0.017	322.3	0.031	0.021	0.000
	etdev					0 001						0 0 0 0

University of California, Riverside, CE-CERT

			App	endix H.	Deta	iled US06	Appendix H. Detailed US06 Emission Results	Results				
Vehicle	Test	Date	Mileage	Catalyst	Fuel	NMHC	CO	NOX	CO ₂	TDL - NH 3	FTIR -NH 3	FTIR -N ₂ O
						US06	US06	US06	US06	US06	US06	US06
						g/mi	g/mi	g/mi	g/mi	g/mi	g/mi	g/mi
2000 VW Bora	10204021	4/9/2002	7,479	OE	5	0.012	0.878	0.026	293.2	0.025	0.029	0.000
	10204026	4/11/2002	7,516	OE	S	0.014	0.711	0.131	295.6	0.016	0.005	0.007
	average					0.013	0.795	0.079	294.4	0.020	0.017	0.003
	stdev					0.001	0.118	0.074	1.679	0.007	0.017	0.005
	I0204071	4/26/2002	7,880	OE	30	0.020	1.039	0.082	295.4	0.056	0.055	0.008
	10204076	4/30/2002	7,703	OE	30	0.015	0.630	0.008	271.8	0.031	0.027	0.000
	average					0.018	0.835	0.045	283.6	0.044	0.041	0.004
	stdev					0.004	0.289	0.052	16.68	0.018	0.020	0.006
	10205025	5/10/2002	7,918	OE	150	0.022	0.896	0.013	277.5	0.049	0.051	0.000
	10205030	5/14/2002	7,945	OE	150	0.028	0.570	0.020	273.1	0.050	0.043	0.000
	10205034	5/15/2002	7,964	OE	150	0.027	0.661	0.008	275.8	0.055	0.049	0.000
	average					0.026	0.709	0.014	275.5	0.051	0.048	0.000
	stdev					0.003	0.168	0.006	2.203	0.003	0.004	0.000
	10202032	2/13/2002	6,863	Aged	S	0.007	1.374	0.041	303.7	0.010	0.007	0.000
	10202055	2/26/2002	6,908	Aged	S	0.011	3.409	0.066	321.4	0.060	0.045	0.000
	average					0.009	2.392	0.054	312.5	0.035	0.026	0.000
	stdev					0.003	1.439	0.018	12.466	0.035	0.027	0.000
	10203028	3/13/2002	7,100	Aged	30	0.018	0.364	0.196	292.6	0.012	0.006	0.013
	10203029	3/14/2002	7,108	Aged	30	0.006	0.600	0.052	275.0	0.020	0.020	0.000
	10203047	3/21/2002	7,170	Aged	30	0.007	0.641	0.066	293.3	0.018	N/A	N/A
	10203053	3/22/2002	7,185	Aged	30	0.006	0.642	0.052	290.3	0.017	0.021	0.000
	average					0.009	0.562	0.092	287.8	0.016	0.016	0.004
	stdev					0.006	0.133	0.070	8.654	0.003	0.008	0.007
	10203057	3/26/2002	7,288	Aged	150	0.064	2.473	0.171	301.3	0.070	0.072	0.018
	10203061	3/27/2002	7,303	Aged	150	0.027	0.430	0.151	292.3	0.021	0.018	0.012
	10203065	3/28/2002	7,318	Aged	150	0.026	0.463	0.180	292.6	0.020	0.014	0.012
	average					0.039	1.122	0.167	295.4	0.037	0.035	0.014
	stdev					0.022	1.170	0.015	5.098	0.029	0.032	0.003

University of California, Riverside, CE-CERT

			App	endix H.	Deta	iled US06	Appendix H. Detailed US06 Emission Results	Results				
Vehicle	Test	Date	Mileage	Catalyst	Fuel	NMHC	CO	NOX	CO_2	TDL - NH 3	FTIR -NH 3	FTIR -N ₂ O
						US06	US06	US06	US06	US06	US06	US06
						g/mi	g/mi	g/mi	g/mi	g/mi	g/mi	g/mi
2001 Renault Megane	I0204027	4/11/2002	6,192	OE	S	0.010	1.811	0.020	299.1	0.032	0.037	0.000
	I0204031	4/12/2002	6,216	OE	5	0.008	0.734	0.017	297.9	0.018	0.014	0.000
	I0205041	5/17/2002	6,731	OE	S	0.006	0.838	0.055	281.4	0.024	0.018	0.000
	I0205046	5/21/2002	6,758	OE	S	0.004	0.825	0.024	273.2	0.018	0.008	0.000
	average					0.007	1.052	0.029	287.9	0.023	0.019	0.000
	stdev					0.003	0.508	0.018	12.708	0.007	0.013	0.000
	10205052	5/23/2002	6,860	OE	30	0.011	0.644	0.015	276.9	0.020	0.009	0.000
	10205056	5/24/2002	6,911	OE	30	0.004	0.687	0.026	275.1	0.021	0.010	0.000
	average					0.008	0.666	0.021	276.0	0.021	0.010	0.000
	stdev					0.005	0.030	0.008	1.325	0.001	0.001	0.000
	10205002	5/1/2002	6,493	OE	150	0.030	1.047	0.044	277.8	0.035	0.021	0.000
	I0205008	5/2/2002	6,543	OE	150	0.014	0.792	0.026	275.4	0.031	0.016	0.000
	average					0.022	0.920	0.035	276.6	0.033	0.019	0.000
	stdev					0.011	0.180	0.013	1.739	0.003	0.004	0.000
	10203012	3/6/2002	5,638	Aged	S	0.007	4.007	0.027	297.5	0.062	0.067	0.000
	I0203015	3/8/2002	5,672	Aged	5	0.003	3.135	0.043	299.2	0.056	0.054	0.000
	average					0.005	3.571	0.035	298.4	0.059	0.061	0.000
	stdev					0.003	0.617	0.011	1.170	0.004	0.009	0.000
	10203052	3/22/2002	5,823	Aged	30	0.023	1.733	0.093	291.5	0.029	0.035	0.005
	I0203058	3/26/2002	5,861	Aged	30	0.022	0.832	0.051	299.3	0.023	0.029	0.004
	I0203063	3/28/2002	5,883	Aged	30	0.028	1.752	0.094	299.9	0.041	0.039	0.008
	average					0.024	1.439	0.079	296.9	0.031	0.035	0.006
	stdev					0.003	0.526	0.025	4.672	0.009	0.005	0.002
	10204009	4/4/2002	6,020	Aged	150	0.066	2.549	0.123	294.2	0.036	N/A	N/A
	I0204016	4/5/2002	6,028	Aged	150	0.028	2.155	0.089	292.4	0.014	N/A	N/A
	I0204018	4/9/2002	6,051	Aged	150	0.031	2.198	0.077	289.5	0.036	0.029	0.003
	average					0.042	2.301	0.096	292.0	0.029	0.029	0.003
	stdev					0.021	0.216	0.024	2.350	0.012	N/A	N/A

University of California, Riverside, CE-CERT

			NMHC	THC	СО	NO _x	NH ₃	N ₂ O
			p-value	p-value	p-value	p-value	p-value	p-value
		Vehicle	0.0155	0.0136	0.0161	0.0130	0.0142	0.0177
		Catalyst age	0.0902	0.0069	0.0825	0.0222	0.0873	0.2419
	Logarthmic	Fuel sulfur level	< 0.0001	< 0.0001	0.0821	< 0.0001	0.0043	< 0.0001
No Outliers	Logarunnic	Vehicle*Catalyst	0.0290	0.0229	0.0384	0.1018	0.0446	0.2235
		Vehicle*Fuel	0.0021	0.0018	0.2639	0.1713	0.2094	-
		Catalyst*Fuel	0.1778	0.2333	0.1568	0.3720	0.0443	0.1108
		Vehicle	0.0227	0.0196	0.0136	0.0588	0.0219	0.0940
		Catalyst age	0.0482	0.0092	0.0704	0.0498	0.3205	0.0877
	Arithmetic	Fuel sulfur level	0.0001	< 0.0001	0.6676	< 0.0001	0.0465	0.0044
	Anumetic	Vehicle*Catalyst	0.1550	0.0451	0.2367	0.1515	0.0206	0.0514
		Vehicle*Fuel	0.0027	0.0029	0.1412	0.0670	0.0754	0.0013
		Catalyst*Fuel	0.0070	0.0087	0.3106	0.2015	0.9281	0.0438

Appendix I. US06 Statistical Analysis Results

Statistical Analysis for US06 Emissions Results Excluding the European Vehicles

Statistical Analysis for US06 Emissions Results Including the European Vehicles

			NMHC	THC	СО	NO _x	NH ₃	N ₂ O
			p-value	p-value	p-value	p-value	p-value	p-value
		Vehicle	0.0099	0.0087	0.0099	0.0085	0.0088	0.0116
		Catalyst age	0.0728	0.0103	0.0267	0.0043	0.1401	0.3766
	Logarthmic	Fuel sulfur level	< 0.0001	< 0.0001	0.2054	< 0.0001	0.0012	< 0.0001
	Logartinine	Vehicle*Catalyst	0.0400	0.0253	0.0274	0.1507	0.0394	0.2589
		Vehicle*Fuel	0.0029	0.0033	0.1202	0.1590	0.2250	-
No		Catalyst*Fuel	0.0954	0.2979	0.0398	0.0968	0.0581	0.0555
Outliers		Vehicle	0.0148	0.0127	0.0079	0.0461	0.0133	0.0768
		Catalyst age	0.0232	0.0058	0.0345	0.0159	0.3041	0.0379
	Arithmetic	Fuel sulfur level	< 0.0001	< 0.0001	0.7656	< 0.0001	0.0425	0.0028
	Anumetic	Vehicle*Catalyst	0.1315	0.0339	0.2139	0.1540	0.0142	0.0609
		Vehicle*Fuel	0.0015	0.0018	0.1077	0.0495	0.0670	0.0007
		Catalyst*Fuel	0.0011	0.0013	0.2030	0.0593	0.7954	0.0112

Vehicle 2000 VW Bora 10203056 10203047 stdev average I0205047 stdev average 10205019 10205006 stdev average I0204032 average, km 10203064 average, km 10203053 stdev, km average, km 10202055 I0205042 10205014 10204038 10204021 stdev, km I0202032 I0205037 Test 3/22/2002 3/28/2002 3/26/2002 2/26/2002 5/17/2002 5/7/2002 5/2/2002 4/16/2002 3/21/2002 2/13/2002 5/21/2002 4/12/2002 5/16/2002 5/8/2002 4/9/2002 Date Mileage 7,479 7,524 6,863 7,281 7,311 7,185 7,170 6,908 7,990 8,004 7,983 7,800 7,760 7,793 7,538 Cat. aged aged aged aged 0E OE OE OE OE OE OE OE Fuel S ppm 150 150 30 30 u u 150 150 150 30 30 ഗഗ S 0.384 0.003 0.387 0.367 0.449 0.480 0.419 0.393 0.360 0.440 ECE 0.458 0.493 0.456 0.454 0.014 0.439 0.429 0.449 0.055 0.431 0.405 0.075 0.437 0.510 0.011 0.379 g/km EUDC NMHC 0.002 0.000 0.002 0.0020.002 0.004 0.003 0.005 0.002 0.002 0.002 0.002 0.003 0.003 0.004 0.002 0.0010.002 0.003 0.001 0.000 0.0000.002 0.0010.002 0.001 g/km NEDC 0.167 0.1690.1600.140 0.178 0.163 0.160 0.147 0.163 0.004 0.143 0.142 0.136 0.168 0.162 0.157 0.168 0.005 0.166 0.0200.183 0.150 0.028 0.133 0.189 0.001g/km 3.050 3.270 2.918 0.179 3.0303.0312.904 2.691 0.471 0.3412.641 2.391 3.070 3.097 0.020 2.836 3.036 2.782 2.924 2.383 3.248 3.141 2.504 ECE 0.244 2.925 2.933 g/km EUDC 0.037 0.0200.021 0.025 0.022 0.019 0.059 0.059 0.039 0.045 0.054 0.005 0.004 0.025 0.021 0.065 0.047 0.088 0.007 0.051 0.049 0.045 0.033 0.061 0.098g/km 0 NEDC 0.118 1.139 0.907 1.144 1.211 1.089 1.081 1.027 1.141 0.173 1.106 0.9090.9811.125 1.163 0.086 1.150 0.0091.0881.094 0.057 1.082 1.078 1.230 1.180 1.009g/km 0.181 0.189 0.159 0.132 0.005 0.133 0.127 0.137 0.210 0.135 0.1800.182 0.191 0.205 0.177 0.024 0.206 0.172 0.043 0.185 0.171 0.233 0.150 0.044 0.134 0.019 g/km ECE EUDC g/km 0.010 0.014 0.033 0.048 0.016 0.007 0.006 0.003 0.011 0.013 0.006 0.0010.026 0.002 0.0010.003 0.001 0.001 0.006 0.017 0.012 0.025 0.005 0.003 0.011 NOx NEDC 0.071 0.0910.052 0.050 0.073 0.105 0.0800.0800.072 0.065 0.093 0.065 0.053 0.049 0.0500.048 0.021 0.076 0.0010.079 0.019 0.057 0.024 0.0940.002 g/km 13.420 260.8 262.1 262.5 263.3 265.8 0.537 261.7 253.2 266.00.987 268.6 263.0 274.4 3.879 265.7 262.2 264.9 269.9 g/km ECE 18.10 240.4 268.0 266.8 268.5 266.4 248.2 EUDC 148.5 148.3 151.7 150.4 146.2 0.719 148.6 147.8 148.7 149.2 149.1 0.129 148.4 1.833 3.758 148.5 155.1 2.768 148.7 148.3 151.7 g/km CO_2 149.0 148.9 153.0 152.9 155.0 190.121 NEDC 0.258 191.4 191.0 191.9 190.3 193.0 196.0 191.6 189.9 193.5 190.1 189.9 5.543 189.1 185.2 2.132 195.1 192.7 3.235 190.7 191.8 193.2 187.1 1.822 g/km 196.7 0.016 0.016 0.010 0.017 0.018 0.017 0.016 0.023 0.013 0.019 0.017 0.018 0.016 0.001 0.017 0.0000.010 0.010 0.011 0.002 0.015 0.013 0.014 0.004 0.00] 0.015 g/km ECE EUDC TDL-NH₃ 0.000 0.0000.005 0.002 0.0010.0010.004 0.001 0.0010.002 0.000 0.000 0.001 0.000 0.000 0.000 0.003 0.006 0.004 0.009 0.000 0.001 0.0010.0010.001 0.002 g/km NEDC 0.0060.007 0.006 0.007 0.0020.008 0.007 0.007 0.007 0.006 0.005 0.005 0.008 0.000 0.006 0.006 0.000 0.006 0.006 0.002 0.008 0.010 0.001 0.006 0.006 0.011 g/km 0.005 0.004 0.003 0.001 0.002 0.000 0.000 0.006 0.000 0.000 0.002 0.000 0.007 0.004 0.004 0.001 0.0010.003 0.005 0.000 0.000 0.000 0.000 ECE N/A g/km N/A N/A FTIR - NH₃ EUDC 0.000 0.0000.0000.0000.000 0.0000.0000.0000.000 0.000 0.000 0.0000.000 0.0000.0000.000g/km 0.000 0.0000.000 0.000 0.000 0.000 0.000 N/A N/A N/A NEDC 0.002 0.0010.0000.002 0.000 0.000g/km 0.0010.000 0.001 0.001 N/A 0.0010.0000.0020.002 0.000 0.0000.000 0.000 0.0000.0000.0000.0000.001 N/A N/A 0.016 0.015 0.0290.026 0.027 N/A 0.027 0.0230.026 0.061 0.048 0.001 0.016 0.016 ECE 0.032 0.004 0.057 0.070 0.043 0.038 0.076 0.119 0.020 0.019 g/km N/A N/A FTIR - N₂O EUDC 0.000 N/A 0.0000.0000.0000.000 0.000 0.000 0.000 0.000 0.0000.000 0.0000.000 0.0000.0000.000 0.0000.000 0.000 0.000 0.000 0.000 0.000 g/km N/AN/A NEDC 0.010 0.0040.008 0.008 0.009 0.008 N/A 0.0080.0010.007 0.008 0.006 0.003 0.008 N/A 0.006 0.006 0.011 0.009 0.007 0.018 0.000 0.005 0.005 0.005 g/km N/A

Appendix J. Detailed NEDC Emission Results

107

stdev, km

0.043

0.001

0.015

0.027

0.024

0.027

0.002

0.006

0.003

3.530

0.113

1.285

0.004

0.001

0.002

0.002

0.000

0.001

0.004

0.000

0.001

Vehicle 2001 Renault Megane average stdev, km I0205033 stdev, km 10203052 stdev 10204027 average, km 10204018 10204016 10203062 10203059 stdev, km average, km 10203015 10203012 stdev, km average, km 10205015 10205009 I0204052 10204047 average, km 10205038 Test iverage, kn 4/9/2002 3/22/2002 3/6/2002 5/15/2002 4/5/2002 3/27/2002 3/8/2002 5/7/2002 4/19/2002 5/16/2002 3/28/2002 5/3/2002 4/18/2002 4/11/2002 Date 6,717 6,192 Mileage 6,724 6,028 5,638 6,563 6,336 6,051 5,876 5,869 5,823 5,672 6,570 6,343 Cat. aged aged aged aged aged aged aged OE OE 0E OE OE OE Fuel S ppm 150 150 150 150 30 30 30 ഗഗ 30 30 თ თ თ 0.172 0.156 0.171 0.215 0.1940.167 ECE 0.200 0.157 0.244 0.011 0.1840.189 0.191 0.004 0.196 0.199 0.193 0.006 0.166 0.162 0.171 0.069 0.166 0.2640.020g/km **EUDC** 0.003 0.003 0.003 0.003 0.005 0.004 0.003 0.003 0.004 0.004 0.002 0.005 g/km 0.006 0.000 0.003 0.003 0.001 0.003 0.003 0.003 0.000 0.004 0.004 0.002 0.000 NEDC 0.077 0.0600.070 0.065 0.072 0.074 0.075 0.073 0.003 0.0640.062 0.065 0.062 0.100 0.007 0.065 0.073 0.059 0.063 0.093 0.071 0.0010.0810.004 0.026 g/km 0.822 0.558 0.475 0.544 0.839 0.717 0.928 0.752 0.759 0.730 0.766 0.030 0.818 0.797 0.033 0.584 0.561 0.613 0.592 0.633 0.0900.654 0.019 0.607 0.029 g/km ECE EUDC 0.042 0.035 0.025 0.020 0.030 0.005 0.018 0.022 0.013 0.010 0.028 0.035 0.020 0.007 0.015 0.010 0.023 0.026 0.020 0.025 0.070 0.022 g/km 0.020 0.020 0.004 6 NEDC 0.318 0.276 0.292 0.224 0.231 0.284 0.196 0.213 0.361 0.288 0.276 0.295 0.018 0.317 0.330 0.305 0.017 0.212 0.236 0.240 0.234 0.245 0.046 0.010 0.008 g/km 0.015 0.011 0.012 0.012 0.012 0.024 0.028 0.018 0.005 0.021 0.025 0.004 0.012 0.010 0.015 0.012 0.017 0.0020.010 0.017 0.006 0.027 0.018 0.015 0.004 g/km ECE NO_x 0.015 0.014 0.009 0.013 0.017 0.016 0.025 0.009 0.014 0.001 0.025 0.025 0.026 0.012 0.013 0.010 0.016 0.025 0.007 0.006 0.013 0.020 g/km 0.008 0.002 0.012 NEDC 0.013 0.012 0.012 0.016 0.015 0.012 0.010 0.017 0.017 0.007 0.019 0.026 0.012 0.019 0.001 0.024 0.025 0.023 0.000 0.012 0.006 0.020 0.011 0.004 0.013 g/km 254.5 253.8 254.4 249.8 254.7 10.838 248.4 249.1 237.2 258.8 g/km ECE 255.1 2.620 252.8 255.3 252.9 250.1 252.9 255.8 13.24 259.1 240.4 255.4 256.1 2.05 0.96 EUDC 153.1 153.5 152.7 0.330 153.9 153.7 153.7 154.3 0.793 155.3 155.9 154.7 0.854 151.2 150.5 151.8 0.318 153.1 152.9 153.3 5.194 159.3 163.3 161.3 153.5 g/km CO_2 4.332 NEDC 0.729 2.778 191.9 0.233 187.4 194.6 190.4 190.3 190.2 191.0 190.0 189.5 191.6 191.4 191.8 190.4 184.3 0.511 190.7 190.3 191.0 189.1 192.1 g/km 190.4 0.015 0.020 0.032 0.000 0.052 0.052 0.002 0.009 0.013 0.010 0.003 0.014 0.017 0.013 0.012 g/km ECE 0.011 0.016 0.010 0.006 0.035 0.0310.041 0.052 0.008 0.004 EUDC TDL-NH₃ 0.010 0.006 0.0060.003 0.005 0.002 0.0040.0010.003 0.0040.002 g/km 0.008 0.001 0.004 0.003 0.005 0.000 0.006 0.006 0.006 0.001 0.002 0.002 0.001 0.004 NEDC 0.009 0.0080.009 0.010 0.011 0.006 0.007 0.009 0.003 0.015 0.014 0.014 0.019 0.000 0.023 0.023 0.023 0.0010.006 0.005 0.007 0.001 0.006 0.007 0.003 g/km 0.0000.000 0.000 0.000 0.017 0.014 0.024 0.0040.024 0.000 0.000 0.000 0.000 0.000 g/km ECE 0.0000.021 0.000 0.000 0.007 0.012 0.027 0.000 N/A N/A N/A FTIR - NH₃ EUDC NEDC 0.004 0.000 0.000 0.000 0.001 0.000 0.002 0.000 g/km 0.000 0.000 0.002 0.005 0.004 0.007 0.001 0.005 0.005 0.006 0.000 0.000 0.000 0.001 N/A N/A N/A 0.007 g/km 0.0000.0000.006 0.005 0.0010.008 0.009 0.000 0.000 0.0000.000 0.000 0.0000.0000.0010.000 0.002 0.004 0.008 0.000 0.000 N/A N/A N/A0.008 0.008 0.012 0.004ECE 0.004 0.004 0.007 0.005 0.000 0.005 0.005 0.004 0.003 0.004 g/km 0.0020.007 0.010 0.005 0.024 0.024 0.0010.003 N/A N/A N/A FTIR - N2O EUDC NEDC 0.002 0.001 0.002 0.000 g/km 0.001 0.0000.0010.000 0.000 0.0000.000 0.001 0.0000.001 0.001 0.001 0.003 0.002 0.003 0.004 0.000 0.000 N/A N/A N/A 0.0020.002 0.0010.002 0.002 0.004 0.001 0.0010.002 0.001 0.0010.001 0.000 0.0020.002 0.000 0.0030.004 0.0010.001 N/A 0.001N/A N/A g/km

Appendix J. Detailed NEDC Emission Results

stdev, km

0.062

0.001

0.024

0.150

0.007

0.060

0.003

0.003

0.003

0.91

0.547

0.100

0.007

0.004

0.000

N/A

N/A

N/A

N/A

N/A

N/A