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1.0 Executive Summary

To help automakers and other stakeholders understand the implications of pipeline CNG fuel
quality on light-duty vehicle performance and emissions, SGS has conducted a study to test seven
synthetically blended fuels on three different vehicles. The vehicles included a naturally aspirated CNG-
only 2012 Honda Civic GX, a turbocharged bi-fuel 2014 European Volkswagen Golf TGI, and a naturally
aspirated bi-fuel Dodge Ram 2500 CNG. Replicate LA92 3-bag emissions tests were performed on the
chassis dynamometer. Exhaust gas emissions were bagged, and modal emissions sampled at the pre-
catalyst and tailpipe locations for catalyst efficiency determination.

Seven test fuels were chosen by the CRC panel to represent a wide range of fuels available to
consumers in the United States. Fuel selection was based on fuel samples collected and analyzed in the
CRC Performance Committee Project PC-2-12. Methane number ranged from 60 to 105.7, and Wobbe
Index ranged from 1228 to 1428 BTU/ft>. The study included a test fuel to represent the average CNG
composition of 97 Methane Number and 1344 BTU/ ft> Wobbe Index. Each vehicle was tested twice on
all seven of the CNG fuels.

Conclusions from the investigation are as follows:

1. The bag-weighted fuel economy, in miles per gasoline gallon equivalent (MPGe), varied in
direct proportion to the Wobbe Index for all vehicles in the study. This effect was expected
due to different energy content of the test fuels.

2. NOx and CO bag-weighted emissions from Vehicle A and Vehicle B were unaffected by the
fuel type.

3. NOx engine-out-weighted emissions increased with higher Wobbe Index fuels for all three
vehicles tested.

4. THC and CH, bag emissions increased with lower Wobbe Index fuels for all three vehicles
tested.

5. Of the three vehicles in the study, Vehicle C was most affected by fuel type.

a. When run on the fuel with lowest Wobbe Index (CNG01), bag-weighted NOx
emissions increased by over 300% compared to the average CNG fuel (CNGO07). The
lowest Wobbe Index fuel produced highest NOx emissions during the Phase 2
stabilized portion of the LA92 cycle.

b. CO bag-weighted emissions decreased for the lowest Wobbe Index fuel.

Methane emissions increased by over 50% for the lowest Wobbe Index fuel.

d. The effects appeared to be catalyst-conversion related as the trends were less
apparent from engine-out emissions data.

6. A statistical analysis for all vehicles pooled together revealed:

a. The effect of fuel type on mean bag-weighted fuel economy was significant with
95% confidence

b. The effect of fuel type on mean bag-weighted NOx and CO was not statistically
significant

c. The effect of fuel type on mean bag-weighted CH, and total THC emissions was
significant with 95% confidence.
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7. Engine knock was not observed for either Knock Investigation #1 or #2, indicating that the
combination of compression ratio, EGR, ignition timing, and valve timing employed on these
vehicles can accommodate the lowest methane number fuel under the conditions tested.

2.0 Introduction

The demand for natural gas fueled vehicles has increased as domestically-produced natural gas
has grown dramatically in the U.S. with the implementation of new gas extraction technologies. CNG has
become a cost effective and clean burning alternative to gasoline and diesel. Formulation of liquid fuels
has been tightly regulated allowing manufacturers of light duty vehicles to design their engines and
calibrations to operate within the regulated fuel specifications. Gaseous fuels, like CNG, have much
broader specifications which can generate fuels available for public refueling to vary greatly. Two of the
most important characteristics of a fuel for base engine design and calibration are its resistance to
engine knock which is closely tied to methane number (MN), and its stoichiometric air fuel ratio which
has a nearly linear relationship to Wobbe Index (WI).

The fueling infrastructure for natural gas is based on a pipeline infrastructure serviced by multiple
wellheads across North America as shown in Figure 1. As the wellheads are not connected to one
another, the products pumped out of the ground are different from site to site. Pipes from wellheads
gather at a central processing plant where oil, condensate, water, liquids, sulfur (normally less than
17ppm), and carbon dioxide are removed. Most of the more valuable gaseous hydrocarbon
constituents (ethane, propane, butane, etc.) can be recovered by different methods, but are not all
100% efficient. Since the final product is normally sold based on energy content for residential and
business use there is little concern for further refining the fuel for transportation use. This leaves
heavier hydrocarbon components that can reduce the fuels knock resistance. In some higher altitude
environments oxygen is injected into the pipeline to better combust the gas in burner applications like
stoves and water heaters.

The objective of this study was to compare the performance and emissions of three CNG vehicles
operating on a wide range of CNG fuels available in the United States.
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— = Intrastate Pipelines

Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Gas Transportation Information System

Figure 1. U.S. Natural Gas Pipeline Network, 2009

3.0 Approach and Test Procedures

SGS Environmental Testing Corporation (SGS) collaborated with CRC to develop the project
approach and test procedures. Vehicle lab testing was performed at SGS’s Aurora, Colorado laboratory.
SGS is an accredited laboratory in compliance with I1ISO 17025-2005 quality management, and performs
emissions certification tests per EPA’s 40CFR86 standards.

3.1 Vehicle Models and Recruitment

This study was designed to discern the effects of extreme CNG fuel composition on vehicle
exhaust emissions and fuel economy. Base engine architecture and control strategies vary within natural
gas powered light-duty vehicles offered from each manufacturer. Of all available options, one common
feature is that light-duty NGVs are all operating with stoichiometric combustion and spark ignition. This
also implies that three way catalytic converters are used to meet exhaust emissions regulations. Three
different vehicle models were chosen for this study which capture bi-fuel, natural aspiration, and
turbocharging. The vehicle model years ranged from 2012 to 2014 with two models currently available
in the US and one selected from Europe.
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The three vehicles participating in the study are summarized in Table 1. The vehicles were
production models supplied by participating manufacturers.

Table 1. Vehicles Participating in CRC E-109 Study

X Gasoline |CNG Fuel| CNG Fuel e
Model Engine #of . . R . . . Exhaust Emissions
Year Make Model size ()| Cylinders Configuration Fuel Tank|Tank Size Tank Engine Family | Exap Family Standard
4 size (Gal)| (GGE) | Material
2014 RAM 2500CNG| 5.7 8 Normally Aspirated, Bi-Fuel 8.0 18.2 Steel ECRXD05.75VY | ECRXR0272TCY| HDV / ULEV Il MDV
2012 Honda CivicGX | 1.8 4 Normally Aspirated, CNG Only n/a 8.0 Composite | CHNXV01.88DT n/a T2B2 / LEV Il SULEV
2014 [Volkswagen| Golf TGI 1.4 4 Turbocharged, Bi-Fuel 13.2 7.3 Steel n/a n/a EURO 6

The 2014 Ram 2500 CNG is shown in Figure 2. The Dodge Ram was received on 9/25/2014 with
3364 miles on the odometer and in good overall condition. The mileage at the beginning of the first as-
received emissions test was 3409 miles. The engine configuration was a naturally aspirated 5.7L 8-
cylinder operating on both CNG and gasoline shown in Figure 3. The fuel system had two composite CNG
tanks capable of 3600psig storage with a total capacity of 18.2 GGE. Exhaust aftertreatment consisted of
a two close coupled three-way-catalysts with engine-out narrowband oxygen sensors and post-catalyst
narrow band oxygen sensors. Cylinder specific port fuel injectors delivered CNG to the intake ports. An
additional gasoline fuel system was also installed with port injection. An 8-speed automatic transmission

drives the rear wheels.

Figure 2. 2014 Dodge Ram 2500 CNG
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Figure 3. 2014 Dodge Ram 2500 CNG Engine Bay

The 2012 Honda Civic GX is shown in Figure 4. The Honda Civic was received on 5/8/2014 with
4690 miles on the odometer and in good overall condition. The engine configuration was a naturally
aspirated 1.8L 4-cylinder operating on CNG only shown in Figure 5. The fuel system had one composite
CNG tank capable of 3600psig storage with a total capacity of 8.0 GGE. Exhaust aftertreatment consisted
of a close coupled three-way-catalyst with engine-out and post-catalyst narrow band oxygen sensors
and close coupled secondary catalyst. Cylinder specific port fuel injectors delivered CNG to the intake
manifold. A 5-speed automatic transmission drives the front wheels.

Figure 4. 2012 Honda Civic GX
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Figure 5. 2012 Honda Civic GX Engine Bay

The 2014 Volkswagen Golf TGl is shown in Figure 6. This vehicle was a European model
transported to the United States for testing purposes. The VW Golf was received on 8/8/2014 with 6059
miles on the odometer and in overall good condition. The engine configuration was a turbocharged 1.4L
4-cylinder operating independently on both CNG and gasoline depending on the available CNG tank
pressure and is shown in Figure 7. The system operates on CNG until the tank is depleted, then switches
to gasoline until the CNG tank pressure is restored. The fuel system had two steel CNG tanks capable of
3000psig storage with a total capacity of 7.3 GGE. The gasoline tank had a capacity of 13.2 gallons.
Exhaust aftertreatment consisted of a three-way-catalyst downstream of the turbocharger with an
engine-out wideband oxygen sensor and a post-catalyst narrow band oxygen sensor. Cylinder specific
port fuel injectors deliver CNG to the intake manifold. The gasoline fuel system was direct injection. A 6-
speed manual transmission drives the front wheels.

Figure 6. 2014 Volkswagen Golf TGI
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Figure 7. 2014 Volkswagen Golf TGl Engine Bay

3.2 Preparation and As-Received Emissions

The test vehicles completed an inspection and screening test to confirm proper vehicle operation and
collect baseline emissions:

e No active or pending MILs/DTCs

e Serviceable and safe tires, but not new tires

e VIN, ECM calibration, and emissions certification family check

Check for exhaust leaks and readiness for testing

Refuel with locally available CNG

Road Load Derivation

LA4 Preparation Cycle

e Soak 12-36 hours

e Evaporative Canisters were preconditioned for the bi-fueled vehicles at 40g/hr with a 2 gram
break through method

e FTP-75 Bag Only

e LA-92 preparation cycle

e Soak 12-36 hours

e LA-92 3-bag test

SAE J2264 road load derivations were performed for the vehicles using vehicle target coefficients
listed in Table 2 below. Target coefficients for the Honda Civic were chosen from the EPA certification
2012 database. The target coefficients for the VW Golf were chosen after consultation with the
manufacturer since there are no data available in the United States. The target coefficients for the
Dodge Ram were chosen from the EPA certification database for the 2014 model year. The road load
comparison for each vehicle is shown in Figure 8. The Volkswagen Golf TGI had the lightest road load of
the three vehicles and the Ram 2500 CNG had the highest road load.

13
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Table 2. Vehicle Target Road Load Coefficients

Manufacturer Ram 2500 CNG Honda Civic GX Volkswagen Golf TGl
ETW (lbs) 8500 3125 3250
A (1by) 65.88 23.0700 17.3100
B (Ibs/mph) 1.7806 0.1703 0.1339
C(Ibg/ mph?) 0.02642 0.0166 0.01729
Tire Pressure (psig) 80 30 35
Tire Size 275/70/18 195/65/R15 205/55/R16
Tire Manufaturer Firestone Firestone Continental
Tire Model Transforce HT Affinity Touring S4 ContiEcoContact
Dyno Force Comparison (lby)
350 |
300
250
g 200
E’ ——2014 VW Golf TGI
S 150 —==2012 Honda Civic GX
2014 Ram 2500 CNG
100
50
0
0 10 30 40 50 60 70 80
Roll Speed (mph)

Figure 8. Dyno Force Comparison

Following the derivations, each vehicle received a LA4 prep cycle, canister loading for the bi-fuel
vehicles, and a 12-36 hour soak in a temperature and humidity controlled environment prior to the
FTP75 emissions test. For all testing, the manual transmission Volkswagen Golf TGl followed the EPA
recommended shift schedule as shown in Table 3.
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Table 3. EPA Standard Shift Schedule for 6-Speed Manual

Gear | Standard Shift Speeds
1-2 2 15mph
2-3 2 25mph
34 2 40mph
4-5 2 45mph
5-6 = 50mph

Gasoline drain and fills were performed on the two bi-fuel vehicles prior to performing the as-
received emissions tests. EPA Federal Tier 2 High Altitude Certification fuel was used and remained in
the gasoline tanks of the bi-fuel vehicles for the duration of the program testing with COA
documentation provided in Appendix 12.2. The CNG fuel used for the as-received test was market fuel
sourced from a local Denver CNG station with reported constituents as shown below in Table 4. The fuel
had an average Wobbe Index of 1267.05 BTU/ft®> and a MN of 81.

Table 4. Denver BTU Zone — 2014 Average Gas Quality

MONTHLY AVERAGE GAS QUALITY *
DENVER BTU ZONE - 2014

July August Average
mol % mol % mol %
CARBON DIOXIDE 1.153 1.22 1.1865
OXY GEN 1.215 1.126 1.1705
NITROGEN 5.027 4.986 5.0065
METHANE 84.08| 84.324 84.202
ETHANE 7.386 7.213 7.2995
PROPANE 0.952 0.948 0.95
-BUTANE 0.056 0.055 0.0555
N-BUTANE 0.101 0.099 0.1
-PENTANE 0.013 0.013 0.013
N-PENTANE 0.011 0.011 0.011]
HEXANE-PLUS 0.006 0.005 0.0055
TOTAL 100 100
Gas Properties (14.73 psia, 60°F, dry)

NET HEATING VALUE ° (Btu/scf) 916.3] 915.5 915.9
GROSS HEATING VALUE 2 (Btu/scf) 1014.9 1014.1 1014.5
SPECIFIC GRAVITY ? 0.6415 0.6406 0.64105
WOBBE 1267.1 1267 1267.05)
KG CO,/MVMBtu 53.9 53.9 53.9

 Values show n are volume w eighted averages for all supplies into zone and may not represent deliveries to a specific location at a given time
2 ASTM D3588 Standard Practice for Calculating Heat Value, Compressibility Factor and Relative Density (Specific Gravity) of Gaseous Fuels

and GPA 2145 Table of Physical Constants of Paraffin Hydrocarbons and Other Components of Natural Gas

3 Carbon dioxide factor based only on combustion of gas w ith given composition. Multiply by Gross Heating Value/1,000,000) for MT/Mscf

Source: http://www1.xcelenergy.com/webebb/html/GasQualityZone.asp

As-received 3-bag LA92 tests were also performed on all three vehicles with results shown in
Table 5. Emissions certification standards for the Honda Civic GX and Ram 2500 CNG were available
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from the public EPA database for the FTP75 emission test and shown for comparison, while values for
the Volkswagen Golf TGl were unavailable as it is a European market vehicle.

Table 5. FTP75 and LA92 As-Received Vehicle Emissions

FTP75 and LAG2 As-Received Results CO : NOXx : CH4 : CREE‘ NMQG N—CH.4 HCHQ HC : CO2 : FE

(g/mi) |(g/mi) |(g/mi) |(g/mi) [(g/mi) |(g/mi) |(g/mi) |(g/mi) [(g/mi) |(mpg)

Honda Civic GX

FTP75 Emission Standard T2B2 2.1 0.02 0.03 n/a 0.01 n/a n/a n/a n/a n/a

FTP75 SGS 2116985 As-Received 0.1061 0.004 0.0108 208.2963 |n/a 0.0008 n/a 0.011 208.1 31.09

LA92 SGS 3118990 As-Received 0.2716 0.0016 0.0079 225.9284 |n/a 0.0029 n/a 0.0102 225.48 28.66

Volkswagen Golf TGI

FTP75 Emission Standard n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a

FTP75 SGS 3119188 As-Received 0.0725 0.0551 0.0424 200.2202 |n/a 0.0052 n/a 0.0448 199.99 32.34

LA92 SGS 3119162 As-Received 0.1041 0.0613 0.0278 209.7798 |n/a 0.0044 n/a 0.0304 209.54 30.87

Ram 2500 CNG

FTP75 Emission Standard HDV1 7.3 0.2 0.267 n/a 0.195 n/a 0.032 n/a n/a n/a

FTP75 SGS 3119377 As-Received 0.2853 0.0242 0.1344 621.6669 |n/a 0.0129 n/a 0.1384 620.85 10.42

LA92 SGS 3119435 As-Received 0.343 0.1282 0.1996 693.6864 |n/a 0.0215 n/a 0.2079 692.6 9.34

All three vehicles exhibited higher composite CO, and lower fuel economy for the LA92 test
versus the FTP75 test. Both of the US market vehicles tested within the applicable federal emissions
standard. Results were deemed acceptable to proceed with vehicle preparation for further testing.

3.3 Vehicle Preparation

Each vehicle was modified for test instrumentation, including:

e Temporary defeat of traction control for testing on the chassis dynamometer.

e Installation of a K-type thermocouple upstream of the first catalyst, for exhaust temperature
measurement, as required by the EPEFE/WOT catalyst conditioning procedure.

e Installation of a gaseous emissions sample port upstream of the first catalyst for air-fuel ratio
determination with a lambda sensor, as required by the EPEFE/WOT catalyst conditioning
procedure and for engine-out emissions sampling.

e Installation of signal breakout connected to the engine’s 60-2 crank angle sensor signal wires.

e Isolation of the bi-fuel vehicle’s evaporative emissions system by means of completely purging
the charcoal canister prior to the emissions test. This minimized possible commanded purge
events of the gasoline fuel system from influencing emissions results.

e Isolation of the vehicle’s fuel tank by means of closing tank shut-off valve(s) specific to each
vehicle.

3.3.1 Pre Catalyst Instrumentation

An emissions sample probe and exhaust gas thermocouple were instrumented at the engine-out
location upstream of the first three-way catalyst by welding NPT bungs to the factory exhaust systems.
Locations are illustrated in Figure 9, Figure 10, and Figure 11 below.
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Figure 11. VW Golf TGI Pre Catalyst Instrumentation
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The refueling ports on all three vehicles were NGV1 type as shown in Figure 12, Figure 13, and
Figure 14 below. The European market Volkswagen Golf TGl had a slightly larger outer diameter which
allowed only 3000 psig filling receptacles to attach. This design ensured a higher pressure 3600 psig
receptacle cannot attach to the 3000 psig filling port. Both the Honda Civic GX and Ram 2500 CNG had a
smaller outer diameter NGV1 port allowing use of both 3000 and 3600 psig filling receptacles.

Figure 12. NGV1 3600psig Fill Port (Dodge Ram 2500 CNG)

Figure 13. NGV1 3600psig Fill Port (Honda Civic GX)
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Figure 14. NGV1 3000psig Fill Port (VW Golf TGI)

The Type 3 tank design for the Honda Civic GX was composed of a metal liner reinforced with a
composite wrap as shown in Figure 16 below. Both the Volkswagen Golf TGl and Dodge Ram 2500 CNG
utilized a Type 1 tank design of all steel construction shown in Figure 15 and Figure 17.

Figure 15. Dodge Ram 2500 CNG Fuel Tanks (Steel Type 1)
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Figure 17. VW Golf TGI Fuel Tanks (Steel Type 1)

3.3.2 CNG Tank Bypass

Each vehicle was equipped with a tank shut-off valve that allowed service to the natural gas fuel
system. When the shut-off valve was in the closed position, it allowed the fuel fill port to remain
connected to the engine supply line to the regulator and bypassed the vehicle’s CNG fuel tank.

In order to supply an external fuel source of six-pack bottled gases to the each vehicle a method was
selected that was analogous to the control system. Each CNG tank system had an electronic shutoff
valve at the inlet/outlet of the tank which may be opened by energizing the valve coil. Typically the valve
is only energized when the ignition is in the on or run position. To prevent any diagnostic trouble codes
from setting, the electrical harness was left connected to the electronic shutoff valve.

Each setup had a jack screw or manual shutoff valve on the end of the tank for serviceability. To
isolate the flow of gas from the onboard tanks the manual shutoff valves were closed. On both the
Volkswagen Golf TGI, shown in Figure 18, and the Dodge Ram 2500 CNG, shown in Figure 19, the NGV1
fill port was connected to the fuel system between the fuel tank and the engine supply line. When the
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fuel tank manual shutoff valves are in the closed position it leaves the NGV1 fill port connected to the
engine supply line.

Figure 19. Ram 2500 CNG Fuel Tank Shut-Off Valve (One per Tank)

Figure 20 below shows an internal cutaway view of the Faber tank valve common to both the
Volkswagen Golf TGl and the Ram 2500 CNG. With the mechanical shut-off valve in the closed position,
CNG is not allowed to flow into or out of the tank under normal conditions. If the temperature of the
thermally activated pressure relief device, or PRD, exceeds 110°C the fusible plug will melt allowing gas
to escape from the tank at a controlled rate into the atmosphere.
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Metal suppert for fuel tanks Mechanical
shut-off valve Flow restrictor

Matural gas fuel tank 1

Thermal valve Connecting
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Figure 20. VW Golf TGI Fuel Tank Shut-Off Valve
From Volkswagen Service Training Self-Study Programme 528, “The Natural Gas Drive in the Golf/Golf
Estate TGl BlueMotion”

The Honda Civic GX had a unique tank valve where one jack screw is available to close off the
inlet to the tank, and a second jack screw is available to close off the outlet of the tank. The separate
flow paths allow for a controlled fill rate taking advantage of the cooling effect produced by pressure
drop of fuel entering the tank. The separate outlet then allows for less restricted CNG flow to the
engine. The plumbing of the system does not allow easy isolation of the tank since the NGV1 fill port is
connected directly to the tank valve at the inlet jack screw location. The method used to bypass the
Honda’s tank was to close both jack screws, disconnect the engine supply line, and adapt a NGV1 fill port
direct to the engine supply line as shown in Figure 21 below.

Figure 21. Honda Civic GX Tank Bypass Setup
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3.4 Overall Test Plan and Test Sequence

The test plan was designed to compare the emissions and fuel economy from varying natural gas
fuel blends. In order to control the fuel supply to the vehicle’s engine, fuels were synthetically blended
into 300 series DOT cylinders. Six cylinders of the same fuel were grouped together and connected by a
single outlet manifold to provide approximately 13.3 GGE at 1800 psig. This allowed for one round of
testing for three vehicles with the same six-pack of cylinders consuming 8.7 GGE.

Connection to each vehicle’s NGV1 fill port was done by a CNG certified fuel supply hose with a
NGV1 dry break filling receptacle that keeps the fuel line free of atmospheric air. The two US market
vehicles used a 3600 psi NGV1 fill port. The European Volkswagen Golf used a 3000-3600 psig NGM1
adapter fitting as the system is designed for lower maximum fill pressure.

The test sequence and fuel used for each test procedure is summarized in Table 6. An attempt
was made to randomize the fuel and vehicle test order within practical constraints.

The most efficient way to test each vehicle was to use one fuel blend each day. The Ram was
tested first in sequence for each fuel change to allow the lower horsepower vehicles to deplete the fuel
cylinders at a slower rate when there was less pressure. The Ram 2500 CNG has the highest horsepower
rating and therefore it required the highest fuel flow rate during the EPEFE test. The fuels used in the
study are described in Section 4.0.

To mitigate and chance of fuel carryover and to allow the vehicle’s control system to fully adapt to
the test fuel, a total of 43.9 miles were driven over preparation cycles.

The EPEFE cycle consisted of ten WOT events. The EPEFE cycle was run at 100°F ambient
temperature, as it was also used for the purpose of performing Knock Investigation #1.

The preparation cycle used prior to the emissions test was two consecutive LA92 2-Phase cycles
driven back to back as shown in Figure 22 below. Vehicles were then soaked for 12-36 hours in a
temperature and humidity controlled environment. The two bi-fuel vehicles’ canisters were purged for
one hour during every soak period prior to the emissions test.
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Table 6. Emissions Test Sequence for CRC E-109

FUEL ORDER:

CRC E-109 TEST PROCEDURE

RANDOMLY SELECTED

CNG-01
CNG-03

FUEL (FROM 7 OPTIONS)

CNG-07

CNG-01
CNG-07

PRECONDITIONING DRIVE
ONE EPEFE CYCLE @ 100°F

CNG-03

CNG-04 Repeat for
CNG-05 next fuel

PRECONDITIONING DRIVE

TWO LA92 2-PHASE TEST @ 74°F

CNG-06
CNG-02

CNG-06

CNG-05

SOAK AT 68-86°F
(12-36 HOURS)

CNG-02
CNG-04

CAT EFFICIENCY TEST
LA92 3-PHASE TEST @ 74°F

NOTES:

1. Venhicle fuel tankmust be isolated from
fuel rail before connecting bottle fuel.

2. Preconditioning tests to be run through
ECCSwith lambda meter and EO
thermocouple in use.

3. All test procedures are to essentially
follow certification protocol.

4. Bi-fuel vehicles to have a fully purged
canister intalled prior to emissions test.

5. INCA recording for all dynamometer
procedures

END
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Figure 22. Preconditioning Cycle, LA92 x2

A LA-92 emissions test procedure was then performed following the soak period in a certification-
compliant chassis dynamometer laboratory. The LA92 test procedure was a 3-Phase transient drive
cycle further described in Figure 23. The first and third phases were 300 seconds and had an average
speed of 14.18 mph. The second phase was 1135 seconds and had an average speed of 27.37 mph. A
ten-minute hot soak period was included between phases 2 and 3. The LA92 had higher speeds and
more aggressive accelerations than the FTP75, and was used to explore relativistic effects of each fuel.

All emissions tests were driven by the same technician to control test-to-test driver variability.

Vehicle exhaust emissions were measured for each LA-92 3-Phase drive cycle performed as part of
the test sequence. Emissions were measured by collecting bag samples for each phase from the
constant volume sampling system as well as engine-out and tailpipe raw modal emissions.

Engine-out emissions were sampled upstream of the aftertreatment system, to compare lambda
and modal emissions. Raw-tailpipe emissions and dilute bag emissions were sampled downstream of all
after treatment components in order to compare and correlate the sampling methods. Using two
sampling methods downstream of the aftertreatment system adds an extra quality check to ensure the
operation of each analyzer.
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Figure 23. Emissions Cycle, LA92 3-Phase Test

3.5 Test Cell Equipment and Layout

Emissions tests were performed in an emissions certification-compliant chassis dynamometer
laboratory at SGS Environmental Testing Corporation in Aurora, Colorado. All emissions tests were run
on Site 3, featuring a Burke Porter 48” roll dynamometer in a temperature and humidity controlled
environment. The laboratory has a constant volume sampling system (CVS), raw modal and dilute bag
gas sampling and analysis. Bag samples were simultaneously collected from the diluted vehicle exhaust
and from the ambient, to ensure quantification of the background and accurate calculation of phase-
averaged exhaust mass emissions. The bag analysis included measurement of CO, CO,, NOx, THC, and
CH, gases. Emissions laboratory equipment was compliant with EPA 40CFR Part 86 subpart B
standards.

The six-pack cylinders were positioned behind the vehicle in the test cell as shown in Figure 244
for both the FWD and RWD vehicle configurations. When changing from RWD to FWD, the position of
the cylinders remained the same. The 20’ fuel supply hose was able to reach the filling port on all
vehicles, regardless of the vehicle driveline. Safety ventilation was plumbed into the fuel supply line that
would evacuate any gaseous fuel pressure in the NGV1 fill port adaptor or fuel line from the six-pack to
the vehicle.

When changing vehicles using the same fuel, the dry break NGV1 fill port allowed minimal gas
pressure to escape from the fuel supply. The EPEFE and 2xLA92 preparation cycles ensured the vehicle
supply line was purged of any carry over residual fuel. At the end of the preparation cycles the vehicle’s
fuel system remained pressurized when the supply line was disconnected for the soak period, and then
reconnected to the same fuel prior to the emissions test.
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Figure 24. SGS Site 3 Test Cell Layout for RWD and FWD Vehicles

Figure 255, Figure 26, and Figure 27 below illustrate the test cell setup for all three vehicles with
the six-pack bottle cart behind the vehicle, Coriolis flow meter in-line with the supply line, and the
supply line connected to the NGV1 fill port. The cart holding the Coriolis flow meter was secured to the
floor which created a stationary mounting point for the dry-break quick disconnect fittings in the supply
line in the unlikely event the vehicle were to move off the dynamometer.

Figure 25. Dodge Ram 2500 CNG Installed on SGS Site 3
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Figure 27. Volkswagen Golf TGl Installed on SGS Site 3

4.0 Fuels

Originally six target fuel blends were selected based on results from the CRC PC-2-12 program
encompassing high and low methane number and Wobbe Index. A seventh fuel was added to capture
the average of the fuels found in the field. The table below illustrates the CRC targets and the SGS
proposed target fuels. Differences between the values were because of gravimetric blending limits as
directed by the fuel supplier. The maximum pressure was targeted at 1800 psig which excluded hexane
from the blends and limited pentane to 0.5%, and butane to a maximum of 2% per supplier guidance. To
create fuel with a high methane number, the majority of the blend must contain mostly methane.
Adding heavier molecular weight hydrocarbons had an impact of both lowering the methane number
and increasing the Wobbe Index as the heavier hydrocarbons have greater energy density.

Table 7 below shows the SGS proposed target percent volume of each constituent for each fuel.
Methane number was calculated using the California Air Resource Board (CARB) hydrogen-to-carbon
atomic ratio method (H/C method), where the motor octane number (MON) was used to determine
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methane number (MN). The H/C ratio is 4 for pure methane. The correlation (1) for MON is not valid for
H/C < 2.5 and for inert gas concentrations in fuel greater than 5%. The correlation shown in (2) typically

predicts MNs 8.6% higher than the actual test values”.
MON = —406.14 + 508.04(H/C) — 173.55(H/C)? + 20.17(H/C)3 (1)
MN = 1.624(MON) — 119.1 (2)

Wobbe Index was calculated using the fuel’s higher heating value and specific gravity as shown
below in (3).

3y _ HHV (BTU/ft3)
Wobbe Index(BTU/ft>) = — e (3)
Table 7. CNG Target Fuel Blends
Fuel # 1 2 3 4 5 6 7
CRC Proposed Methane Number 85 105 85 60 85 60 97

Targets Wobbe Index (BTU/E) | 1225 | 1330 | 1330 | 1330 | 1425 | 1425 | 1345

SGS Proposed |  Methane Number 85.13 | 10559 | 8528 | 60.02 | 84.95 | 60.07 | 96.95

e Wobbe Index (BTU/ft3) | 1227 | 1334 | 1334 | 1327 | 1404 | 1427 | 1342

(% Vol) | (% Vol) | (% Vol) | (% Vol) | (% Vol) | (% Vol) | (% Vol)
Methane CH4 94.300% | 98.780% | 92.500% | 75.000% | 94.700% | 77.800% | 96.700%
Ethane C2H6 0.000% | 0.000% | 0.000% |10.500% | 0.000% |13.900%| 2.200%
Propane C3H8 0.000% | 0.000% | 4.300% | 4.000% | 5.300% | 4.000% | 0.000%
Butane C4H10 0.000% | 0.000% | 0.000% | 2.000% | 0.000% | 1.500% | 0.000%
Pentane C5H12 0.000% | 0.000% | 0.000% | 0.500% | 0.000% | 0.500% | 0.000%
Hexane C6+ 0.000% | 0.000% | 0.000% | 0.000% | 0.000% | 0.000% | 0.000%
Oxygen 02 1.000% | 0.000% | 0.500% | 1.000% | 0.000% | 0.000% | 0.000%
Nitrogen N2 0.000% | 0.720% | 2.000% | 4.700% | 0.000% | 0.000% | 0.000%
Carbon Dioxide co2 4.700% | 0.500% | 0.700% | 2.300% | 0.000% | 2.300% | 1.100%
H/C Ratio 3810 | 3.980 | 3.811 | 3485 | 3.808 | 3.486 | 3.914

OIC Ratio 0.115 | 0.010 | 0.023 | 0.055 | 0.000 | 0.036 | 0.022
Stoich A/F Ratio 14.737 | 16.710 | 15.957 | 14.509 | 16.948 | 15.844 | 16.611
HHV (BTU/#t®) 954.0 | 1000.0 | 1045.0 | 1133.0 | 1092.0 | 1205.0 | 1018.0

Specific Gravity 0605 | 0562 | 0613 | 0.729 | 0605 | 0.714 | 0575

! “Paper Study on the Effect of Varying Fuel Composition on Fuel Supplied to Detroit Diesel Gas Engines”, Report
prepared for Southern California Gas Company, May 2005.
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Figure 28. CNG Fuel Blends Chart

Blends were prepared by the fuel supplier gravimetrically by dispensing the raw constituents
into DOT 300 series bottles using calibrated flow meters. Twenty cylinders of each fuel were procured
totaling 140 300-series cylinders. The bottles were delivered and stored inside SGS’s facility in a
temperature controlled environment with methane detection and an explosion proof fan. Handling of
the cylinders was conducted according to an internal safety plan for flammable gases. The fuel did not
need conditioning prior to the emissions testing as the bottle storage was at the same environmental
conditions as the emissions test cell. Six cylinders of each test fuel were staged on six-pack carts with a
common outlet manifold for easy transportation and change out as shown in Figure 29 below.

Figure 29. SGS CNG Bottle Storage Room
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Fuel speciation was cataloged by gas chromatography to determine molar % of methane,
ethane, propane, isobutane, N-butane, isopentane, N-pentane, hexane+, helium, hydrogen, oxygen,
nitrogen, and carbon dioxide. Heating value was determined by ASTM D3588-98. From these data,
methane number was calculated by the ARB measured H/C ratio method, Wobbe Index by higher
heating value, specific gravity, and stoichiometric air/fuel ratio were also calculated. Table 8 below
shows a summary of the AirGas fuel analysis.

Table 8. AirGas Certification Analysis

Fuel # 1 2 3 4 5 6 7
126- 126- 126- 126- 126- 126- 126-
Air Gas Report # 4004137 4004111 |4004149|4004100|4004126|4004100 |4004165
93-1 88-1 39-1A 49-1 26-1 51-1 07-1
Methane Number 85 105 85 60 85 60 97

CRC Proposed

Targets | \yobbe Index (BTUAR) | 1225 | 1330 | 1330 | 1330 | 1425 | 1425 | 1345
Based on Methane Number | 85.06 | 105.66 | 8523 | 60.02 | 84.96 | 60.06 | 96.89
AirGas

Certification | Wobbe Index (BTU/ft3) | 1228 1337 1338 1328 1406 1428 1344
% Vol) | % Vol) | (% Vol) | (%Vol) | (% Vol) | (% Vol) | (% Vol)

Methane CH4 94.270% (98.810% | 92.510% | 75.000% | 94.710% | 77.790% | 96.680%
Ethane C2H6 0.000% | 0.000% | 0.000% |10.500% | 0.000% |13.900% | 2.218%
Propane C3H8 0.000% | 0.000% | 4.352% | 4.000% | 5.295% | 4.001% | 0.000%
Butane C4H10 0.000% | 0.000% | 0.000% | 1.999% | 0.000% | 1.500% | 0.000%
Pentane C5H12 0.000% | 0.000% | 0.000% | 0.501% | 0.000% | 0.503% | 0.000%
Hexane C6+ 0.000% | 0.000% [ 0.000% | 0.000% | 0.000% | 0.000% | 0.000%
Oxygen 02 1.016% | 0.000% | 0.485% | 1.000% | 0.000% | 0.000% | 0.000%
Nitrogen N2 0.000% | 0.702% | 1.987% | 4.700% | 0.000% | 0.000% | 0.000%
Carbon Dioxide CO2 4.716% | 0.489% | 0.666% | 2.300% | 0.000% | 2.303% | 1.103%
H/C Ratio 3.809 3.980 3.811 3.485 3.808 3.486 3.913

O/C Ratio 0.116 0.010 0.022 0.055 0.000 0.036 0.022

Stoich A/F Ratio 14.725 | 16.720 | 15.979 | 14.509 | 16.948 | 15.843 | 16.609

HHV (BTU/#t®) 956.3 | 1002.3 | 1048.7 | 11354 | 1094.9 | 1208.3 | 1020.2

Specific Gravity 0.606 0.562 0.615 0.731 0.606 0.716 0.576

Independent verification of the supplier’s measured gas constituents was performed by Empact
Analytical using gas chromatography per ASTM D1945-10. The sample preparation method was done by
connecting a vacuum evacuated 300cc cylinder to the gas bottle, drawing a vacuum on the connection,
then charging the 300cc cylinder to full bottle pressure of approximately 1800 PSIG. The sample
collection method minimized contamination from atmospheric air and if there was contamination it
would be a much smaller percent of the total mass. Results from Empact Analytical closely matched the
target fuel blends as shown in Table 9 below. In addition they are nearly identical to the certifications

provided by the gas supplier.
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Table 9. Empact Analytical Certification Analysis vs. Target CNG Blends
Fuel # 1 2 3 4 5 6 7
Empact Analvstical Report # 201410212014102]2014102(2014102(2014102|2014102|2014102
P yS P 2.04 | 206 | 2005 | 2:02 | 201 | 203 | 207
Methane Number 85 105 85 60 85 60 97

CRC Proposed
Targets 3
Wobbe Index (BTU/t) | 1225 1330 1330 1330 1425 1425 1345

Based on Methane Number 84.96 | 105.48 | 85.37 60.32 85.05 60.07 96.83

Empact
Certification | Wobbe Index (BTU/ft3)| 1228 1335 1338 1324 1405 1427 1343

@ Vol) | (% Vol) | % Vol) | (% Vol) | (% Vol) | @ Vol) | (% Vol

Methane CH4 94.230% (98.760% | 92.610% | 75.120% | 94.710% | 77.830% | 96.650%
Ethane C2H6 0.000% | 0.000% | 0.000% |10.420% | 0.000% |13.820% | 2.210%
Propane C3H8 0.000% | 0.000% | 4.290% | 3.980% | 5.270% | 4.010% | 0.000%
Butane C4H10 0.000% | 0.000% | 0.000% | 1.950% | 0.000% | 1.510% | 0.000%
Pentane C5H12 0.000% | 0.000% | 0.000% | 0.450% | 0.000% | 0.500% | 0.000%
Hexane C6+ 0.000% | 0.000% | 0.000% | 0.000% | 0.000% | 0.000% | 0.000%
Oxygen 02 1.010% | 0.000% | 0.470% | 1.010% | 0.010% | 0.000% | 0.000%
Nitrogen N2 0.020% | 0.720% | 1.930% | 4.760% | 0.010% | 0.010% | 0.020%
Carbon Dioxide CO2 4.740% | 0.520% [ 0.690% | 2.300% | 0.000% | 2.310% | 1.120%
H/C Ratio 3.808 3.979 3.812 3.491 3.809 3.486 3.913

O/C Ratio 0.116 0.010 0.022 0.055 0.000 0.036 0.022

Stoich A/F Ratio 14713 | 16.701 | 15.991 | 14.493 | 16.942 | 15.839 | 16.596

HHV (BTU/#t®) 955.9 | 1001.8 | 1048.1 | 1131.0 | 1094.3 | 1207.7 | 1019.8

Specific Gravity 0.606 0.563 0.614 0.729 0.606 0.716 0.576

The AirGas chromatography targets and measured results were within 4.8% for hydrocarbon
based constituents, and within 1.6% for non-hydrocarbon based constituents. The Empact Analytical
results fell within 10% of the target values for the hydrocarbon constituents and within 6% for the non-
hydrocarbon constituents. Fuel properties for emissions calculations were based on EPA 40CFR600.113
to determine the carbon weight fraction for the total natural gas blend, hydrocarbon specific carbon
weight fraction, CO, weight fraction, and non-methane hydrocarbon weight fraction based on the
AirGas certification values. This report’s emissions calculations were also based on the AirGas

certification reports.
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5.0 Test Results Organization

Over 42 LA-92 exhaust emissions tests were performed for the study. The test results reside in a
master dataset in Microsoft Excel® format. This master dataset is also illustrated in Appendices 5-20 of
this report showing weighted and per-phase bag, engine-out, and tailpipe emissions in bar charts. To aid
in visualization and understanding of data scatterplots, series sets have different symbols per fuel type
as shown in Figure 30.

Key to Symbols for Fuel Type

A O - X o H +

CNGO1 CNGO2 CNGO3 CNG04 CNGO5 CNGO06 CNGO7

Figure 30. Key to Symbols for Fuel Type

6.0 LA-92 Exhaust Emissions Test Results, Plots, and Data Summaries

In this report, “Bag” emissions refers to the diluted exhaust emissions captured in bags and
corrected for ambient background. The ambient sample was also simultaneously collected in bags from
the test cell room. Bag emissions are therefore the post-catalyst emissions from the vehicle. Bag results
are most accurate for mass emissions determination, and were used for the statistical analysis and to
draw most conclusions.

“Engine” or “Engine-Out” designates modal emissions exhausted directly from the engine, with
the sample being drawn continuously and upstream of the catalysts. “Tailpipe” modal results pertain to
emissions downstream of all catalysts but prior to exhaust dilution. Unlike discrete batch-analyzed
“Bag” emissions, both “Engine-Out” and “Tailpipe” modal emissions were sampled continuously and
provided information about the time to catalyst light-off and catalyst conversion efficiency.

“Weighted” emissions were determined using results from the three phases of the LA92 cycle.
The formula for weighting was the same as the FTP75, taking actual mileage from each phase of the
LA92 cycle into account.

In the figures presented, “THC” and “HC” designations are used interchangeably and represent
the total hydrocarbons measured using a flame ionization detector.

Natural gas fuel economy was calculated as MPGe (miles per gasoline gallon equivalent) based
on EPA 40CFR600.113-12(k)(1) per the equation (4) below using the fuel properties shown in Section
4.0.

CWFHC/NGXDNGX121-5

MPGe =
(0.749XCH,)+ (CWF N MucXNMHC)+(0.429xC0)+(0.273X(CO,—CO2n6))

(4)
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Where:

MPGe = miles per gasoline gallon equivalent of natural gas.

CWF/ng = carbon weight fraction based on the hydrocarbon constituents in the natural gas fuel.
Due = density of the natural gas fuel [grams/ft>at 20 °C and 760 mmHg].

CH,4, NMHC, CO, and CO, = weighted mass exhaust emissions [grams/mile] for methane, non-methane
hydrocarbons, carbon monoxide, and carbon dioxide.

CWFymnc = carbon weight fraction of the non-methane hydrocarbon constituents in the fuel as
determined from the speciated fuel composition.

CO,ng = grams of carbon dioxide in the natural gas fuel consumed per mile of travel.
6.1 Vehicle A Results

Vehicle A was the only dedicated NGV of the test group and did not have an evaporative
emissions system. Therefore there were no special considerations needed for canister preconditioning
during the soak period prior to the emissions test. Fourteen LA92 3-bag emissions tests were performed
with bag-weighted (post-catalyst) results shown below in Table 10. Tests performed on the same fuel
show good repeatability for all emissions measurements. Fuel economy changed significantly between
fuels with the lowest value of 25.94 MPGe on CNGO1 and the highest of 34.39 MPGe on CNGO6. Fuel
economy was found to be proportional to the Wobbe Index, as expected. Bag-weighted THC were
below 0.0180 g/mi for all tests and bag-weighted NOx was nearly zero. CO fell between 0.255 g/mi and
0.354 g/mi.
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Table 10. Vehicle A LA92 Post-Catalyst Bag-Weighted Emissions Results

Test Weighted Summary

Date Number Fuel BAG HC[BAG CO|BAG CO2|BAG NOx|BAG CH4|BAG N-CH4| BAG FE
Vehicle A (g/mi) | (g/mi) | (g/mi) | (g/mi) | (g/mi) (g/mi) (MPGe)
10/24/2014 3119919 | CRC_CNGO1 | 0.018 | 0.295 | 230.900 | 0.004 0.017 0.002 26.030
10/29/2014 3120008 | CRC_CNGO1 | 0.011 | 0.314 | 231.630 | 0.001 0.010 0.001 25.940
11/6/2014 3120196 | CRC_CNGO02 | 0.012 | 0.264 | 220.780 | 0.002 0.011 0.002 28.200
11/11/2014 3120305 | CRC_CNGO2 | 0.011 | 0.339 | 220.860 | 0.003 0.011 0.001 28.180
10/27/2014 3119966 | CRC_CNGO3 | 0.015 | 0.309 | 221.750 | 0.002 0.014 0.002 30.010
10/31/2014 3120066 | CRC_CNGO3 | 0.010 | 0.285 | 224.790 | 0.002 0.009 0.002 29.610
11/3/2014 3120102 | CRC_CNGO4 | 0.009 | 0.277 | 236.170 | 0.002 0.007 0.002 31.780
11/12/2014 3120347 | CRC_CNGO4 | 0.011 | 0.324 | 236.180 | 0.000 0.008 0.003 31.770
11/4/2014 3120122 | CRC_CNGO5 | 0.010 | 0.255 | 223.460 | 0.002 0.009 0.002 31.160
11/10/2014 3120272 | CRC_CNGO5 | 0.012 | 0.307 | 226.640 | 0.003 0.010 0.002 30.710
11/5/2014 3120155 | CRC_CNGO6 | 0.009 | 0.310 | 232.230 | 0.002 0.007 0.003 34.390
11/7/2014 3120216 | CRC_CNGO6 | 0.009 | 0.354 | 234.720 | 0.002 0.007 0.003 34.010
10/28/2014 3119987 | CRC_CNGO7 | 0.011 | 0.347 | 229.390 | 0.002 0.010 0.002 27.810
10/30/2014 3120045 | CRC_CNGO7 | 0.011 | 0.302 | 221.670 | 0.002 0.011 0.001 28.790

Post-catalyst bag NOx emissions were at very low levels, varying between zero (below detection
limit) and 4 mg/mile. The engine-out NOx varied between fuels. The catalyst NOx conversion efficiency
fell between 99.9% and 100% indicating accurate fueling and a well-developed control strategy. An
increasing trend was seen in engine-out NOx when compared to the fuel’s total NMHC concentration as
shown in Figure 31.

Vehicle A
Fuel NMHC Concentration (%) vs.
Engine Out Weighted NOXx (g/mi)
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Figure 31. Vehicle A Fuel NMHC % Concentration vs. Engine-Out-Weighted NOx
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Differences were seen in NMHC emissions during Phase 1 which encompassed the cold start.
CNGO1 and CNGO2 fuels did not contain any NMHC and showed near zero NMHC emissions. Fuel CNG04
and CNGO6 had the highest concentration of NMHC (17.0% and 19.9% respectively) and had
correspondingly higher NMHC emissions during Phase 1. Figure 32 below shows a linear trend with
increasing fuel NMHC percentage as there was an increase in Phase 1 NMHC emissions.

Vehicle A
Fuel NMHC Content (%) vs. Phase 1 NMHC (g/mi)
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Figure 32. Vehicle A Fuel NMHC Content vs. Phase 1 Bag NMHC

6.2 Vehicle B Results

Vehicle B had a bi-fuel system with dedicated CNG and gasoline fuel systems. An evaporative
emissions charcoal canister was fitted to the vehicle which was purged prior to every emissions test to
mitigate any influence in emissions due to canister purge events. Purge flow rate was recorded to
identify when the system was commanding the canister purge valve to open. The purge volume
recorded for all tests with Vehicle B were below 1.0 ft>.

Fourteen LA92 3-bag emissions tests were performed with bag-weighted results shown below in
Table 11. Tests performed on the same fuel showed good repeatability for all emissions measurements.
Fuel economy changed between fuels with the lowest value of 28.39 MPGe on CNGO1 and the highest of
38.24 MPGe on CNGO6. Bag-weighted THC were below 0.047 g/mi for all tests and bag-weighted NOx
was had a maximum of 0.060 g/mi. CO fell between 0.255 g/mi and 0.354 g/mi.
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Table 11. Vehicle B LA92 Post-Catalyst Bag-Weighted Emissions Results
Test Weighted Summary
Date Number Fuel BAG HC[BAG CO|BAG CO2|BAG NOx|BAG CH4|BAG N-CH4| BAG FE
Vehicle B (g/mi) | (g/mi) | (g/mi) [ (g/mi) | (g/mi) (g/mi) (MPGe)
10/24/2014 | 3119916* | CRC_CNGO1 | 0.047 | 0.182 | 211.740 | 0.051 0.032 0.017 28.390
10/29/2014 3120018 | CRC_CNGO1 | 0.039 | 0.093 | 207.340 | 0.033 0.040 0.002 29.010
11/6/2014 3120187 | CRC_CNGO02 | 0.039 | 0.087 | 199.820 [ 0.030 0.040 0.002 31.190
11/11/2014 3120303 | CRC_CNGO02 | 0.040 | 0.072 | 198.800 | 0.040 0.042 0.001 31.350
10/27/2014 | 3119964* | CRC_CNGO3 | 0.043 | 0.163 | 205.020 | 0.060 0.027 0.018 32.480
10/31/2014 3120071 CRC_CNGO3 | 0.041 0.083 | 199.580 0.042 0.041 0.002 33.380
11/4/2014 3120114 | CRC_CNGO04 | 0.026 | 0.091 | 209.730 | 0.027 0.025 0.003 35.820
11/12/2014 3120343 | CRC_CNGO04 | 0.027 | 0.112 | 213.990 | 0.022 0.025 0.004 35.100
11/10/2014 3120270 | CRC_CNGO5 | 0.035 | 0.084 | 199.470 | 0.032 0.034 0.004 34.940
11/13/2014 | 3120367* | CRC_CNGO5 | 0.038 | 0.132 | 208.540 | 0.027 0.022 0.017 33.410
11/5/2014 3120158 CRC_CNGO6 | 0.028 0.097 | 209.930 0.036 0.025 0.005 38.080
11/7/2014 3120221 | CRC_CNGO6 | 0.027 | 0.103 | 209.060 | 0.036 0.024 0.005 38.240
10/28/2014 | 3119985* | CRC_CNGO7 | 0.044 | 0.169 | 205.870 | 0.033 0.028 0.018 31.020
11/14/2014 | 3120391* | CRC_CNGO7 | 0.040 | 0.151 | 207.030 | 0.032 0.025 0.017 30.850

*Tests with cold start operation on gasoline for first 160 seconds during Phase 1

Figure 33 below shows Phase 1 NMHC for Vehicle B. Five out of the fourteen tests had NMHC

emissions above 0.05 g/mi during Phase 1. Correspondingly the instantaneous CNG flow measurement
using the Coriolis meter was zero for the first 160 seconds of these tests. An example for Test
#31120391 is shown in Figure 34 and indicates gasoline operation for the first 160 seconds of this test.
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Figure 33. Vehicle B Phase 1 Bag NMHC (g/mi)
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Figure 34. Vehicle B CNGO07_run2 (Gasoline Cold Start)

Documentation provided for Vehicle B indicated that the control system uses gasoline if the
ambient temperature is below -10°C for cold start operation. It is undetermined what parameter(s) are
used for gasoline operation during cold starts at 74°F ambient temperature used for these tests, but it is
apparent the control system used gasoline under certain operating conditions. The gasoline fuel use on
start-up was part of the vehicle’s control strategy, and could not be readily defeated by SGS during the
testing program. The gasoline fuel use is therefore a confounding factor for some tests for this vehicle.
Statistical analysis of the results presented later in this report excluded the tests with gasoline operation
during the cold start for Vehicle B.

6.3 Vehicle C Results

Vehicle C had a bi-fuel system with dedicated CNG and gasoline fuel systems. An evaporative
emissions charcoal canister was fitted to the vehicle which was purged prior to every emissions test to
mitigate any influence in emissions due to canister purge events. Purge flow rate was recorded to
identify when the system was commanding the canister purge valve to open. The purge volume
recorded for all tests with Vehicle C varied between a total of 6.2-16.98 ft’.

The injection control strategy for Vehicle C consisted of gasoline operation while on CNG to help
purge the gasoline injectors at predetermined intervals during a drive cycle to keep the fuel fresh. The
manufacturer of Vehicle C provided a modified calibration to disable the periodic gasoline injection to
eliminate influence on LA92 emissions test results with OBD scans provided in Appendix 12.3 showing
the calibration identification numbers.

Fourteen LA92 3-bag emissions tests were performed with bag-weighted results shown below in
Table 12. Tests performed on the same fuel showed good repeatability for all emissions measurements.
Fuel economy changed between fuels with the lowest value of 8.79 MPGe on CNGO1 and the highest of
11.53 MPGe on CNGO6. Bag-weighted THC were below 0.146 g/mi for all tests and bag-weighted NOx
had a maximum of 0.259 g/mi. CO fell between 0.369 g/mi and 0.871 g/mi.
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Table 12. Vehicle C LA92 Post-Catalyst Bag-Weighted Emissions Results

Test Weighted Summary

Date Number Fuel BAG HC|BAG CO|BAG CO2|BAG NOx|BAG CH4 |BAG N-CH4| BAG FE
Vehicle C (g/mi) | (g/mi) | (g/mi) | (g/mi) | (g/mi) (g/mi) (MPGe)
11/14/2014 3120386 | CRC_CNGO1 | 0.146 | 0.369 | 684.500 | 0.259 0.152 0.003 8.790
10/29/2014 3120013 | CRC_CNGO1 | 0.133 | 0.388 | 678.810 | 0.157 0.138 0.004 8.860
11/6/2014 3120191 | CRC_CNGO02 | 0.121 | 0.392 | 653.380 | 0.051 0.125 0.004 9.540
11/25/2014 3120572 | CRC_CNGO02 | 0.127 | 0.550 | 649.520 | 0.049 0.131 0.006 9.590
10/27/2014 3119960 | CRC_CNGO3 | 0.130 | 0.871 | 663.430 | 0.068 0.128 0.010 10.030
10/31/2014 3120069 | CRC_CNGO3 | 0.110 | 0.425 | 663.140 | 0.050 0.110 0.007 10.040
11/3/2014 3120096 | CRC_CNGO4 | 0.086 | 0.410 | 683.860 | 0.084 0.076 0.015 10.980
11/21/2014 3120529 | CRC_CNGO4 | 0.092 | 0.458 | 688.300 | 0.138 0.079 0.018 10.910
11/4/2014 3120121 | CRC_CNGO5 | 0.119 | 0.839 | 651.890 | 0.062 0.119 0.009 10.680
11/11/2014 3120295 | CRC_CNGO5 | 0.111 | 0.466 | 658.910 | 0.071 0.110 0.008 10.570
11/5/2014 3120148 | CRC_CNGO6 | 0.086 | 0.866 | 692.770 | 0.041 0.072 0.019 11.530
11/7/2014 3120218 | CRC_CNGO6 | 0.081 | 0.464 | 694.750 | 0.046 0.068 0.017 11.500
10/28/2014 3119982 | CRC_CNGO7 | 0.126 | 0.681 | 660.090 | 0.051 0.128 0.006 9.670
10/30/2014 3120044 | CRC_CNGO7 | 0.125 | 0.839 | 656.140 | 0.045 0.128 0.005 9.720

Overall the mass emissions from Vehicle C were higher than the other vehicles as expected for
this heavier class vehicle. Differences were seen in NMHC emissions during Phase 1 which encompassed
the cold start. Fuels CNGO1 and CNGO2 did not contain any NMHC and had near zero NMHC emissions in
the exhaust. Fuels CNG04 and CNGO6 had the highest concentration of NMHC (17.0% and 19.9%
respectively) and had correspondingly higher NMHC during Phase 1. Figure 35 below shows a linear
trend with increasing fuel NMHC percentage and Phase 1 NMHC emissions.

Vehicle C
Fuel NMHC Content (%) vs. Phase 1 NMHC (g/mi)
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Figure 35. Vehicle C Fuel NMHC Content vs. Phase 1 Bag NMHC
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6.4 Vehicle Comparison

To gain a better understanding of the fuel effects, the vehicles are further compared by using
modal data, bag data, and other measurements in this section. The data can be used to determine the
degree the fuel affected the engine-out emissions and catalyst conversion efficiency.

The stoichiometric air/fuel ratio (volume based) was calculated by taking the mass based Stoich
A/F ratio and multiplying it by the fuel’s specific gravity. The volume based Stoich A/F ratio versus the
bag-weighted fuel economy is shown in Figure 36. The 42 data points for all emissions tests exhibited a
strong increasing trend in MPGe with higher volume based Stoich A/F. As less fuel volume was required
to achieve stoichiometric combustion, higher fuel economy was achieved.

Bag Weighted FE vs. Volume Based Stoich A/F
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Figure 36. Bag-Weighted FE vs. Volume Based Stoichiometric A/F

With decreasing fuel energy density there was an increase in average mass fuel flow required as
shown in Figure 37. As energy content decreased, more fuel mass was required to maintain the same
power level to drive the LA92 cycle. The five tests on Vehicle B showed the lowest average CNG mass
fuel flow since the first 160 seconds of the test replace CNG flow with gasoline fuel flow.
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Fuel Energy Density vs. Average CNG Mass Fuel
Flow
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Figure 37. Fuel Energy Density vs. Average CNG Mass Fuel Flow

A data quality check comparing the Coriolis flow meter integrated volume fuel flow to the bag-
weighted fuel economy is shown below in Figure 38. A linear trend was observed in this comparison and
also highlighted the five Vehicle B tests (purple series) which operated on gasoline during the first 160
seconds of the cold start of Phase 1.

Bag Weighted FE vs. Total Fuel Consumed
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Figure 38. Bag-Weighted MPGe vs. Total Fuel Consumed (SCF)
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Figure 39 illustrates that all vehicles had linear trends in Phase 1 NMHC emissions versus the
total NMHC content percentage in the fuel. Vehicle B had five tests with NMHC greater than 0.02 g/mi
corresponding to the first 160 seconds of Phase 1 operation on gasoline, circled in red.

Fuel NMHC Content vs. Phase 1 NMHC
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Figure 39. Fuel NMHC Content (%) vs. Phase 1 Bag NMHC (g/mi) for all vehicles

Total canister purge volume for the two bi-fuel vehicles is shown below in Figure 40. The
canisters were fully purged prior to emissions testing and the purge volume shown accounts for
additional fresh air entering the engine. Purging the canister eliminated any emissions influence of
gasoline vapors entering the engine while testing on CNG. Vehicle B had very low purge volume
commanded over the LA92 drive cycle. Vehicle C commanded purge events were much more frequent
with total volume between 6.2 ft* and 16.98 ft°.
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Figure 40. Bi-Fuel Vehicle Total Canister Purge Volume

A comparison of the NOx conversion efficiency is shown below in Figure 41 including engine-out
NOx and bag-weighted NOx in grams per mile. Vehicle A demonstrated very good NOx conversion
efficiency performance with the lowest value of 99.89% on CNGO1. Both Vehicle B and Vehicle C
exhibited lower NOx conversion efficiency on CNG0O1 compared to the other fuels.

Overall Vehicle A had the highest NOx conversion efficiency out of the group even though the
engine-out NOx emissions were higher than Vehicle B’s. The highest engine-out NOx was produced with
fuel CNGO6 for all vehicles which has the lowest methane number (60.07) and highest Wobbe Index
(1427.46 BTU/ft). Although cylinder pressure data was not captured for the emissions tests, it follows
that the higher the Wobbe Index fuels should result in higher combustion temperatures that are a key
contributor to in-cylinder NOx formation.
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Figure 41. NOx Conversion Efficiency for All Vehicles

Vehicle B produced the lowest weighted composite engine-out CO and best overall CO
conversion efficiency out of the group as shown below in Figure 42. The five tests where Vehicle B ran
the first 160 seconds of Phase 1 on gasoline produced slightly lower composite CO conversion efficiency
below 98.6% (CNG01_runl, CNGO3_runl, CNG0O5_ runl, CNGO7_runl, and CNGO7_run2) compared to
the other tests. Vehicle A’s CO conversion efficiency consistently fell between 96.87 to 97.54%. Vehicle
C’s tests show consistency with lower engine-out CO on fuels CNG0O1 and CNGO02 which did not have any

NMHC constituents in the fuel.
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Figure 42. CO Conversion Efficiency for All Vehicles

Vehicle A did not have less than 98.43% weighted THC conversion efficiency as shown in Figure

43, whereas the overall average for Vehicle B and Vehicle C were as low as 95.7% and 93.59%

respectively. The five tests where Vehicle B ran the first 160 seconds of Phase 1 on gasoline show on
average 17% higher weighted THC emissions than the tests ran only with CNG. All vehicles had the

lowest engine-out THC emissions on fuels CNG04 and CNGO6 which are the two lowest MN fuels and
have the highest NMHC concentrations (17% and 20%).
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Figure 43. THC Conversion Efficiency for All Vehicles

All hydrocarbon related emissions had increasing relationships to MN and decreasing
relationships to Wobbe Index as shown in Figure 44. The exceptions were the five tests ran on Vehicle B
which operated on gasoline for the first 160 seconds of the test and are isolated as a separate series on
the charts. For all vehicles an increasing trend was observed in bag-weighted THC as MN increased, and
a decreasing relationship with Wobbe Index. All vehicles indicate NMHC decreased with higher MN. The
methane emissions increased with higher MN and decreased with higher Wobbe Index.
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Figure 44. THC, NMHC, and CH, Emissions vs. MN and Wobbe Index

Bag-weighted NOx, CO, CO,, and FE are shown below in Figure 45. Both Vehicle A and Vehicle B
were nearly insensitive to MN and Wobbe Index related to NOx and CO post-catalyst. Vehicle C
exhibited a strong decreasing trend in NOx as Wobbe Index increased. Engine-out NOx from Vehicle C
increased with increasing Wobbe Index, which indicated the catalyst conversion efficiency was a key
contributor to the higher bag NOx with lower Wobbe Index. CO, and FE trended with MN and Wobbe
Index expected, since higher Wobbe Index fuels have higher energy density and require less fuel to

achieve the same power level.
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Figure 45. NOx, CO, CO,, and FE vs. MN and Wobbe Index
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Below in Figure 46 are bag-weighted THC, NOx, and CO trends for each vehicle including the
conversion efficiency for each constituent. For all vehicles, bag and engine-out-weighted THC decreased
with higher Wobbe Index with corresponding increases in THC conversion efficiency with higher Wobbe
Index. NOx had a decreasing trend with Wobbe Index for Vehicle C, whereas Vehicle A and Vehicle B
were insensitive. Increasing trends in weighted engine-out NOx are seen as Wobbe Index increased for
all vehicles. Vehicle C showed sensitivity to NOx conversion efficiency with varying Wobbe Index fuels.
As Wobbe Index increased, Vehicle C showed sensitivity to bag-weighted CO. For all vehicles engine-out-
weighted CO had increasing trends with increasing Wobbe Index. CO conversion efficiency appeared
insensitive for Vehicles A and B, with some differences seen for Vehicle C.
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Exhaust gas temperatures at the engine-out location are plotted for the first 100 seconds of the
LA92 in Figure 47 below. Vehicle A and Vehicle C had consistent engine-out exhaust gas temperature for
all tests whereas Vehicle B has a wider spread between tests. Where Vehicle B performed tests
operating on gasoline for the cold start portion of Phase 1, the exhaust gas temperature exceeded 850°F
before 40 seconds elapsed. Also, tests on CNG06 with the highest Wobbe Index of 1427.46 BTU/ft* show
the lowest EGTs from 20 to 100 seconds for Vehicle B.
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Figure 47. Engine-Out EGT during 1* 100 Seconds of LA92
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Figure 48 shows engine-out exhaust gas temperature 40 seconds into the LA92 drive cycle.
Linear trends were seen with a decrease in exhaust gas temperature as the fuel NMHC content
increased. Since fuels with higher NMHC content generally have higher Wobbe Index, it follows that
lower exhaust temperature corresponds to more of the fuel’s energy being converted into mechanical
energy with better fuel economy.
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Figure 48. Engine-Out EGT at 40 Seconds vs. Fuel NMHC Percentage

Higher volume fuel flow corresponded to higher exhaust gas temperatures at 40 seconds into
the LA92 as shown below in Figure 49. The tests where Vehicle B started on gasoline are grouped
together with higher engine-out exhaust gas temperature at 40 seconds into the LA92 (purple series).
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Figure 49. Engine-Out EGT at 40 Seconds vs. Total Volume Fuel Flow
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Engine-out-weighted CO, NOx, and THC emissions are displayed below in Figure 50 along with
bag-weighted emissions. As engine-out CO increased NOx also increased for all vehicles. Bag-weighted
CO results had a strong hook for Vehicle C’'s data at 0.4 g/mi of CO showing increasing NOx. With
increasing engine-out THC there was a decrease in NOx for all vehicles. Post-catalyst there was the
opposite trend showing increased THC emissions with increasing NOx emissions. Comparing engine-out
THC versus CO, a decreasing trend in NOx was observed with increasing THC. Lastly, the bag-weighted
THC and bag-weighted CO only exhibited a strong linear relationship for Vehicle B.
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Figure 50. Engine-Out and Bag-Weighted Emissions Comparison
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A comparison of engine-out lambda versus time for all three vehicles and all tests is shown in
Figure 51. Vehicle A exhibited instances of DFCO (deceleration fuel cut-off) during Phases 2 and 3 of the
LA92 drive cycle where lambda was greater than 1.10. At the cold start portion of Phase 1, Vehicle A
showed fueling varied between tests from zero to five percent lean (stoich to 5% excess air). Vehicle B
showed fueling at the cold start of Phase 1 to be from zero to fifteen percent lean (stoich to 15% excess
air), and the only vehicle with instances of DFCO during Phase 1. All of the Phase 3 hot starts for Vehicle
B are fueled five to six percent lean for the first fifteen seconds for all tests. This was an indication that
Vehicle B has an offset in adaptive learned fuel trims for hot start fueling, and then maintains lean
fueling at idle until the lambda sensor becomes active for closed loop operation. Vehicle C showed
consistent fueling at the cold start of Phase 1 with minimal lean excursions and had its highest frequency
of deceleration fuel cut occurring during Phase 2.
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Figure 51. Lambda vs. Time for All Vehicles
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Some emissions trends for Vehicle B and Vehicle C were unexpected, because the highest mass
emissions (in g/mile) were not produced during the phase 1 cold start, but rather were produced after
the initial catalyst light-off. The fueling strategies for both of these vehicles can be closely tied to
characteristics of the emissions results. The lean operation of Vehicle B during the Phase 3 hot start
corresponds to higher engine-out and tailpipe NOx, in addition to the DFCO events producing tailpipe
NOx spikes.

The continuous engine-out and tailpipe measurements were further investigated for Vehicle B
to analyze the differences in bag NOx results. During Phase 3, fueling differences were seen between
CNGO1_run2 and CNGO03_runl as shown below in Figure 52. When the engine-out lambda measurement
steps towards lean operation this is an indication of deceleration fuel cut-off (DFCO). CNGO3_runl
showed an instance of DFCO just after 1550 seconds with a corresponding increase in engine-out NOx
starting at 1555 seconds followed by a spike in tailpipe NOx. As illustrated in Figure 53 bag NOx results
from CNGO3_run1 had higher engine-out and bag NOx during Phase 3. A decrease in catalyst conversion
efficiency was also observed for this test.

Vehicle B LA92 Engine Out NOx, TP NOx, Lambda Phase 3
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Figure 52. Vehicle B LA92 Engine-Out NOx, Tailpipe NOx, Lambda Phase 3

54



EFFECT OF FUEL COMPOSITION ON THE EMISSION AND PERFORMANCE OF MODERN, LIGHT-DUTY

NATURAL GAS VEHICLES CRC E-109
Vehicle B LA92 EO NOx Vehicle B LA92 Bag NOx Vehicle B LA92 Catalyst Conversion
35 — 05 Efficiency
3 5 5o 0.45
5N - ~ g PR 04 105 &8 e
25 = il ~ 035 g a A&
03 ] 14— 22 &35
2 [a] = —
0.25 e .=
15 WCNGO1_fun2 0.2 pad = HCNGO1_run2 095 1
1 0.15 ~ el @ CNGO1_run2
EWCNGO3_runl P m 5 ECNGO3_runl
05 D(?ﬂ; § g a1 09 HCNGO3_runl
0 0 e 085
EO Nox Ph1 EO NOx Ph2 |EO NOx Ph3 EO NOx Bag Nox Phl Bag NOx Ph2| Bag NOx Ph3| Bag NOx Cat E Ph1 CatEPh2 CatEPh3 CatE
e/mi) {g/mi) (g/mi) | weighted /mi)  (/mi | (e/mi) | weighted (%) %) %) | weighted
" (g/mi) (g/mi) (%)

Figure 53. Vehicle B NOx by Phase Comparison for CNGO1 and CNGO3 Fuels

INCA data from CNGO1_run2 and CNGO3_runl is overlaid and shown below in Figure 54
corresponding to the charts shown above. The DFCO event described in Figure 52 is captured in the
INCA data shown below. The variable fuelAirCommandedEquivalenceRatio goes to a value of 1.99882
when the engine controller turns off fuel injection during CNG03_runl. The event is following a brief rise
in engine RPM prior to the acceleration event while the driver was releasing the clutch pedal. With too
much throttle application the engine speed was higher than desired for a smooth takeoff. To bring the
engine speed down, the driver let off the throttle and the controller cut fuel to decrease engine speed.
Although there was the same driver for both tests, slight differences in throttle application resulted in
different engine RPM/fuel cut results contributing to measureable differences in emissions.
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Figure 54. Vehicle B LA92 CNGO01_run2 vs. CNGO3_runl INCA Overlay

The continuous engine-out and tailpipe NOx measurements during Phase 2 are shown below for
Vehicle C in Figure 55 for tests CNGO1_runl and CNGO7_runl. Fueling differences were seen at 450
seconds where CNGO1_runl engine-out lambda indicates a DFCO event. Following the DFCO, a tailpipe
NOx spike occurred. Figure 56 shows the bag NOx, engine-out NOx, and NOx catalyst efficiency results
with Phase 2 highlighted in red. Whereas the engine-out NOx emissions are comparable for the two
fuels, there is clearly poorer catalyst conversion efficiency for the CNGO1 fuel.
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Figure 55. Vehicle C LA92 Engine-Out NOx, Tailpipe NOx, Lambda Phase 3
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Figure 56. Vehicle C NOx by Phase Comparison for CNG01 and CNGO7 Fuels

The continuous engine-out and tailpipe NOx measurements during Phase 1 are shown below for
Vehicle A in Figure 57 for tests CNGO1_runl and CNGO7_runl. At 365 seconds both tests show a 5
second DFCO event followed by a tailpipe NOx spike. The difference for Vehicle A is that the NOx spike
was always less than 100ppm. Slight fueling differences were seen at 387 seconds where CNGO7_runl
engine-out lambda indicated an additional DFCO event whereas CNGO1 _runl did not. Following the
DFCO for both cases, a tailpipe NOx spike did not occur. After the DFCO event the fueling returned to
approximately 3-5% rich of stoich. Figure 58 shows the bag NOx, engine-out NOx, and NOx catalyst
efficiency results with both tests having near 100% NOx conversion. Engine-out NOx increased over each
phase but post-catalyst NOx continued to decrease over each phase.
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Figure 57. Vehicle A LA92 Engine-Out NOXx, Tailpipe NOx, Lambda Phase 1
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Figure 58. Vehicle A NOx by Phase Comparison
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7.0 Statistical Analysis
7.1 Statistical Analysis of Vehicles Pooled Together

A statistical analysis was performed to determine if the fuel effects on emissions results discussed
in Section 6.0 were statistically significant. The independent variable, or factor for the analysis, was fuel
blend (each having a different methane number and Wobbe Index). The dependent variables, or
responses of most interest, were gaseous emissions weighted over the LA92 emissions cycle. Weighted
certification-quality bag emissions were the measure of most importance, due to the implication of fuel
effects on real world emissions.

The test plan called for testing fuels from 60-105 MN, and Wobbe Index from 1225-1425 BTU/ft’
in three late model vehicles (Section 3.1). The order for testing each vehicle and fuel combination was
randomized per Table 6. For a given vehicle-fuel combination, repeat tests were completed after a
preparation cycle on the same fuel to condition the control system prior to the emissions test. Each
vehicle and fuel combination was tested twice. The statistical analysis approach did not include
hypothesis testing for the fuel blend effects on individual vehicle emissions because there were only two
data points for the vehicle-fuel combinations.

The vehicles were pooled together for analysis excluding Vehicle B’s tests with gasoline cold
starts. Mean values for the responses were calculated for the test vehicle fleet for fuels CNG01, CNGO02,
CNGO03, CNGO04, CNGO5, CNGO06, and CNGO7 as shown in Figure 59. A pairwise t-test was used to
determine if the difference in the mean values between two fuels were statistically significant. The
pairing of samples is a form of blocking where the test article (in this case a specific vehicle) is tested
before and after some manipulation (in this case change in fuel blend). By comparing the same vehicle’s
results before and after the fuel change, each vehicle effectively becomes its own control. The pairwise
t-test is statistically powerful because the random between-vehicle variation is eliminated.

The alternative hypothesis was tested for each fuel in matrix format:
H1: Mean of Paired Differences (CNG, fuel — CNG; fuel) not equal to Zero

One case to note in each table is CNGO7 compared to others fuels, as it represents fuel most
abundantly found in North American pipelines per CRC Project No. PC-2-12. The p-values (probability of
falsely concluding the alternative hypothesis) from a two sample, 2-tailed paired t-test are shown in
Table 13 to Table 19. There is (1-pvalue)*100 percent confidence that the mean of the paired
differences is not equal to zero. Values in red text have 295% confidence means are not equal and
values in blue text have 290% confidence that the means are not equal.

From the tables presented below, the percent difference between the mean values are shown
with negative values indicating the mean value is higher for the fuel listed in the column versus the row,
and positive values indicating the mean value is lower for the fuel in the column versus the row. Again
with red values representing 295% confidence that the means are not equal and values in blue text with
290% confidence that the means are not equal.
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Figure 59. Mean Response Values for the Combined Test Vehicle Fleet
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Compared to CNG04, THC emissions were 28.8% higher using CNG02 with greater than 95%
confidence. The NMHC emissions mean values were lower for fuels CNG0O1 and CNG02 compared to the
other fuels which follows as these fuel blends do not contain any NMHC constituents. The mean NMHC
value for CNGO1 and CNGO02 was lower than CNGO6 by over 200% with 90% confidence as indicated by
blue values in Table 14. There was no statistical difference in bag-weighted NOx and CO results
comparing each fuel to each other as shown in Table 16 and Table 17.

Almost every fuel comparison shows a statistical difference mean FE with greater than 90%
confidence, except when comparing CNG07 to CNG02 and CNGO03 as shown in Table 19. These three
fuels had very similar Wobbe Indices that may explain this exception (from Figure 28).

Table 13. Bag THC Pairwise t-Test P-Value Results for the Test Vehicle Fleet

All Vehicles Paired t Test Analysis Bag HC (g/mi)
CNGO01 CNGO02 CNGO03 CNGO04 CNGO05 CNGO06 CNGO7
0.213957 0.152789 0.093514 0.110665 0.088933 0.135079
0.760294  0.042107 0.244164 0.056619 0.847248

0.103615 0.355463 0.079311 0.662848

0.098079 0.482921 0.161373

0.095113  0.195505

0.154447

Summary
0.06928 0.058433 0.06088  0.041583 0.05778 0.04005 0.068175
0.064793 0.052357 0.055263 0.0373 0.053505 0.034547 0.065848
5 6 5 6 5 6 4
Mean Value Percent Difference
CNGO01 CNGO02 CNGO03 CNGO04 CNGO5

15.7% 12.1% 40.0% 16.6% 42.2%
-4.2% 28.8% 1.1% 31.5% -16.7%
31.7% 5.1% 34.2% -12.0%
-38.9% 3.7% -63.9%
30.7% -70.2%
-70.2%

Red values indicate 295% confidence means are not equal
Blue values indicate 290% confidence means are not equal
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Table 14. Bag NMHC Pairwise t-Test P-Value Results for the Test Vehicle Fleet

All Vehicles Paired t Test Analysis Bag NMHC (g/mi)
CNGO01 CNGO02 CNGO03 CNGO04 CNGO05 CNGO06
0.517417 0.146267 0.102525 0.148546  0.098499

0.

0.848661 0.265244 0.

0.

Summary

5 6 5 6
Mean Value Percent Difference
CNGO01 CNGO02 CNGO03 CNGO04 CNGO05

-3.8% -91.0% -208.7% -204.1%

5 6

-247.7%

-83.9% -197.4%  -192.9% -234.9%
-61.7% -59.2% -82.0%

1.5% -12.6%

-14.3%

CNGO7

0.119386 0.068419 0.173498 0.055306 0.426836
0.124025 0.7573  0.087625 0.16106

0.672922 0.13523

0.00244 0.0025333 0.00466 0.0075333 0.00742 0.0084833  0.003525
0.0010922 0.0018683 0.0036936 0.0070744 0.0061157 0.0075558 0.0021884

198219

137325

130678

4

-44.5%
-39.1%
24.4%
53.2%
58.4%
58.4%

Red values indicate 295% confidence means are not equal
Blue values indicate 290% confidence means are not equal
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Table 15. Bag CH, Pairwise t-Test P-Value Results for the Test Vehicle Fleet

All Vehicles Paired t Test Analysis Bag CH4 (g/mi)
CNGO01 CNGO02 CNGO03 CNGO04 CNGO05 CNGO06 CNGO7
0.217715 0.139843 0.091167 0.113333 0.090802 0.140331
0.465631 0.046297 0.078766  0.054124 1.0

0.083131 0.307841 0.078303 0.458663

0.17677 0.200698  0.150801

0.168918  0.169777

0.147671

Summary

0.0716  0.059883 0.06026  0.036483 0.05398 0.033833 0.069275
0.068241 0.054238 0.055309 0.0325 0.055524 0.028979 0.068158
5 6 5 6 5 6 4
Mean Value Percent Difference
CNGO1 CNGO02 CNGO03 CNGO04 CNGO05
16.4% 15.8% 49.0%

52.7% 3.2%

-0.6% 39.1% 9.9% 43.5% -15.7%
39.5% 10.4% 43.9% -15.0%

-48.0% 7.3% -89.9%

37.3% -104.8%

-104.8%

Red values indicate 295% confidence means are not equal
Blue values indicate 290% confidence means are not equal
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Table 16. Bag NOx Pairwise t-Test P-Value Results for the Test Vehicle Fleet

All Vehicles Paired t Test Analysis Bag NOx (g/mi)
CNGO01 CNGO02 CNGO03 CNGO04 CNGO05 CNGO06
0.219631 0.218418 0.285133 0.227309 0.210183

0.304802

Summary

6 5 6
Mean Value Percent Difference

CNGO02 CNGO03 CNGO04 CNGO05
67.8% 63.7% 49.9%

5 5 6

-12.8% -55.6% -12.7% 7.3%
-37.9% 0.1% 17.8%

27.6% 40.4%

17.7%

CNGO7
0.207981
0.303189 0.359102 0.262967 0.399767 0.215561
0.437164 0.567927 0.200074  0.249355

0.263361 0.327385  0.253583

0.430979

0.09062  0.029167 0.0329  0.045383 0.03286 0.02705  0.025025
0.11362 0.022007 0.029586  0.054538 0.032271 0.020033  0.026873

0.21747

4

14.2%
23.9%
44.9%
7.5%
7.5%

Red values indicate 295% confidence means are not equal
Blue values indicate 290% confidence means are not equal
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Table 17. Bag CO Pairwise t-Test P-Value Results for the Test Vehicle Fleet

All Vehicles Paired t Test Analysis Bag CO (g/mi)
CNGO1 CNGO02 CNGO03 CNGO04 CNGO05 CNGO06
0.408696 0.363995 0.173636 0.364945 0.242077
0.538729 0.782175 0.484652 0.357051

0.460779 0.815726  0.136488

0.363397 0.29079

0.330942

Summary
0.29186 0.28398 0.39458 0.2785 0.3999 0.36578
0.1176 0.1841 0.29318 0.15149 0.27303 0.28424
5 6 5 6 5 6
Mean Value Percent Difference
CNGO1 CNGO02 CNGO03 CNG04 CNGO5
2.7% -35.2% 4.6%

-38.9% 1.9% -40.8% -28.8%
29.4% -1.3% 7.3%

-43.6% -31.3%

8.5%

CNGO7
0.162128
0.148357
0.617251
0.152935

0.5477
0.738785

0.5422
0.25987
4

-90.9%
-37.4%
-94.7%
-48.2%
-48.2%

Red values indicate 295% confidence means are not equal

lue values indicate 290% confidence means are not equal
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Table 18. Bag CO, Pairwise t-Test P-Value Results for the Test Vehicle Fleet

All Vehicles Paired t Test Analysis Bag CO2 (g/mi)
CNGO01 CNGO02 CNGO03 CNGO04 CNGO05 CNGO06
0.023142 0.011324 0.037836  0.083743 0.092858

0.077748

Summary
406.636 357.193 394.538 378.038 393.888 378.91
251.255 228.137 245.524 238.864 238.837 244.12
5 6 5 6 5 6
Mean Value Percent Difference
CNGO02 CNGO03 CNGO04 CNGO05
12.2% 3.0% 7.0%

-10.5% -5.8% -10.3% -6.1%
4.2% 0.2% 4.0%

-4.2% -0.2%

3.8%

CNGO7
0.074156
0.0837  0.006046 0.06755 0.021449  0.043516
0.00229 0.405848 0.022656 0.676478

0.045769  0.720035 0.039478

0.079707

0.65407

441.823
249.778
4

-23.7%
-12.0%
-16.9%
-16.6%
-16.69%

Red values indicate 295% confidence means are not equal
Blue values indicate 290% confidence means are not equal

65



EFFECT OF FUEL COMPOSITION ON THE EMISSION AND PERFORMANCE OF MODERN, LIGHT-DUTY
NATURAL GAS VEHICLES CRC E-109

Table 19. Bag FE Pairwise t-Test P-Value Results for the Test Vehicle Fleet

All Vehicles Paired t Test Analysis Bag FE (MPGe)
CNGO01 CNGO02 CNGO03 CNGO04 CNGO05 CNGO06 CNGO7
0.01135 0.014131 0.00907 0.034362 0.012802 0.043028
0.01962 0.002656  0.007205 0.003651  0.598075

0.003975 0.011998 0.011774 0.126221

0.07248 0.007658  0.039302

0.024969  0.052886

0.049726

Summary
19.726 23.008 22.614 26.06 23.306 27.958 18.998
10.028 10.504 11.576 11.826 11.621 12.86 10.749
6 5 6
Mean Value Percent Difference
CNGO1 CNGO02 CNGO03 CNGO04 CNGO05
-16.6% -14.6% -32.1%

1.7% -13.3% -1.3% -21.5% 17.4%
-15.2% -3.1% -23.6% 16.0%

10.6% -7.3% 27.1%

-20.0% 32.1%

32.1%

Red values indicate 295% confidence means are not equal
Blue values indicate 290% confidence means are not equal

7.2 Statistical Analysis of Individual Vehicle Effects

Statistical models were developed to further determine if some of the fuel effects on individual
vehicles were statistically significant, discussed in Section 6. Figure 60 below shows mean value
responses for each vehicle. CNGO7 was excluded for Vehicle B as both tests recorded gasoline operation
during the cold start of Phase 1.

The test plan had only up to 2 replicates x 7 fuels = 14 total observations that may be used to
explore individual vehicle effects. Therefore the purpose of the individual vehicle models was to
analyze the most obvious fuel effect trends, including FE for Vehicles A, B and C and NOx emissions from
Vehicle C. The independent variables were Methane Number and Wobbe Index, and dependent
variables were FE and Bag NOx. Polynomial models were developed to confirm the statistical validity of
the conclusions being drawn for individual vehicles.
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Figure 60. Mean Response Values for Each Test Vehicle

67



EFFECT OF FUEL COMPOSITION ON THE EMISSION AND PERFORMANCE OF MODERN, LIGHT-DUTY
NATURAL GAS VEHICLES CRC E-109

Mean Value (y-hat) models were developed for the effect of MN and WI on fuel economy for
all vehicles as shown in Figure 61, Figure 62, and Figure 63. All terms included in the models shown here
had p-values less than 0.05, indicating good model fidelity. All models exhibit increasing FE with
increasing Wobbe Index and decreasing methane number. Vehicles A and B’s models predict very linear
trends, whereas Vehicle C has a second order sensitivity to methane number.

Vehicle A Bag Weighted FE (MPGe)
Y-hat Surface Plot Wobbe Index vs MN

m34-35
m32-34
m30-32
28 1427 W 28-30

1394 W 26-28

m24-26

Response Value, Bag Weighted FE (MPGe)
w
o

Wobbe Index (BUT/ft3)

105.4835984
102.9604495

100.4373006
97.91415177
9539100291
92.86785404
90.34470517
87.82155631
85.29840744
82.77525857
80.25210971
77.72896084
75.20581197
7268266311
70.15951424
67.63636537
651132165
62.59006764
60.06691877

Figure 61. Vehicle A Bag-Weighted FE Mean Value Surface Plot Wobbe Index vs. MN
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Vehicle B Bag Weighted FE (MPGe)
Y-hat Surface Plot Wobbe Index vs MN
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Figure 62. Vehicle B Bag-Weighted FE Mean Value Surface Plot Wobbe Index vs. MN
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Vehilce C Bag Weighted FE (MPGe)
Y-hat Surface Plot Wobbe Index vs MN
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Figure 63. Vehicle C Bag-Weighted FE Mean Value Surface Plot Wobbe Index vs. MN

For Vehicle C, the effect of MN and Wobbe Index on NOx emissions was statistically significant
with greater than 95% confidence. A strong second order relationship was observed against Wobbe
Index and a linear trend was predicted against methane number (Figure 64).
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Vehicle C Bag Weighted NOx (g/mi)
Y-hat Surface Plot Wobbe Index vs MN
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Figure 64. Vehicle C Bag-Weighted NOx Mean Value Surface Plot Wobbe Index vs. MN

8.0 Knock Investigation #1

During the EPEFE/WOT preconditioning cycles at 100°F ambient temperature, vehicle CAN data
were recorded to observe the commanded ignition timing from cylinder one. The EPEFE/WOT cycle was
used as preconditioning for the emissions test sequence to allow the ECU to adjust to the change in fuel
quality and ensure uniform catalyst conditioning.

Data analysis was performed on the second half of the WOT cycle for all fuels tested to quantify a
possible reduction in ignition timing with the lowest MN fuels compared to the highest MN fuels. This
testing was grouped together with the base emission test cycles to minimize the time for test setup, fuel
use, and cost. Figure 65 below shows the EPEFE drive trace.
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WOT Sulfur Purge Drive Trace (EPEFE)
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Figure 65. EPEFE (WOT) Drive Trace

Data were analyzed at discrete locations in the drive trace on the last 85 mph hill. This gave the
vehicle’s control system the ability to adapt to the fuel quality over two 65mph cruises, nine wide-open-
throttle accelerations, and nine steady state cruises at 85mph and 30mph. Ignition timing values were
noted at peak power and peak torque during WOT acceleration, 85mph steady state cruise, and 30mph
steady state cruise for each vehicle. An example of the analyzed points for Vehicle A is shown below in
Figure 66. The WOT peak power datum point was evaluated for Vehicle A in 2™ gear and 5500 RPM, for
Vehicle B in 3" gear at 5500 RPM, and Vehicle C in 3™ gear at 5000 RPM. The WOT peak torque datum
point was evaluated for Vehicle A in 2™ gear at 4300 RPM and for Vehicle C at 4000 RPM. Although
Vehicle B’s peak torque occurred from 1500 to 4500 RPM, wheel slip occurred at WOT on the chassis
dynamometer in the first two gears. By third gear Vehicle B gained traction and no longer had wheel slip
at WOT. After shifting from second gear at 6000 RPM the engine speed only dropped to 4000 RPM in
third gear. 4200 RPM in 3™ gear was selected as Vehicle B’'s WOT peak torque RPM as it was the lowest
RPM with no wheel spin and the turbocharger re-spooled after the shift event.
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Figure 66. Vehicle A EPEFE CNGO4_run2 INCA Example

Figure 67 below charts the four discrete data points for duplicates of each of the seven fuels.
Knock was not detected at the peak power, peak torque, 85mph, or 30mph conditions when comparing
ignition timing advance to methane number against each fuel for any of the vehicles. This conclusion is

inferred because the control systems did not identify any knock and did not adjust ignition timing
advance for the lower methane number fuels.
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Figure 67. Ignition Timing Advance vs. MN (Peak Torque, Peak Power, 85mph SS, 30mph SS)
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9.0 Knock Investigation #2
9.1 Set-Up and Test Procedure

A pseudo steady state engine RPM knock investigation was performed on all vehicles utilizing a
spark plug mounted cylinder pressure transducer and A&D Redline CAS Il combustion analyzer. Timing
triggers for cylinder pressure sampling were generated from the stock 60-2 timing wheels by soldering a
BNC connector onto the crank angle sensor harness for both Vehicle A and Vehicle B. Wire piercing
probes were utilized on the easily accessible crank angle sensor harness on Vehicle C. Good engineering
judgment was used for procurement of the spark plug with pressure transducer to achieve the correct
heat range, gap, and protrusion to closely match the OEM spark plug. The engine’s ignition coil/spark
plug wire arrangement remained intact without modification. The cylinder pressure signal wire egress
was afforded on Vehicle’s A and B with an eccentric adapter and on Vehicle C with an ignition wire
extension.

To minimize the modifications required to capture in-cylinder data, spark plug mounted pressure
transducers were used with specifications closely matching the OEM spark plug as shown in Table 20
below. The Kistler spark plugs used the Bosch heat range scale which is listed as the last number in the
Kistler part number.

Table 20. OEM Spark Plug Specifications with Kistler Equivalent

Manufacturer Vehicle A Vehicle B Vehicle C
OEM Spark Plug Mfg: NGK Bosch NGK
OEM Spark Plug P/N: SILKR8B8DS BOM 06E905612 R1 DH ILZFR5E 8D
Resistor Type (y/n) Y Y Y
Seat (flat/conical) Flat Flat Flat
Gap (mm) 0.8 0.8 0.7
Hex Size (in.) 5/8" 5/8" 5/8"
Thread @ (mm) 14 12 14
Thread pitch (mm) 1.25 1.25 1.25
Thread reach (mm) 19 19 26.7
Heat Range (NGK) 8 6 5
Heat Range (Bosch) 4 6 8
Resistor Type (y/n) Y Y Y
Kistler Measuring Plug 6115BFD34 6115BFD16 6117BCD39

The heat ranges selected closely matched the OEM plugs to minimize influence of changing this
in-cylinder component for the knock investigation. A comparison of the OEM and Kistler plugs and are
shown below in Figure 68. Installation of the spark plugs for Vehicle A and Vehicle B required an offset
extension be installed on the Kistler plug to regain eccentricity of the terminal nut and use the OEM
ignition coils. Standoffs were utilized to securely mount the coils. Vehicle C’s installation did not require
an offset extension, but instead required two ignition wire length adapters with the dual-plug OEM
ignition coil secured outside of its original location as shown in Figure 69.
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Figure 69. Ignition Coil Standoff (Vehicle A, Vehicle B, Vehicle C)

The Volkswagen Golf TGl is shown with the A&D Redline Il CAS unit in Figure 70. Cylinder
pressure data was collected by manually triggering the recording just prior to the load transient.
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Figure 70. Volkswagen Golf TGl on Site 3 with CAS

A steady state engine RPM was selected at peak engine torque with the chassis dynamometer set
in speed control mode. The transmission gear selector was put into a fixed position to prevent influence
from the transmission changing gears. The engine was brought from near zero-load to full-load in a fast
step change and data were collected during this transient over 100 engine cycles.

The crank-angle resolved cylinder pressure trace was captured at light load, step change
transient, and full load at the engine speed corresponding to peak torque. An engine knock condition is
readily observed in the crank-angle resolved cylinder pressure shape characteristic, appearing as a
rapidly oscillating pressure wave during the power stroke (so called “dinosaur back”). Other data were
post-processed to identify knock, including the maximum pressure rise rate, knock intensity, and
comparisons of ignition timing.

Testing was performed with the highest and the lowest MN fuels to compare the best and worst
case knock tendency. Fuel CNG02 was selected as the highest quality fuel having a MN of 105.66 and the
least amount of higher hydrocarbons (0%). Fuel CNG06 was selected as the poorest quality fuel with a
MN of 60.06, the largest concentration of higher hydrocarbons (19.9%), and the least concentration of
inert gasses (2.3%) of the low MN fuels. The higher hydrocarbons have lower auto-ignition temperatures
and provide less margin to avoid in-cylinder knock.

Vehicle A was advertised to make peak torque of 106 ft-lbs at 4300 RPM. Normally, an engine’s
knock resistance is lowest at the engine speed associated with peak torque. This puts the highest
amount of fresh air in the cylinder along with the longest residence time near TDC. A steady state speed
of 41 mph with the transmission selector position in ‘D2’ generated an engine speed of 4200 RPM at full
load. Vehicle C was advertised making peak torque of 400 ft-lbs at 4000 RPM. A road speed of 55 mph in
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3rd gear was selected to perform the no-load to WOT test. One aspect of the automatic transmissions in
Vehicles A and C was that the torque converters were not in full lock-up when minimal load is applied.
Therefore, a slight increase in engine speed is seen during the transient event before the torque
converter was near or at full lock.

Vehicle B was advertised making peak torque of 147 ft-lbs from 1500-4500 RPM. Since the
engine RPM effects the transient response of the turbocharger, a no-load to WOT sweep was performed
to determine the engine speed best suited for this knock investigation. Based on the transient response
of the turbocharger the minimum response time to achieve peak torque during the WOT transient was
1.5 seconds measured at 2525 RPM as shown in Figure 71 below. Lower engine speeds did not produce
as much torque as 2525 RPM and took as much as 4.2 seconds at 1500 RPM for the turbocharger to
achieve its target boost pressure. Higher engine speeds slightly reduced the transient response, but will
reduce the charge residence time near TDC, reducing knock tendency. The optimum engine speed with
the highest engine torque and reasonable load response was selected to be 2525 RPM for this
investigation.
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Figure 71. Vehicle B No-Load to WOT Response
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The test sequence listed below was followed for each vehicle to capture the zero to full load
transient on the highest and lowest MN fuels (CNG02 at 105.48 and CNGO6 at 60.07).

1.
2.

N U R

10.
11.
12.
13.

14.

Two LA92 preconditioning cycles on CNG02

Drive vehicle up to target speed and shift into target gear with the chassis dynamometer in
speed control mode

Maintain light load (less than 50%) on vehicle to attain stable engine coolant and exhaust
temperatures (>2 minutes)

Apply load to the engine such that the measured dyno torque is near zero ft.-lbs

Apply full load as fast as possible, hold for 5 seconds after maximum load is reached

Let off throttle and bring vehicle back to idle

Turn off car and change to CNG06

Drive vehicle up to target speed and shift into target gear with the chassis dynamometer in
speed control mode

Maintain light load (less than 50%) on vehicle to attain stable engine coolant and exhaust
temperatures (>2 minutes)

Apply load to the engine such that the measured dyno torque is near zero ft.-lbs.

Apply full load as fast as possible, hold for 5 seconds after maximum load is reached

Let off throttle and bring vehicle back to idle

Vehicle CAN data are collected with ETAS INCA ODX during the entire procedure and CAS
recording is initialized ~2 seconds prior to the WOT event to capture the load transient.
Post-process cylinder pressure data to identify if knock is present with the following criteria.
a. Maximum Pressure Rise Rate (MPRR) greater than 10 bar per °CA

b. Measureable change in knock intensity between CNG02 and CNG06

c. Measureable change in knock intensity squared between CNG02 and CNGO6

9.2 Knock Investigation Results

INCA screenshots are shown in Figure 72, Figure 73, and Figure 74 with a time aligned overlay of
the zero to full load transient events for all three vehicles using CNG02 and CNGO6. Figure 72 shows the
the ignition timing step change for Vehicle A went from 32°BTDC to 26°BTDC for both events, indicating
the control system did not make any changes to spark timing between the two fuels. The calculated
absolute load value went from approximately 16% to 60% for both tests.
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Figure 72. INCA Screenshot (Vehicle A, CNG02 vs. CNG06)

Figure 73 shows the ignition timing step change for Vehicle B went to 10.5°BTDC at full load for
both events, indicating the control system did not make any changes to spark timing between the two
fuels once the system reached full load. The calculated absolute load value went from approximately
15% to 132% for both tests.
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Figure 73. INCA Screenshot (Vehicle B, CNG02 vs. CNG06)
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Figure 74 shows Vehicle C’s ignition timing step change went from 24.5°BTDC to 24°BTDC for
both events, indicating the control system did not make any changes to spark timing between the two
fuels. The calculated absolute load value went from approximately 38% to 75% for both tests.

2 " M) 141205 _Knock2 CNGO2 dat PIDOC_engneRPM 2991 95* 417258
3 |— " M 141205 _Knock2 CNGO2 dat PIDOD_vehicleSpeedSensor 883642 91

(4 |— " M 1M205. _Knock2 CNGOZdat PIDOE_igntionTimingSparkadvanceForNolCyinder 245+ 24

[5 [ € 141205, _Knock2_CNGO2dat PID11_absokuteT hrottlePosition 27.0588"  BB.2745"
'5_ M) 141205, _Knock2_CNGO2 dat PID44_fueldsCommandedE quivalenceR atio 0.999424% 0.999424*
7 | "€ MM205.  _Knock2 CNGOZdat PIDOB_shortT emFuelTrimBankl 100757 -0.867684"
8 | "€ MM205.  _Knock2 CNGO2dat PIDO7_longT emFuelT imBank fis (g

9| T M) 141205, _Knock2_CNGO2 dat PID43_absokiteLoady/slue 38.0362" | 75.3294"
T0|— % [2) 141205, _Knock2 CNGOS dat FIDUS_engneCoolantT empesature a5 %6

11| % 2141205 _Knock2 CNGOG.dat PIDOC_engineRPM 293124 41586
12| 6 2141205, _Knock2 CNGOG.dat PIDOD_vehickSpeedSensor a3 a1

73| % [2) 141205, _Knock2 CNGOS.dat FIDUE ignitionTimingSpaikadvanceFaiNolCylinder 245+ 24

74| % [2141205. _Knock2 CNGOG.dat PID11_sbsokuteT hrottiePosiion 27.0588° BB 2745
15| % [2) 141205 _Knock2 CNGOG dat PID44_fuelirCommandedE quivalencefiatio 0999424° 0999424°
16| % [21M1205.  _Knock2 CNGOS.dat PIDOB_shortT emF uelTrimBank1 .0.97533 6.44986"
[17|—F [2) 191205 _Knock2 CNGOS.dat PIDO7_longT ermFuelT imBank1 o o

18| %€ [2) 141205,  _Knock2 CNGOG.dat PID43_absohuteLoadalue 72549 74,902

)

1132 133 1134 1135 136 1137 1138 1139 1140

1
Time s

Figure 74. INCA Screenshot (Vehicle C, CNG02 vs. CNG06)

Results of the cylinder pressure data from Vehicle A are presented below in Figure 75. Displayed
at left are waterfall plots of the cylinder pressure over 70 cycles. Displayed at right are peak cylinder
pressure (MaxPress), maximum pressure rise rate (MPRR), and indicated mean effective pressure (IMEP)
over 100 engine cycles. For this and subsequent plots in this section, the graphs at right are in the time
domain and were intentionally not time-aligned for data visualization purposes.

The step change in load generated an IMEP step from approximately 2 bar to 9 bar over five
engine cycles. The maximum pressure rise rate for both test fuels did not exceed 4 bar/degree and was
well below the selected threshold of 10 bar/degree guideline that would indicate knock. Comparing
CNGO02 to CNGO6, the maximum peak cylinder pressure increased from 65 bar to 72.8 bar, maximum
peak pressure rise rate from 2.73 bar/deg to 3.54 bar/deg, and maximum IMEP from 9.02 bar to 9.29
bar. The 81mm cylinder bore of Vehicle A should knock (or ring) around 7.04kHz. Nothing was found in
this frequency spectrum that would indicate a knocking cylinder for either fuel tested. Vehicle A’s
combination of compression ratio (12.7:1), valve timing, EGR, and ignition timing proved robust to
knocking on these two fuels at a barometric pressure of 84 kPa.
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Figure 75. Vehicle A Cylinder Pressure Transient CNG02 (green) vs. CNGO6 (black)

Results of the cylinder pressure data from Vehicle B are presented below in Figure 76. The step
change in load generated an IMEP step from approximately 2 bar to 18.6 bar over 40 engine cycles. The
maximum pressure rise rate for both test fuels did not exceed 7.5 bar/degree and was well below the
selected threshold of 10 bar/degree that would indicate knock. Comparing CNG02 to CNGO6, the
maximum peak cylinder pressure increased from 100.7 bar to 110.4 bar, maximum peak pressure rise
rate from 6.02 bar/deg to 7.35 bar/deg, and maximum IMEP from 18.64 bar to 19.05 bar. The 76.5mm
cylinder bore of Vehicle B should knock (or ring) around 7.45kHz. Nothing was found in this frequency
spectrum that would indicate a knocking cylinder for either fuel tested. Vehicle B’s combination of
compression ratio (10.5:1), boost pressure, valve timing, EGR, and ignition timing proved robust to
knocking on these two fuels at a barometric pressure of 84 kPa.
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Figure 76. Vehicle B Cylinder Pressure Transient CNGO02 (green) vs. CNGO6 (black)

Results of the cylinder pressure data from Vehicle C are presented below in Figure 77. The step
change in load generated an IMEP step from approximately 5 bar 10.7 bar over 10 engine cycles. The
maximum pressure rise rate for both test fuels did not exceed 4 bar/degree and was well below the
selected threshold of 10 bar/degree that would indicate knock. Comparing CNGO2 to CNGO6, the
maximum peak cylinder pressure increased from 65.3 bar to 67.7 bar, maximum peak pressure rise rate
from 3.17 bar/deg to 3.98 bar/deg, and maximum IMEP from 10.73 bar to 10.97 bar. The 99.5mm
cylinder bore of Vehicle C should knock (or ring) around 5.73kHz. Nothing was found in this frequency
spectrum that would indicate a knocking cylinder for either fuel tested. Vehicle C’s combination of
compression ratio (10.5:1), valve timing, EGR, and ignition timing proved robust to knocking on these
two fuels at a barometric pressure of 84 kPa.
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Figure 77. Vehicle C Cylinder Pressure Transient CNGO2 (green) vs. CNGO6 (black)

Each vehicle had a slight increase in peak cylinder pressure, maximum cylinder pressure rise
rate, and IMEP with the lower methane number CNGO6 fuel which also had higher Wobbe Index. Figure
78 below shows Vehicle A experienced a 10.7% increase in maximum peak pressure and a 22.9%
increase in maximum cylinder pressure rise rate. IMEP increased by more than 2% for all three vehicles

while operating on CNGO6.
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Figure 78. CNGO06 vs. CNG02 Parameter Increase
9.3 Additional Knock Investigation - Environmental Conditions and Engine Speed Sweeps

The maximum IMEP of the naturally aspirated vehicles was reduced by approximately 17% at
SGS’s test lab located at high altitude near Denver, compared to sea level labs (101.325 kPa vs. 84 kPa
barometric pressure). Vehicle A’s IMEP at peak torque theoretically dropped from 11.3 bar to 9.4 bar
and Vehicle C's dropped from 12.0 bar to 9.9 bar. The turbocharged control strategy for Vehicle B may
target an absolute load the same or higher than what is commanded at sea level conditions, but was
unknown. The reduction in mean effective pressure equates to lower peak cylinder pressure and
temperature that will reduce knock tendency. Another item to note is that the bi-fuel vehicle’s engine
compression ratios must accommodate both gasoline and CNG operation, leaving room for increased
efficiency with higher compression ratio if the engine were dedicated to CNG operation only. Vehicle A
has the highest compression ratio of the vehicle group at 12.7:1 and is a dedicated CNG vehicle. Even so,
it did not experience knock during the load step change transient.

Additional testing was conducted on Vehicle C utilizing SGS BASE™ (Balancing Altitude Simulation
Equipment) shown below in Figure 79. This modular air handling system was used to simulate different
altitude and ambient temperature conditions to explore knock potential. To achieve higher pressures
than the local barometric pressure, the system compresses the intake air to the engine. To achieve
pressures lower than the local barometric pressure, the system creates a slight vacuum to the engine
intake system. The pressure is dynamically balanced at the intake, exhaust, and crankcase, correctly
simulating variable altitudes and the corresponding effects that barometric pressure has on engine
breathing, gas exchange, combustion, exhaust pollutant formation, fuel consumption, and pumping
losses.
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Figure 79. Balancing Altitude Simulation Equipment™ (BASE™)

9.3.1 Vehicle C Knock Investigation #2 with BASE™, Altitude Effects

Increasing the in-cylinder pressure and temperature can lead to increased propensity for engine
knock. To create a worst-case knock scenario the BASE™ system was installed on Vehicle C and set to
sea level pressure (101.3 kPa) and elevated intake air temperature (35°C). An additional test cycle was
run with the poorer-quality CNGO6 producing cylinder pressure data shown in Figure 82 below. The step
change in load generated an IMEP step from 5 bar to 11.0 bar at local altitude (84kPa/25C, green)
compared to 5 bar to 13.7 bar at low altitude (101kPa/35C, black) over 10 engine cycles. The maximum
pressure rise rate for both test fuels did not exceed 5 bar/degree and is well below the selected
threshold of 10 bar/degree that would indicate knock.
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Figure 80. Vehicle C Cylinder Pressure Transient at 84kPa/25C and 101kPa/35C for CNGO06 Fuel
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9.3.2 Vehicle C Knock Investigation #2 with BASE™, Fuel Effects

Both CNG02 and CNGO6 were tested with BASE™ set to 101.3 kPa and 35°C. Comparing CNGO02 to
CNGO6, the maximum peak cylinder pressure increased from 76.2 bar to 81.7 bar, maximum peak
pressure rise rate from 3.82 bar/deg to 4.89 bar/deg, and maximum IMEP from 13.23 bar to 13.74 bar.
The 99.5mm cylinder bore of Vehicle C should knock (or ring) around 5.73kHz. Nothing was found in this
frequency spectrum that would indicate a knocking cylinder for either fuel tested. Vehicle C’s
combination of compression ratio (10.5:1), valve timing, EGR, and ignition timing proved robust to
knocking on these two fuels at a barometric pressure of 101.325 kPa and 35°C intake air temperature.
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Figure 81. Vehicle C Cylinder Pressure Transient CNG02 (green) vs. CNGO06 (Black) with BASE™
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Comparing CAN data in Figure 82, the ignition timing step change went from 24.5°BTDC to
23.5°BTDC for both events, indicating the control system did not make any changes to spark timing
between the two fuels. The higher load with BASE™ resulted in the absolute load parameter changing
from approximately 38% to 91.4% for both tests. Compared to the tests at 84 kPa barometric pressure,
Vehicle C commanded 0.5 degrees less spark advance at this higher WOT load.
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Figure 82. INCA Screenshot (Vehicle C, CNG02 vs. CNG06) with BASE

9.33 Vehicle C Knock Investigation #2 with BASE™, CNGO6, Engine Speed Sweep

To further explore the engine operating map and resistance to knock, Vehicle C was tested on
CNGO6 with the transmission fixed in fourth gear and fixed engine speeds from 1900 to 2900 RPM in 200
RPM increments. The same test procedure was repeated, but BASE™ was again used to set the
barometric pressure to 101.3 kPa and the intake air temperature to 35°C. Figure 83 below shows peak
pressure, maximum cylinder pressure rise rate, and IMEP per cycle for the 6 data points taken during the
RPM sweep. Knock was not seen during any of the test cycle, again indicating the vehicle configuration
and calibration is robust to this fuel for the test conditions given.
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Figure 83. Vehicle C Load Transient Engine Speed Sweep with BASE™, CNG06

9.34 Vehicle A Knock Investigation #2, CNGO06, Engine Speed Sweep

Vehicle A was further tested at various engine speeds at 84 kPa barometric pressure. With the

transmission gear selector in second gear, vehicle speed was set to repeat the test at fixed engine
speeds from 2040 RPM to 4300 RPM. Figure 84 below shows peak pressure, maximum cylinder pressure
rise rate, and IMEP per cycle for the 8 data points taken during the RPM sweep. Knock was not seen
during any of the test cycle, again indicating the vehicle configuration and calibration is robust to this
fuel for the test conditions given.
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Figure 84. Vehicle A Load Transient Engine Speed Sweep, CNG06
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10.0 Conclusions

Conclusions from this investigation are as follows:

1.

The bag-weighted fuel economy, in miles per gasoline gallon equivalent (MPGe), varied in
direct proportion to the Wobbe Index for all vehicles in the study. This effect was expected
due to different energy content of the test fuels.

NOx and CO bag-weighted emissions from Vehicle A and Vehicle B were unaffected by the
fuel type.

NOx engine-out-weighted emissions increased with higher Wobbe Index fuels for all three
vehicles tested.

HC and CH, bag emissions increased with lower Wobbe Index fuels for all three vehicles
tested.

Of the three vehicles in the study, Vehicle C was most affected by fuel type.

a. When run on the fuel with lowest Wobbe Index (CNG01), bag-weighted NOx
emissions increased by over 300% compared to the average CNG fuel (CNGO7). For
all tests the lowest Wobbe Index fuel produced highest NOx emissions during the
Phase 2 stabilized portion of the LA92 cycle.

b. CO bag-weighted emissions decreased for the lowest Wobbe Index fuel.

Methane emissions increased by over 50% for the lowest Wobbe Index fuel.

d. The effects appeared to be catalyst-conversion related as the trends were less
apparent from engine-out emissions data.

A statistical analysis for all vehicles pooled together revealed:

a. The effect of fuel type on mean bag-weighted fuel economy was significant with
95% confidence.

b. The effect of fuel type on mean bag-weighted NOx and CO was not statistically
significant.

c. The effect of fuel type on mean bag-weighted CH, and total THC emissions was
significant with 95% confidence.

Engine knock was not observed for either Knock Investigation #1 or #2, indicating that the
combination of compression ratio, EGR, ignition timing, and valve timing employed on these
vehicles can accommodate the lowest methane number fuel under the conditions tested.

o
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12.0 Appendices

12.1 Appendix 1: CRC E-109 Vehicle and Fuel Test Order, and Date of Emissions Test
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12.2 Appendix 2: Properties for SGS Tank 3 T2SHED7.8 Gasoline
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B
B

rmannsolutions .
ha“ﬁwwwmmmw.m Product Information
Telephone: (B00) 869-2542 FAX: (281) A57-1469
Johann Haltermann Ltd.

PRODUCT: HIGH DE FUEL Batch Mo.: CD1421GP02

CFR 86, 113-04 Tier 2 TMO NO.: 802765
PRODUCT CODE: HF0073 Tank No.: 52

Date:  4/23/2014
TEST METHOD UNITS SPECIFICATIONS RESULTS
MIN | TARGET| MAX

Distillation - IBP ASTM DB6 "C 24 41 34
5% °C 46
10% C 43 57 54
20% C GG
0% *C 79
40% °C 04
0% 'C 83 110 104
B80% “C 119
T0% C 117
B0 °C 129
805 °C 140 163 160
a95% *C 168
Distiflation - EP C 213 185
|Recovery vol % Report 97.0
Residue vol % 2 1.1
Loss vol % Report 1.4
Gravity ASTM D4052 =PI Report 600
Specific Gravity ASTM D4052 0.734 0.744 0.739
Reid Vapor Pressure ASTM D5181 kPa 52 ) 55 55.9%
Sulfur ASTM D5453 ppm wi 25 35 32
Lead ASTM D3237 gl 0.013 | None Detected
Phosphorous ASTM D323 gl 0.0013 | None Detected
Composition, aromatics ASTM D1319 val % s 26
Composition, olefins ASTM D318 vl % 10 1
Composition, saturates ASTM D1318 vol % Report 73
Ondidation Stabiity ASTM D525 minutes 240 1000+
Copper Cormosion ASTM D130 18 la
Gurmn content, washed LASTM D381 mg"00mls B <05
Net Heal of Combustion ASTM D240 btufly Report 18363
Carbon ASTM D5291 | wifraction Report 0.8612
Research Octane Number ASTM D2658 93 a7
IMotor Octane Numbar ASTM D2ZT00 Report 89
Sansitivity |D2698/2700 7.5 _8_,]

*Waived by Customer
APPROVED BY: W 4{ E(Oﬁm
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12.3 Appendix 3: Vehicle C ECU Scan Reports

Vehicle Scan Report

: 3C6TRS J22EG100286

3364.6 miles

ECU Information

ecy [ ConRea | Canfes | Part Software Version | _ HEX Hordware Software PN Variant | Version| 150 | VMM g ppiier ENG File
s P 747 pe 682125414C | #0: 13.20.5 02.27.00 : 682125414C 40 0 1247 W ABS-4BS_PN-40-4006
Bow_PN | 620 504 6823615348 | 20: 13.35.49 10.20.0 201 6823615248 40 1 1247 Continental g‘i:"“"'fw'“"'z'”
CMCM_PN | 7BF 53F 6622453148 | #0: 2013.21.04 2012.45.01 1 1321048448 80 16 farman
pom_PN | 784 504 681557714D | 20: 12.48.01 11.30.00 201 6815577140 P 00 1210 Continental [ pa DOMPI41-31
oTem_PN | 748 48 560295904E | #0: 030108 1011 560295904 40 02 131 Huntsate [ SIS ATCMP-<0
Hvac_pN | 783 503 6818621648 | 20: 2013.17.5 2013.18.04 4 0 1232 KDAC i Ph-az
ics Pr | 78C 53 1UJ96DX94E | #0: 12.44.30 0c.26.42 4 0 1223 TR C5-1CS_PN-41-4100-007
PPN |74z i 5605495447 | 70: 13.37.0 05.6.00 2 o1 1247 00cs IPCIPC_PN-42-42
ITeM_PN | 754 44 680927324F | #0: 13.11.31 00.5.00 50: 68092740AF 40 00 1223 Conti Temic | TEMTTBM_PH-40
ORC_PN | 744 Ac4 68085883AF 13.12.0, #1: 13.19.0 12.37.2 0DTOOD11, #1: DTOOD11 21 £ o1 1149 ORC-ORC_PN-42-4201-
PO 7E0 78 £815388347 0404 1827 £81538634F 2 s a1z Motorola | POAPOM-42-42C
po_PH 785 505 881557704D | #0: 12.48.01 11.30.00 501 8815577040 4 00 1210 Continental | pDA-PDM_PN-41-4100-
RFH_PN | 740 400 68207773AD 13311, #1: 13.31.4 0C.14.01 A TSty a1: LaDSD731Ch, 42: 4 02 1247 TRW o h-REH_PN-41-4102-
scon_PH | 763 483 68110739AC 11:38.0, #1: 11.38.0, #2: 11.38.1, #3: 11.2.1, #4: 1121, | 9010.46.04 4 o1 117 Delphi SCOH SCCM_P-41-
ENG files shown above in red indicate a Diagnostic Variant or IS0 Code nyismatch.

Figure 85. Vehicle C OEM Calibration ECU Scan Report (Software PN: 68153863AF)
Vehicle Scan Report
014
D4
3CETREI22EG

ECU Information

mEy ||| Software Version | | HEX ot Software PN Variant | Version| /50 | VM - suppiier ENG File
s PN | 747 a7 68212541AC | #0: 13.20.5 02.27.0C #0: 68212541 AC 40 06 1247 TRW ADS-ABS_PN-40
BOM_PN | 820 504 6823615348 | #0: 13.35.49 : 6823615248 40 1 1247 Continental CH_PN-40-4011
CMCH_PH | 7BF 53F 6822453128 | #0: 2013.21.04 2012.45.01 #0: 1321048440 80 1 5 an
DOM_PN | 784 504 68155771AD | #0: 12.48.01 11.30.00 #0: 681557714D 4 00 1210 Continental | EA-DOMPN-41-4100-
DTeM_pH [ 748 4B 560295904F | #0: 030108 1011 5602959048 40 0 1131 Huntsuille

783 503 e818621848 | #0: 2013.17.5 2013.18.04 2 1232 KDAC

Ics PN | 78C s3c 1UJ96DX9AE | #0: 12.44.30 B 1223 TRW 1C5-1CS_PN-41-41
PPN | 742 I 5605495447 | 20: 13.37.0 2 1247 s IPCIPC_PN-42-420
meu_pn | 754 4D4 680927324E | 20: 13.11.31 £0: 68092740AF 40 00 1223 Conti Temic | (B TTBM_PH-40
ORCPN 744 44 6B0BSBEIAF | #0: 13.12.0, #1: 13.19.0 12.37.2 2 0 1149 Bosch SR ORC_P-az-4201-
POM 7E0 7 68153863CH | #0; 090404 142 581538630 2 ) a2 Motorola | PON-POM-42-42C
pom_pn | 785 505 68155770AD | 20: 12.48.01 11.30.00 : 681557704D P 00 1210 Continental | pOutPIMPH-41-4100-
RFH_PN [ 740 40 68207773AD | #0: 13.31.1, #1: 13.31.1 0c.1A01 O ety 4 0 1247 TRW S
scon e | 763 . sotiosesc | 72 11380, 716 1138.0, 720 11381, 73 120, 74 121, M o s -

ENG files shown above in red indicate a Diagnostic Yariant or 150 Code mismatch.

Figure 86. Vehicle C Modified Calibration ECU Scan Report (Software PN: 68153863CN)
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12.4 Appendix 4: Bag-Weighted Dataset Charts
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Bag Weighted CH4 (g/mi)
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Bag Weighted NOx (g/mi)
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Bag Weighted CO, (g/mi)
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12.5 Appendix 5: Bag Phase 1 Dataset Charts

Bag Phase 1 FE (MPGe)
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.
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Bag Phase 1 NOx (g/mi)
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Bag Phase 1 CO, (g/mi)
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12.6 Appendix 6: Bag Phase 2 Dataset Charts

Bag Phase 2 FE (MPGe)
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Bag Phase 2 CH4 (g/mi)
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Bag Phase 2 NOx (g/mi)
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Bag Phase 2 CO, (g/mi)
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12.7 Appendix 7: Bag Phase 3 Dataset Charts
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o Bag Phase 3 NOx (g/mi)
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Bag Phase 3 CO, (g/mi)
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12.8 Appendix 8: Engine-Out-Weighted Dataset Chart

Engine Weighted HC (g/mi)
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Engine Weighted CO, (g/mi)
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Engine Weighted O, (g/mi)
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