CRC Report No. E-109

EFFECT OF FUEL COMPOSITION ON THE EMISSIONS AND PERFORMANCE OF MODERN, LIGHT-DUTY NATURAL GAS VEHICLES

May 2015

COORDINATING RESEARCH COUNCIL, INC. 5755 NORTH POINT PARKWAY SUITE 265 ALPHARETTA, GA 30022 The Coordinating Research Council, Inc. (CRC) is a non-profit corporation supported by the petroleum and automotive equipment industries. CRC operates through the committees made up of technical experts from industry and government who voluntarily participate. The four main areas of research within CRC are: air pollution (atmospheric and engineering studies); aviation fuels, lubricants, and equipment performance, heavyduty vehicle fuels, lubricants, and equipment performance (e.g., diesel trucks); and light-duty vehicle fuels, lubricants, and equipment performance (e.g., passenger cars). CRC's function is to provide the mechanism for joint research conducted by the two industries that will help in determining the optimum combination of petroleum products and automotive equipment. CRC's work is limited to research that is mutually beneficial to the two industries involved, and all information is available to the public.

CRC makes no warranty expressed or implied on the application of information contained in this report. In formulating and approving reports, the appropriate committee of the Coordinating Research Council, Inc. has not investigated or considered patents which may apply to the subject matter. Prospective users of the report are responsible for protecting themselves against liability for infringement of patents. **CRC Project No. E-109**

Effect of Fuel Composition on the Emissions and Performance of Modern, Light-Duty Natural Gas Vehicles

April 28, 2015

Prepared for:

Coordinating Research Council

Chris Tennant, Project Manager 5755 North Point Parkway, Suite 265 Alpharetta, GA 30022 (978) 795-0506 www.CRCAO.org

Prepared by:

SGS Environmental Testing Corporation

Marc Henderson, Brent Schuchmann 2022 Helena St. Aurora, CO 80011 (303) 344-5470 www.sgsetc.com

SGS Environmental Testing Corporation is an accredited laboratory, in compliance with ISO 14001:2004, and ISO 17025:2005 for performing vehicle and engine emissions tests. Orion Registrar, Inc. Certificate Number A0000602-7. American Association for Laboratory Accreditation Certificate Number 1975-01

This page intentionally blank

Effect of Fuel Composition on the Emissions and Performance of Modern, Light-Duty Natural Gas Vehicles – CRC Project No. E-109

Table of Contents

List of	Figures	ii
List of	Tables	iv
Abbrev	viations and Acronyms	v
Acknow	vledgements	vi
1.0	Executive Summary	7
2.0	Introduction	8
3.0	Approach and Test Procedures	9
3.1	Vehicle Models and Recruitment	9
3.2	Preparation and As-Received Emissions	13
3.3	Vehicle Preparation	16
3.4	Overall Test Plan and Test Sequence	23
3.5	Test Cell Equipment and Layout	26
4.0	Fuels	28
5.0	Test Results Organization	33
6.0	LA-92 Exhaust Emissions Test Results, Plots, and Data Summaries	33
6.1	Vehicle A Results	34
6.2	Vehicle B Results	36
6.3	Vehicle C Results	38
6.4	Vehicle Comparison	40
7.0	Statistical Analysis	58
7.1	Statistical Analysis of Vehicles Pooled Together	58
7.2	Statistical Analysis of Individual Vehicle Effects	66
8.0	Knock Investigation #1	71
9.0	Knock Investigation #2	75
9.1	Set-Up and Test Procedure	75
9.2	Knock Investigation Results	79
9.3	Additional Knock Investigation - Environmental Conditions and Engine Speed Sweeps	85
10.0	Conclusions	92
11.0	References	93
12.0	Appendices	94
12.1	Appendix 1: CRC E-109 Vehicle and Fuel Test Order, and Date of Emissions Test	94
12.2	Appendix 2: Properties for SGS Tank 3 T2SHED7.8 Gasoline	94
12.3	Appendix 3: Vehicle C ECU Scan Reports	96
12.4	Appendix 4: Bag-Weighted Dataset Charts	97
12.5	Appendix 5: Bag Phase 1 Dataset Charts	. 101
12.6	Appendix 6: Bag Phase 2 Dataset Charts	. 105
12.7	Appendix 7: Bag Phase 3 Dataset Charts	. 109
12.8	Appendix 8: Engine-Out-Weighted Dataset Chart	. 113
12.9	Appendix 9: Engine-Out Phase 1 Dataset Chart	. 116
12.1	0 Appendix 10: Engine-Out Phase 2 Dataset Chart	. 119
12.1	1 Appendix 11: Engine-Out Phase 3 Dataset Chart	. 122
12.1	2 Appendix 12: Tailpipe-Weighted Dataset Charts	. 125

12.13	Appendix 13: Tailpipe Phase 1 Dataset Charts	128
12.14	Appendix 14: Tailpipe Phase 2 Dataset Charts	131
12.15	Appendix 15: Tailpipe Phase 3 Dataset Charts	134
12.16	Appendix 16: Weighted NOx Conversion Efficiency Dataset Charts	137
12.17	Appendix 17: Weighted CO Conversion Efficiency Dataset Charts	139
12.18	Appendix 18: Weighted THC Conversion Efficiency Dataset Charts	141
12.19	Appendix 19: EPA 40CFR1066 EER Dataset Charts	143
12.20	Appendix 20: Empact Analytical Certification Reports	145
12.21	Appendix 21: Air Gas Certification Reports	152

List of Figures

Figure 1. U.S. Natural Gas Pipeline Network, 2009	9
Figure 2. 2014 Dodge Ram 2500 CNG	10
Figure 3. 2014 Dodge Ram 2500 CNG Engine Bay	11
Figure 4. 2012 Honda Civic GX	11
Figure 5. 2012 Honda Civic GX Engine Bay	12
Figure 6. 2014 Volkswagen Golf TGI	12
Figure 7. 2014 Volkswagen Golf TGI Engine Bay	13
Figure 8. Dyno Force Comparison	14
Figure 9. Dodge Ram 2500 CNG Pre Catalyst Instrumentation	17
Figure 10. Honda Civic GX Pre Catalyst Instrumentation	17
Figure 11. VW Golf TGI Pre Catalyst Instrumentation	17
Figure 12. NGV1 3600psig Fill Port (Dodge Ram 2500 CNG)	18
Figure 13. NGV1 3600psig Fill Port (Honda Civic GX)	18
Figure 14. NGV1 3000psig Fill Port (VW Golf TGI)	19
Figure 15. Dodge Ram 2500 CNG Fuel Tanks (Steel Type 1)	19
Figure 16. Honda Civic GX Fuel Tank (Composite Type 3)	20
Figure 17. VW Golf TGI Fuel Tanks (Steel Type 1)	20
Figure 18. VW CNG Tank Shut-Off Valve (One per Tank)	21
Figure 19. Ram 2500 CNG Fuel Tank Shut-Off Valve (One per Tank)	21
Figure 20. VW Golf TGI Fuel Tank Shut-Off Valve	22
Figure 21. Honda Civic GX Tank Bypass Setup	22
Figure 22. Preconditioning Cycle, LA92 x2	25
Figure 23. Emissions Cycle, LA92 3-Phase Test	26
Figure 24. SGS Site 3 Test Cell Layout for RWD and FWD Vehicles	27
Figure 25. Dodge Ram 2500 CNG Installed on SGS Site 3	27
Figure 26. Honda Civic GX Installed on SGS Site 3	28
Figure 27. Volkswagen Golf TGI Installed on SGS Site 3	28
Figure 28. CNG Fuel Blends Chart	30
Figure 29. SGS CNG Bottle Storage Room	30
Figure 30. Key to Symbols for Fuel Type	33
Figure 31. Vehicle A Fuel NMHC % Concentration vs. Engine-Out-Weighted NOx	35
Figure 32. Vehicle A Fuel NMHC Content vs. Phase 1 Bag NMHC	36
Figure 33. Vehicle B Phase 1 Bag NMHC (g/mi)	37
Figure 34. Vehicle B CNG07_run2 (Gasoline Cold Start)	38
Figure 35. Vehicle C Fuel NMHC Content vs. Phase 1 Bag NMHC	39

Figure 36.	Bag-Weighted FE vs. Volume Based Stoichiometric A/F	40
Figure 37.	Fuel Energy Density vs. Average CNG Mass Fuel Flow	41
Figure 38.	Bag-Weighted MPGe vs. Total Fuel Consumed (SCF)	41
Figure 39.	Fuel NMHC Content (%) vs. Phase 1 Bag NMHC (g/mi) for all vehicles	42
Figure 40.	Bi-Fuel Vehicle Total Canister Purge Volume	43
Figure 41.	NOx Conversion Efficiency for All Vehicles	44
Figure 42.	CO Conversion Efficiency for All Vehicles	45
Figure 43.	THC Conversion Efficiency for All Vehicles	46
Figure 44.	THC, NMHC, and CH ₄ Emissions vs. MN and Wobbe Index	47
Figure 45.	NOx, CO, CO ₂ , and FE vs. MN and Wobbe Index	48
Figure 46.	THC, NOx, and CO Conversion Efficiency vs. Wobbe Index	49
Figure 47.	Engine-Out EGT during 1 st 100 Seconds of LA92	50
Figure 48.	Engine-Out EGT at 40 Seconds vs. Fuel NMHC Percentage	51
Figure 49.	Engine-Out EGT at 40 Seconds vs. Total Volume Fuel Flow	51
Figure 50.	Engine-Out and Bag-Weighted Emissions Comparison	52
Figure 51.	Lambda vs. Time for All Vehicles	53
Figure 52.	Vehicle B LA92 Engine-Out NOx, Tailpipe NOx, Lambda Phase 3	54
Figure 53.	Vehicle B NOx by Phase Comparison for CNG01 and CNG03 Fuels	55
Figure 54.	Vehicle B LA92 CNG01_run2 vs. CNG03_run1 INCA Overlay	55
Figure 55.	Vehicle C LA92 Engine-Out NOx, Tailpipe NOx, Lambda Phase 3	56
Figure 56.	Vehicle C NOx by Phase Comparison for CNG01 and CNG07 Fuels	56
Figure 57.	Vehicle A LA92 Engine-Out NOx, Tailpipe NOx, Lambda Phase 1	57
Figure 58.	Vehicle A NOx by Phase Comparison	57
Figure 59.	Mean Response Values for the Combined Test Vehicle Fleet	59
Figure 60.	Mean Response Values for Each Test Vehicle	67
Figure 61.	Vehicle A Bag-Weighted FE Mean Value Surface Plot Wobbe Index vs. MN	68
Figure 62.	Vehicle B Bag-Weighted FE Mean Value Surface Plot Wobbe Index vs. MN	69
Figure 63.	Vehicle C Bag-Weighted FE Mean Value Surface Plot Wobbe Index vs. MN	70
Figure 64.	Vehicle C Bag-Weighted NOx Mean Value Surface Plot Wobbe Index vs. MN	71
Figure 65.	EPEFE (WOT) Drive Trace	72
Figure 66.	Vehicle A EPEFE CNG04_run2 INCA Example	73
Figure 67.	Ignition Timing Advance vs. MN (Peak Torque, Peak Power, 85mph SS, 30mph SS)	74
Figure 68.	OEM and Kistler Spark Plugs (Vehicle A, Vehicle B, Vehicle C)	76
Figure 69.	Ignition Coil Standoff (Vehicle A, Vehicle B, Vehicle C)	76
Figure 70.	Volkswagen Golf TGI on Site 3 with CAS	77
Figure 71.	Vehicle B No-Load to WOT Response	78
Figure 72.	INCA Screenshot (Vehicle A, CNG02 vs. CNG06)	80
Figure 73.	INCA Screenshot (Vehicle B, CNG02 vs. CNG06)	80
Figure 74.	INCA Screenshot (Vehicle C, CNG02 vs. CNG06)	81
Figure 75.	Vehicle A Cylinder Pressure Transient CNG02 (green) vs. CNG06 (black)	82
Figure 76.	Vehicle B Cylinder Pressure Transient CNG02 (green) vs. CNG06 (black)	83
Figure 77.	Vehicle C Cylinder Pressure Transient CNG02 (green) vs. CNG06 (black)	84
Figure 78.	CNG06 vs. CNG02 Parameter Increase	85
Figure 79.	Balancing Altitude Simulation Equipment™ (BASE™)	86
Figure 80.	Vehicle C Cylinder Pressure Transient at 84kPa/25C and 101kPa/35C for CNG06 Fuel	87
Figure 81.	Vehicle C Cylinder Pressure Transient CNG02 (green) vs. CNG06 (Black) with BASE™	88
Figure 82.	INCA Screenshot (Vehicle C, CNG02 vs. CNG06) with BASE	89

Figure 83. Vehicle C Load Transient Engine Speed Sweep with BASE™, CNG06	90
Figure 84. Vehicle A Load Transient Engine Speed Sweep, CNG06	. 91
Figure 85. Vehicle C OEM Calibration ECU Scan Report (Software PN: 68153863AF)	. 96
Figure 86. Vehicle C Modified Calibration ECU Scan Report (Software PN: 68153863CN)	. 96

List of Tables

Table 1. Vehicles Participating in CRC E-109 Study	10
Table 2. Vehicle Target Road Load Coefficients	14
Table 3. EPA Standard Shift Schedule for 6-Speed Manual	15
Table 4. Denver BTU Zone – 2014 Average Gas Quality	15
Table 5. FTP75 and LA92 As-Received Vehicle Emissions	16
Table 6. Emissions Test Sequence for CRC E-109	24
Table 7. CNG Target Fuel Blends	29
Table 8. AirGas Certification Analysis	31
Table 9. Empact Analytical Certification Analysis vs. Target CNG Blends	32
Table 10. Vehicle A LA92 Post-Catalyst Bag-Weighted Emissions Results	35
Table 11. Vehicle B LA92 Post-Catalyst Bag-Weighted Emissions Results	37
Table 12. Vehicle C LA92 Post-Catalyst Bag-Weighted Emissions Results	39
Table 13. Bag THC Pairwise t-Test P-Value Results for the Test Vehicle Fleet	60
Table 14. Bag NMHC Pairwise t-Test P-Value Results for the Test Vehicle Fleet	61
Table 15. Bag CH ₄ Pairwise t-Test P-Value Results for the Test Vehicle Fleet	62
Table 16. Bag NOx Pairwise t-Test P-Value Results for the Test Vehicle Fleet	63
Table 17. Bag CO Pairwise t-Test P-Value Results for the Test Vehicle Fleet	64
Table 18. Bag CO ₂ Pairwise t-Test P-Value Results for the Test Vehicle Fleet	65
Table 19. Bag FE Pairwise t-Test P-Value Results for the Test Vehicle Fleet	66
Table 20. OEM Spark Plug Specifications with Kistler Equivalent	75

Abbreviations and Acronyms

A/C	Air Conditioning
ARB	California Air Resources Board
Bag	Pertaining to post-catalyst emissions from the vehicle, calculated from bag analysis
CAN	Controller Area Network
CARB	California Air Resources Board
CFR	EPA Code of Federal Regulations
CH_4	Methane
CNG	Compressed Natural Gas
СО	Carbon monoxide
CO ₂	Carbon dioxide
COA	Certificate of Analysis
CRC	Coordinating Research Council
CREE	Carbon-Related Exhaust Emissions calculated per Title 40 CFR Part 600
CVS	Constant Volume Sampling
CWF	Carbon Weight Fraction of fuel
DFCO	Deceleration Fuel Cut-Off
DOE	U.S. Department of Energy
DTC	Diagnostic Trouble Code
ECM	Engine Electronic Control Module
EER	Energy Economy Rating
EGT	Exhaust Gas Temperature
EO	Engine-out
EPA	U.S. Environmental Protection Agency
EPEFE	European Programme on Emissions, Fuels and Engine Technologies
ETW	Equivalent Test Weight, for vehicle inertial simulation on the dynamometer
FE	Fuel Economy
FTP75	Federal Test Procedure consisting of a 3 Phase drive cycle
FWD	Front Wheel Drive
GGE	Gasoline Gallon Equivalent
HC	Total Hydrocarbons, also THC
IMEP	Indicated Mean Effective Pressure
INCA	Commercial software from ETAS used to record and analyze sensor data broadcast on CAN
LA4	2 Phase drive cycle also known as the FTP72 or Urban Dynamometer Driving Schedule
LA92	Drive cycle also known as the California Unified Cycle
MIL	Malfunction Indicator Lamp
MN	Methane Number
MPGe	Miles per Gasoline Gallon Equivalent
MPRR	Maximum Pressure Rise Rate
mg	Milligrams
N-CH4	Non-Methane Hydrocarbons, also NMHC
NGV	Natural Gas Vehicle
NMHC	Non-Methane Hydrocarbons, also N-CH4
NPT	National Pipe Thread
NOx	Oxides of nitrogen
OBD	On Board Diagnostics
OEM	Original Equipment Manufacturer

ppm	Parts per million, single carbon equivalent basis for hydrocarbons (ppmC1)
RPM	Engine speed Rotations per Minute
PRD	Pressure Relief Device
RWD	Rear Wheel Drive
SCF	Standard Cubic Feet
SGS	SGS Environmental Testing Corporation
TDC	Top Dead Center
THC	Total Hydrocarbons, also HC
ТР	Tailpipe
VW	Volkswagen
WI	Wobbe Index
WOT	Wide Open Throttle (i.e.: Maximum Engine Load)

Acknowledgements

The authors would like to thank the following companies and individuals for their contributions to this project: Kris Kielty of Ward Energy for his expertise and assistance with bypassing the vehicle's fuel systems and supplying external CNG components; Craig Etherton of AirGas for his efforts supplying and expediting the CNG fuels; Burl McEndree from Empact Analytical for providing excellent and timely analysis of CNG fuel samples; Robert Michael, Timothy Hurst, and Daniel Manzanares from the SGS Automotive vehicle testing staff for running tests and providing extended support to condense the testing schedule.

The authors also acknowledge the contributions and support from the E-109 technical committee members:

Chris Tennant	Coordinating Research Council
Jeff Jetter	Honda, panel chairman
Jenny Sigelko	Volkswagen
Dan Bowerson	Fiat Chrysler Automobiles

1.0 Executive Summary

To help automakers and other stakeholders understand the implications of pipeline CNG fuel quality on light-duty vehicle performance and emissions, SGS has conducted a study to test seven synthetically blended fuels on three different vehicles. The vehicles included a naturally aspirated CNG-only 2012 Honda Civic GX, a turbocharged bi-fuel 2014 European Volkswagen Golf TGI, and a naturally aspirated bi-fuel Dodge Ram 2500 CNG. Replicate LA92 3-bag emissions tests were performed on the chassis dynamometer. Exhaust gas emissions were bagged, and modal emissions sampled at the precatalyst and tailpipe locations for catalyst efficiency determination.

Seven test fuels were chosen by the CRC panel to represent a wide range of fuels available to consumers in the United States. Fuel selection was based on fuel samples collected and analyzed in the CRC Performance Committee Project PC-2-12. Methane number ranged from 60 to 105.7, and Wobbe Index ranged from 1228 to 1428 BTU/ft³. The study included a test fuel to represent the average CNG composition of 97 Methane Number and 1344 BTU/ ft³ Wobbe Index. Each vehicle was tested twice on all seven of the CNG fuels.

Conclusions from the investigation are as follows:

- 1. The bag-weighted fuel economy, in miles per gasoline gallon equivalent (MPGe), varied in direct proportion to the Wobbe Index for all vehicles in the study. This effect was expected due to different energy content of the test fuels.
- 2. NOx and CO bag-weighted emissions from Vehicle A and Vehicle B were unaffected by the fuel type.
- 3. NOx engine-out-weighted emissions increased with higher Wobbe Index fuels for all three vehicles tested.
- 4. THC and CH₄ bag emissions increased with lower Wobbe Index fuels for all three vehicles tested.
- 5. Of the three vehicles in the study, Vehicle C was most affected by fuel type.
 - When run on the fuel with lowest Wobbe Index (CNG01), bag-weighted NOx emissions increased by over 300% compared to the average CNG fuel (CNG07). The lowest Wobbe Index fuel produced highest NOx emissions during the Phase 2 stabilized portion of the LA92 cycle.
 - b. CO bag-weighted emissions decreased for the lowest Wobbe Index fuel.
 - c. Methane emissions increased by over 50% for the lowest Wobbe Index fuel.
 - d. The effects appeared to be catalyst-conversion related as the trends were less apparent from engine-out emissions data.
- 6. A statistical analysis for all vehicles pooled together revealed:
 - a. The effect of fuel type on mean bag-weighted fuel economy was significant with 95% confidence
 - b. The effect of fuel type on mean bag-weighted NOx and CO was not statistically significant
 - c. The effect of fuel type on mean bag-weighted CH_4 and total THC emissions was significant with 95% confidence.

7. Engine knock was not observed for either Knock Investigation #1 or #2, indicating that the combination of compression ratio, EGR, ignition timing, and valve timing employed on these vehicles can accommodate the lowest methane number fuel under the conditions tested.

2.0 Introduction

The demand for natural gas fueled vehicles has increased as domestically-produced natural gas has grown dramatically in the U.S. with the implementation of new gas extraction technologies. CNG has become a cost effective and clean burning alternative to gasoline and diesel. Formulation of liquid fuels has been tightly regulated allowing manufacturers of light duty vehicles to design their engines and calibrations to operate within the regulated fuel specifications. Gaseous fuels, like CNG, have much broader specifications which can generate fuels available for public refueling to vary greatly. Two of the most important characteristics of a fuel for base engine design and calibration are its resistance to engine knock which is closely tied to methane number (MN), and its stoichiometric air fuel ratio which has a nearly linear relationship to Wobbe Index (WI).

The fueling infrastructure for natural gas is based on a pipeline infrastructure serviced by multiple wellheads across North America as shown in Figure 1. As the wellheads are not connected to one another, the products pumped out of the ground are different from site to site. Pipes from wellheads gather at a central processing plant where oil, condensate, water, liquids, sulfur (normally less than 17ppm), and carbon dioxide are removed. Most of the more valuable gaseous hydrocarbon constituents (ethane, propane, butane, etc.) can be recovered by different methods, but are not all 100% efficient. Since the final product is normally sold based on energy content for residential and business use there is little concern for further refining the fuel for transportation use. This leaves heavier hydrocarbon components that can reduce the fuels knock resistance. In some higher altitude environments oxygen is injected into the pipeline to better combust the gas in burner applications like stoves and water heaters.

The objective of this study was to compare the performance and emissions of three CNG vehicles operating on a wide range of CNG fuels available in the United States.

Source: Energy Information Administration, Office of Oil & Gas, Natural Gas Division, Gas Transportation Information System

Figure 1. U.S. Natural Gas Pipeline Network, 2009

3.0 Approach and Test Procedures

SGS Environmental Testing Corporation (SGS) collaborated with CRC to develop the project approach and test procedures. Vehicle lab testing was performed at SGS's Aurora, Colorado laboratory. SGS is an accredited laboratory in compliance with ISO 17025-2005 quality management, and performs emissions certification tests per EPA's 40CFR86 standards.

3.1 Vehicle Models and Recruitment

This study was designed to discern the effects of extreme CNG fuel composition on vehicle exhaust emissions and fuel economy. Base engine architecture and control strategies vary within natural gas powered light-duty vehicles offered from each manufacturer. Of all available options, one common feature is that light-duty NGVs are all operating with stoichiometric combustion and spark ignition. This also implies that three way catalytic converters are used to meet exhaust emissions regulations. Three different vehicle models were chosen for this study which capture bi-fuel, natural aspiration, and turbocharging. The vehicle model years ranged from 2012 to 2014 with two models currently available in the US and one selected from Europe.

The three vehicles participating in the study are summarized in Table 1. The vehicles were production models supplied by participating manufacturers.

Table 1. Vehicles Participating in CRC E-109 Study

Model Year	Make	Model	Engine Size (L)	# of Cylinders	Configuration	Gasoline Fuel Tank Size (Gal)	CNG Fuel Tank Size (GGE)	CNG Fuel Tank Material	Engine Family	Exap Family	Exhaust Emissions Standard
2014	RAM	2500 CNG	5.7	8	Normally Aspirated, Bi-Fuel	8.0	18.2	Steel	ECRXD05.75VY	ECRXR0272TCY	HDV / ULEV II MDV
2012	Honda	Civic GX	1.8	4	Normally Aspirated, CNG Only	n/a	8.0	Composite	CHNXV01.88DT	n/a	T2B2 / LEV II SULEV
2014	Volkswagen	Golf TGI	1.4	4	Turbocharged, Bi-Fuel	13.2	7.3	Steel	n/a	n/a	EURO 6

The 2014 Ram 2500 CNG is shown in Figure 2. The Dodge Ram was received on 9/25/2014 with 3364 miles on the odometer and in good overall condition. The mileage at the beginning of the first asreceived emissions test was 3409 miles. The engine configuration was a naturally aspirated 5.7L 8cylinder operating on both CNG and gasoline shown in Figure 3. The fuel system had two composite CNG tanks capable of 3600psig storage with a total capacity of 18.2 GGE. Exhaust aftertreatment consisted of a two close coupled three-way-catalysts with engine-out narrowband oxygen sensors and post-catalyst narrow band oxygen sensors. Cylinder specific port fuel injectors delivered CNG to the intake ports. An additional gasoline fuel system was also installed with port injection. An 8-speed automatic transmission drives the rear wheels.

Figure 2. 2014 Dodge Ram 2500 CNG

Figure 3. 2014 Dodge Ram 2500 CNG Engine Bay

The 2012 Honda Civic GX is shown in Figure 4. The Honda Civic was received on 5/8/2014 with 4690 miles on the odometer and in good overall condition. The engine configuration was a naturally aspirated 1.8L 4-cylinder operating on CNG only shown in Figure 5. The fuel system had one composite CNG tank capable of 3600psig storage with a total capacity of 8.0 GGE. Exhaust aftertreatment consisted of a close coupled three-way-catalyst with engine-out and post-catalyst narrow band oxygen sensors and close coupled secondary catalyst. Cylinder specific port fuel injectors delivered CNG to the intake manifold. A 5-speed automatic transmission drives the front wheels.

Figure 4. 2012 Honda Civic GX

Figure 5. 2012 Honda Civic GX Engine Bay

The 2014 Volkswagen Golf TGI is shown in Figure 6. This vehicle was a European model transported to the United States for testing purposes. The VW Golf was received on 8/8/2014 with 6059 miles on the odometer and in overall good condition. The engine configuration was a turbocharged 1.4L 4-cylinder operating independently on both CNG and gasoline depending on the available CNG tank pressure and is shown in Figure 7. The system operates on CNG until the tank is depleted, then switches to gasoline until the CNG tank pressure is restored. The fuel system had two steel CNG tanks capable of 3000psig storage with a total capacity of 7.3 GGE. The gasoline tank had a capacity of 13.2 gallons. Exhaust aftertreatment consisted of a three-way-catalyst downstream of the turbocharger with an engine-out wideband oxygen sensor and a post-catalyst narrow band oxygen sensor. Cylinder specific port fuel injectors deliver CNG to the intake manifold. The gasoline fuel system was direct injection. A 6-speed manual transmission drives the front wheels.

Figure 6. 2014 Volkswagen Golf TGI

Figure 7. 2014 Volkswagen Golf TGI Engine Bay

3.2 Preparation and As-Received Emissions

The test vehicles completed an inspection and screening test to confirm proper vehicle operation and collect baseline emissions:

- No active or pending MILs/DTCs
- Serviceable and safe tires, but not new tires
- VIN, ECM calibration, and emissions certification family check
- Check for exhaust leaks and readiness for testing
- Refuel with locally available CNG
- Road Load Derivation
- LA4 Preparation Cycle
- Soak 12-36 hours
- Evaporative Canisters were preconditioned for the bi-fueled vehicles at 40g/hr with a 2 gram break through method
- FTP-75 Bag Only
- LA-92 preparation cycle
- Soak 12-36 hours
- LA-92 3-bag test

SAE J2264 road load derivations were performed for the vehicles using vehicle target coefficients listed in Table 2 below. Target coefficients for the Honda Civic were chosen from the EPA certification 2012 database. The target coefficients for the VW Golf were chosen after consultation with the manufacturer since there are no data available in the United States. The target coefficients for the Dodge Ram were chosen from the EPA certification database for the 2014 model year. The road load comparison for each vehicle is shown in Figure 8. The Volkswagen Golf TGI had the lightest road load of the three vehicles and the Ram 2500 CNG had the highest road load.

Manufacturer	Ram 2500 CNG	Honda Civic GX	Volkswagen Golf TGI	
ETW (lbs)	8500	3125	3250	
A (lb _f)	65.88	23.0700	17.3100	
B (lb _f /mph)	1.7806	0.1703	0.1339	
C (lb _f /mph²)	0.02642	0.0166	0.01729	
Tire Pressure (psig)	80	30	35	
Tire Size	275/70/18	195/65/R15	205/55/R16	
Tire Manufaturer	Firestone	Firestone	Continental	
Tire Model	Transforce HT	Affinity Touring S4	ContiEcoContact	

Table 2.	Vehicle	Target	Road	Load	Coefficients
----------	---------	--------	------	------	--------------

Figure 8. Dyno Force Comparison

Following the derivations, each vehicle received a LA4 prep cycle, canister loading for the bi-fuel vehicles, and a 12-36 hour soak in a temperature and humidity controlled environment prior to the FTP75 emissions test. For all testing, the manual transmission Volkswagen Golf TGI followed the EPA recommended shift schedule as shown in Table 3.

Gear	Standard Shift Speeds
1-2	≥15mph
2-3	≥ 25mph
3-4	≥ 40mph
4-5	≥ 45mph
5-6	≥ 50mph

Table 3. EPA Standard Shift Schedule for 6-Speed Manual

Gasoline drain and fills were performed on the two bi-fuel vehicles prior to performing the asreceived emissions tests. EPA Federal Tier 2 High Altitude Certification fuel was used and remained in the gasoline tanks of the bi-fuel vehicles for the duration of the program testing with COA documentation provided in Appendix 12.2. The CNG fuel used for the as-received test was market fuel sourced from a local Denver CNG station with reported constituents as shown below in Table 4. The fuel had an average Wobbe Index of 1267.05 BTU/ft³ and a MN of 81.

Table 4. Denver BTU Z	Zone – 2014 Average	Gas Quality
-----------------------	---------------------	-------------

MONTHLY AVERAGE GAS QUALITY ¹ DENVER BTU ZONE - 2014								
	July	August	Average					
	mol %	mol %	mol %					
CARBON DIOXIDE	1.153	1.22	1.1865					
OXYGEN	1.215	1.126	1.1705					
NITROGEN	5.027	4.986	5.0065					
METHANE	84.08	84.324	84.202					
ETHANE	7.386	7.213	7.2995					
PROPANE	0.952	0.948	0.95					
I-BUTANE	0.056	0.055	0.0555					
N-BUTANE	0.101	0.099	0.1					
I-PENTANE	0.013	0.013	0.013					
N-PENTANE	0.011	0.011	0.011					
HEXANE-PLUS	0.006	0.005	0.0055					
TOTAL	100	100						
	Gas Properties (14.73	3 psia, 60°F, dry)						
NET HEATING VALUE ² (Btu/scf)	916.3	915.5	915.9					
GROSS HEATING VALUE ² (Btu/scf)	1014.9	1014.1	1014.5					
SPECIFIC GRAVITY ²	0.6415	0.6406	0.64105					
WOBBE	1267.1	1267	1267.05					
KG CO ₂ /MMBtu ³	53.9	53.9	53.9					
¹ Values show n are volume w eighted av	verages for all supplies into zone ar	nd may not represent deliveries to	a specific location at a given time					
² ASTM D3588 Standard Practice for Ca and GPA 2145 Table of ³ Carbon dioxide factor based only or	alculating Heat Value, Compressibilit f Physical Constants of Paraffin Hy n combustion of gas with given corr	y Factor and Relative Density (Spe drocarbons and Other Components position. Multiply by Gross Heating	ecific Gravity) of Gaseous Fuels s of Natural Gas Value/1,000,000) for MT/Mscf					

Source: http://www1.xcelenergy.com/webebb/html/GasQualityZone.asp

As-received 3-bag LA92 tests were also performed on all three vehicles with results shown in Table 5. Emissions certification standards for the Honda Civic GX and Ram 2500 CNG were available

from the public EPA database for the FTP75 emission test and shown for comparison, while values for the Volkswagen Golf TGI were unavailable as it is a European market vehicle.

ETD7E and LAO2 As Resolved Results	СО	NOx	CH4	CREE	NMOG	N-CH4	нсно	HC	CO2	FE
FTP75 and LA92 As-Received Results	(g/mi)	(g/mi)	(g/mi)	(g/mi)	(g/mi)	(g/mi)	(g/mi)	(g/mi)	(g/mi)	(mpg)
Honda Civic GX										
FTP75 Emission Standard T2B2	2.1	0.02	0.03	n/a	0.01	n/a	n/a	n/a	n/a	n/a
FTP75 SGS 2116985 As-Received	0.1061	0.004	0.0108	208.2963	n/a	0.0008	n/a	0.011	208.1	31.09
LA92 SGS 3118990 As-Received	0.2716	0.0016	0.0079	225.9284	n/a	0.0029	n/a	0.0102	225.48	28.66
Volkswagen Golf TGI										
FTP75 Emission Standard	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
FTP75 SGS 3119188 As-Received	0.0725	0.0551	0.0424	200.2202	n/a	0.0052	n/a	0.0448	199.99	32.34
LA92 SGS 3119162 As-Received	0.1041	0.0613	0.0278	209.7798	n/a	0.0044	n/a	0.0304	209.54	30.87
Ram 2500 CNG										
FTP75 Emission Standard HDV1	7.3	0.2	0.267	n/a	0.195	n/a	0.032	n/a	n/a	n/a
FTP75 SGS 3119377 As-Received	0.2853	0.0242	0.1344	621.6669	n/a	0.0129	n/a	0.1384	620.85	10.42
LA92 SGS 3119435 As-Received	0.343	0.1282	0.1996	693.6864	n/a	0.0215	n/a	0.2079	692.6	9.34

Table 5. FTP75 and LA92 As-Received Vehicle Emissions

All three vehicles exhibited higher composite CO_2 and lower fuel economy for the LA92 test versus the FTP75 test. Both of the US market vehicles tested within the applicable federal emissions standard. Results were deemed acceptable to proceed with vehicle preparation for further testing.

3.3 Vehicle Preparation

Each vehicle was modified for test instrumentation, including:

- Temporary defeat of traction control for testing on the chassis dynamometer.
- Installation of a K-type thermocouple upstream of the first catalyst, for exhaust temperature measurement, as required by the EPEFE/WOT catalyst conditioning procedure.
- Installation of a gaseous emissions sample port upstream of the first catalyst for air-fuel ratio determination with a lambda sensor, as required by the EPEFE/WOT catalyst conditioning procedure and for engine-out emissions sampling.
- Installation of signal breakout connected to the engine's 60-2 crank angle sensor signal wires.
- Isolation of the bi-fuel vehicle's evaporative emissions system by means of completely purging the charcoal canister prior to the emissions test. This minimized possible commanded purge events of the gasoline fuel system from influencing emissions results.
- Isolation of the vehicle's fuel tank by means of closing tank shut-off valve(s) specific to each vehicle.

3.3.1 Pre Catalyst Instrumentation

An emissions sample probe and exhaust gas thermocouple were instrumented at the engine-out location upstream of the first three-way catalyst by welding NPT bungs to the factory exhaust systems. Locations are illustrated in Figure 9, Figure 10, and Figure 11 below.

Figure 9. Dodge Ram 2500 CNG Pre Catalyst Instrumentation

Figure 10. Honda Civic GX Pre Catalyst Instrumentation

Figure 11. VW Golf TGI Pre Catalyst Instrumentation

The refueling ports on all three vehicles were NGV1 type as shown in Figure 12, Figure 13, and Figure 14 below. The European market Volkswagen Golf TGI had a slightly larger outer diameter which allowed only 3000 psig filling receptacles to attach. This design ensured a higher pressure 3600 psig receptacle cannot attach to the 3000 psig filling port. Both the Honda Civic GX and Ram 2500 CNG had a smaller outer diameter NGV1 port allowing use of both 3000 and 3600 psig filling receptacles.

Figure 12. NGV1 3600psig Fill Port (Dodge Ram 2500 CNG)

Figure 13. NGV1 3600psig Fill Port (Honda Civic GX)

Figure 14. NGV1 3000psig Fill Port (VW Golf TGI)

The Type 3 tank design for the Honda Civic GX was composed of a metal liner reinforced with a composite wrap as shown in Figure 16 below. Both the Volkswagen Golf TGI and Dodge Ram 2500 CNG utilized a Type 1 tank design of all steel construction shown in Figure 15 and Figure 17.

Figure 15. Dodge Ram 2500 CNG Fuel Tanks (Steel Type 1)

Figure 16. Honda Civic GX Fuel Tank (Composite Type 3)

Figure 17. VW Golf TGI Fuel Tanks (Steel Type 1)

3.3.2 CNG Tank Bypass

Each vehicle was equipped with a tank shut-off valve that allowed service to the natural gas fuel system. When the shut-off valve was in the closed position, it allowed the fuel fill port to remain connected to the engine supply line to the regulator and bypassed the vehicle's CNG fuel tank.

In order to supply an external fuel source of six-pack bottled gases to the each vehicle a method was selected that was analogous to the control system. Each CNG tank system had an electronic shutoff valve at the inlet/outlet of the tank which may be opened by energizing the valve coil. Typically the valve is only energized when the ignition is in the on or run position. To prevent any diagnostic trouble codes from setting, the electrical harness was left connected to the electronic shutoff valve.

Each setup had a jack screw or manual shutoff valve on the end of the tank for serviceability. To isolate the flow of gas from the onboard tanks the manual shutoff valves were closed. On both the Volkswagen Golf TGI, shown in Figure 18, and the Dodge Ram 2500 CNG, shown in Figure 19, the NGV1 fill port was connected to the fuel system between the fuel tank and the engine supply line. When the

fuel tank manual shutoff valves are in the closed position it leaves the NGV1 fill port connected to the engine supply line.

Figure 18. VW CNG Tank Shut-Off Valve (One per Tank)

Figure 19. Ram 2500 CNG Fuel Tank Shut-Off Valve (One per Tank)

Figure 20 below shows an internal cutaway view of the Faber tank valve common to both the Volkswagen Golf TGI and the Ram 2500 CNG. With the mechanical shut-off valve in the closed position, CNG is not allowed to flow into or out of the tank under normal conditions. If the temperature of the thermally activated pressure relief device, or PRD, exceeds 110°C the fusible plug will melt allowing gas to escape from the tank at a controlled rate into the atmosphere.

Figure 20. VW Golf TGI Fuel Tank Shut-Off Valve From Volkswagen Service Training Self-Study Programme 528, "The Natural Gas Drive in the Golf/Golf Estate TGI BlueMotion"

The Honda Civic GX had a unique tank valve where one jack screw is available to close off the inlet to the tank, and a second jack screw is available to close off the outlet of the tank. The separate flow paths allow for a controlled fill rate taking advantage of the cooling effect produced by pressure drop of fuel entering the tank. The separate outlet then allows for less restricted CNG flow to the engine. The plumbing of the system does not allow easy isolation of the tank since the NGV1 fill port is connected directly to the tank valve at the inlet jack screw location. The method used to bypass the Honda's tank was to close both jack screws, disconnect the engine supply line, and adapt a NGV1 fill port direct to the engine supply line as shown in Figure 21 below.

Figure 21. Honda Civic GX Tank Bypass Setup

3.4 Overall Test Plan and Test Sequence

The test plan was designed to compare the emissions and fuel economy from varying natural gas fuel blends. In order to control the fuel supply to the vehicle's engine, fuels were synthetically blended into 300 series DOT cylinders. Six cylinders of the same fuel were grouped together and connected by a single outlet manifold to provide approximately 13.3 GGE at 1800 psig. This allowed for one round of testing for three vehicles with the same six-pack of cylinders consuming 8.7 GGE.

Connection to each vehicle's NGV1 fill port was done by a CNG certified fuel supply hose with a NGV1 dry break filling receptacle that keeps the fuel line free of atmospheric air. The two US market vehicles used a 3600 psi NGV1 fill port. The European Volkswagen Golf used a 3000-3600 psig NGM1 adapter fitting as the system is designed for lower maximum fill pressure.

The test sequence and fuel used for each test procedure is summarized in Table 6. An attempt was made to randomize the fuel and vehicle test order within practical constraints.

The most efficient way to test each vehicle was to use one fuel blend each day. The Ram was tested first in sequence for each fuel change to allow the lower horsepower vehicles to deplete the fuel cylinders at a slower rate when there was less pressure. The Ram 2500 CNG has the highest horsepower rating and therefore it required the highest fuel flow rate during the EPEFE test. The fuels used in the study are described in Section 4.0.

To mitigate and chance of fuel carryover and to allow the vehicle's control system to fully adapt to the test fuel, a total of 43.9 miles were driven over preparation cycles.

The EPEFE cycle consisted of ten WOT events. The EPEFE cycle was run at 100°F ambient temperature, as it was also used for the purpose of performing Knock Investigation #1.

The preparation cycle used prior to the emissions test was two consecutive LA92 2-Phase cycles driven back to back as shown in Figure 22 below. Vehicles were then soaked for 12-36 hours in a temperature and humidity controlled environment. The two bi-fuel vehicles' canisters were purged for one hour during every soak period prior to the emissions test.

Table 6. Emissions Test Sequence for CRC E-109

Figure 22. Preconditioning Cycle, LA92 x2

A LA-92 emissions test procedure was then performed following the soak period in a certificationcompliant chassis dynamometer laboratory. The LA92 test procedure was a 3-Phase transient drive cycle further described in Figure 23. The first and third phases were 300 seconds and had an average speed of 14.18 mph. The second phase was 1135 seconds and had an average speed of 27.37 mph. A ten-minute hot soak period was included between phases 2 and 3. The LA92 had higher speeds and more aggressive accelerations than the FTP75, and was used to explore relativistic effects of each fuel.

All emissions tests were driven by the same technician to control test-to-test driver variability.

Vehicle exhaust emissions were measured for each LA-92 3-Phase drive cycle performed as part of the test sequence. Emissions were measured by collecting bag samples for each phase from the constant volume sampling system as well as engine-out and tailpipe raw modal emissions.

Engine-out emissions were sampled upstream of the aftertreatment system, to compare lambda and modal emissions. Raw-tailpipe emissions and dilute bag emissions were sampled downstream of all after treatment components in order to compare and correlate the sampling methods. Using two sampling methods downstream of the aftertreatment system adds an extra quality check to ensure the operation of each analyzer.

Figure 23. Emissions Cycle, LA92 3-Phase Test

3.5 Test Cell Equipment and Layout

Emissions tests were performed in an emissions certification-compliant chassis dynamometer laboratory at SGS Environmental Testing Corporation in Aurora, Colorado. All emissions tests were run on Site 3, featuring a Burke Porter 48" roll dynamometer in a temperature and humidity controlled environment. The laboratory has a constant volume sampling system (CVS), raw modal and dilute bag gas sampling and analysis. Bag samples were simultaneously collected from the diluted vehicle exhaust and from the ambient, to ensure quantification of the background and accurate calculation of phaseaveraged exhaust mass emissions. The bag analysis included measurement of CO, CO_2 , NOx, THC, and CH₄ gases. Emissions laboratory equipment was compliant with EPA 40CFR Part 86 subpart B standards.

The six-pack cylinders were positioned behind the vehicle in the test cell as shown in Figure 244 for both the FWD and RWD vehicle configurations. When changing from RWD to FWD, the position of the cylinders remained the same. The 20' fuel supply hose was able to reach the filling port on all vehicles, regardless of the vehicle driveline. Safety ventilation was plumbed into the fuel supply line that would evacuate any gaseous fuel pressure in the NGV1 fill port adaptor or fuel line from the six-pack to the vehicle.

When changing vehicles using the same fuel, the dry break NGV1 fill port allowed minimal gas pressure to escape from the fuel supply. The EPEFE and 2xLA92 preparation cycles ensured the vehicle supply line was purged of any carry over residual fuel. At the end of the preparation cycles the vehicle's fuel system remained pressurized when the supply line was disconnected for the soak period, and then reconnected to the same fuel prior to the emissions test.

Figure 24. SGS Site 3 Test Cell Layout for RWD and FWD Vehicles

Figure 255, Figure 26, and Figure 27 below illustrate the test cell setup for all three vehicles with the six-pack bottle cart behind the vehicle, Coriolis flow meter in-line with the supply line, and the supply line connected to the NGV1 fill port. The cart holding the Coriolis flow meter was secured to the floor which created a stationary mounting point for the dry-break quick disconnect fittings in the supply line in the unlikely event the vehicle were to move off the dynamometer.

Figure 25. Dodge Ram 2500 CNG Installed on SGS Site 3

Figure 26. Honda Civic GX Installed on SGS Site 3

Figure 27. Volkswagen Golf TGI Installed on SGS Site 3

4.0 Fuels

Originally six target fuel blends were selected based on results from the CRC PC-2-12 program encompassing high and low methane number and Wobbe Index. A seventh fuel was added to capture the average of the fuels found in the field. The table below illustrates the CRC targets and the SGS proposed target fuels. Differences between the values were because of gravimetric blending limits as directed by the fuel supplier. The maximum pressure was targeted at 1800 psig which excluded hexane from the blends and limited pentane to 0.5%, and butane to a maximum of 2% per supplier guidance. To create fuel with a high methane number, the majority of the blend must contain mostly methane. Adding heavier molecular weight hydrocarbons had an impact of both lowering the methane number and increasing the Wobbe Index as the heavier hydrocarbons have greater energy density.

Table 7 below shows the SGS proposed target percent volume of each constituent for each fuel. Methane number was calculated using the California Air Resource Board (CARB) hydrogen-to-carbon atomic ratio method (H/C method), where the motor octane number (MON) was used to determine methane number (MN). The H/C ratio is 4 for pure methane. The correlation (1) for MON is not valid for H/C < 2.5 and for inert gas concentrations in fuel greater than 5%. The correlation shown in (2) typically predicts MNs 8.6% higher than the actual test values¹.

$$MON = -406.14 + 508.04(H/C) - 173.55(H/C)^2 + 20.17(H/C)^3$$
(1)

$$MN = 1.624(MON) - 119.1 \tag{2}$$

Wobbe Index was calculated using the fuel's higher heating value and specific gravity as shown below in (3).

Wobbe Index(BTU/ft³) =
$$\frac{HHV(BTU/ft^3)}{\sqrt{SG}}$$
 (3)

Fuel #		1	2	3	4	5	6	7
CRC Proposed	Methane Number	85	105	85	60	85	60	97
Targets	Wobbe Index (BTU/ft ³)	1225	1330	1330	1330	1425	1425	1345
SGS Proposed	Methane Number	85.13	105.59	85.28	60.02	84.95	60.07	96.95
Blends	Wobbe Index (BTU/ft3)	1227	1334	1334	1327	1404	1427	1342
		(% Vol)						
Methane	CH4	94.300%	98.780%	92.500%	75.000%	94.700%	77.800%	96.700%
Ethane	C2H6	0.000%	0.000%	0.000%	10.500%	0.000%	13.900%	2.200%
Propane	C3H8	0.000%	0.000%	4.300%	4.000%	5.300%	4.000%	0.000%
Butane	C4H10	0.000%	0.000%	0.000%	2.000%	0.000%	1.500%	0.000%
Pentane	C5H12	0.000%	0.000%	0.000%	0.500%	0.000%	0.500%	0.000%
Hexane	C6+	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Oxygen	O2	1.000%	0.000%	0.500%	1.000%	0.000%	0.000%	0.000%
Nitrogen	N2	0.000%	0.720%	2.000%	4.700%	0.000%	0.000%	0.000%
Carbon Dioxide	CO2	4.700%	0.500%	0.700%	2.300%	0.000%	2.300%	1.100%
H/C Ratio		3.810	3.980	3.811	3.485	3.808	3.486	3.914
O/C Ratio		0.115	0.010	0.023	0.055	0.000	0.036	0.022
Stoich A/F Ratio		14.737	16.710	15.957	14.509	16.948	15.844	16.611
HHV (BTU/ft ³)		954.0	1000.0	1045.0	1133.0	1092.0	1205.0	1018.0
Spec	cific Gravity	0.605	0.562	0.613	0.729	0.605	0.714	0.575

Table 7. CNG Target Fuel Blends

¹ "Paper Study on the Effect of Varying Fuel Composition on Fuel Supplied to Detroit Diesel Gas Engines", Report prepared for Southern California Gas Company, May 2005.

Figure 28. CNG Fuel Blends Chart

Blends were prepared by the fuel supplier gravimetrically by dispensing the raw constituents into DOT 300 series bottles using calibrated flow meters. Twenty cylinders of each fuel were procured totaling 140 300-series cylinders. The bottles were delivered and stored inside SGS's facility in a temperature controlled environment with methane detection and an explosion proof fan. Handling of the cylinders was conducted according to an internal safety plan for flammable gases. The fuel did not need conditioning prior to the emissions testing as the bottle storage was at the same environmental conditions as the emissions test cell. Six cylinders of each test fuel were staged on six-pack carts with a common outlet manifold for easy transportation and change out as shown in Figure 29 below.

Figure 29. SGS CNG Bottle Storage Room

Fuel speciation was cataloged by gas chromatography to determine molar % of methane, ethane, propane, isobutane, N-butane, isopentane, N-pentane, hexane+, helium, hydrogen, oxygen, nitrogen, and carbon dioxide. Heating value was determined by ASTM D3588-98. From these data, methane number was calculated by the ARB measured H/C ratio method, Wobbe Index by higher heating value, specific gravity, and stoichiometric air/fuel ratio were also calculated. Table 8 below shows a summary of the AirGas fuel analysis.

Fuel #		1	2	3	4	5	6	7
Air Gas Report #		126- 4004137 93-1	126- 4004111 88-1	126- 4004149 39-1A	126- 4004100 49-1	126- 4004126 26-1	126- 4004100 51-1	126- 4004165 07-1
CRC Proposed	Methane Number	85	105	85	60	85	60	97
Targets	Wobbe Index (BTU/ft ³)	1225	1330	1330	1330	1425	1425	1345
Based on	Methane Number	85.06	105.66	85.23	60.02	84.96	60.06	96.89
Certification	Wobbe Index (BTU/ft3)	1228	1337	1338	1328	1406	1428	1344
		(% Vol)	(% Vol)	(% Vol)	(% Vol)	(% Vol)	(% Vol)	(% Vol)
Methane	CH4	94.270%	98.810%	92.510%	75.000%	94.710%	77.790%	96.680%
Ethane	C2H6	0.000%	0.000%	0.000%	10.500%	0.000%	13.900%	2.218%
Propane	C3H8	0.000%	0.000%	4.352%	4.000%	5.295%	4.001%	0.000%
Butane	C4H10	0.000%	0.000%	0.000%	1.999%	0.000%	1.500%	0.000%
Pentane	C5H12	0.000%	0.000%	0.000%	0.501%	0.000%	0.503%	0.000%
Hexane	C6+	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Oxygen	O2	1.016%	0.000%	0.485%	1.000%	0.000%	0.000%	0.000%
Nitrogen	N2	0.000%	0.702%	1.987%	4.700%	0.000%	0.000%	0.000%
Carbon Dioxide	CO2	4.716%	0.489%	0.666%	2.300%	0.000%	2.303%	1.103%
H/C Ratio		3.809	3.980	3.811	3.485	3.808	3.486	3.913
O/C Ratio		0.116	0.010	0.022	0.055	0.000	0.036	0.022
Stoich A/F Ratio		14.725	16.720	15.979	14.509	16.948	15.843	16.609
HHV (BTU/ft ³)		956.3	1002.3	1048.7	1135.4	1094.9	1208.3	1020.2
Specific Gravity		0.606	0.562	0.615	0.731	0.606	0.716	0.576

Table 8. AirGas Certification Analysis

Independent verification of the supplier's measured gas constituents was performed by Empact Analytical using gas chromatography per ASTM D1945-10. The sample preparation method was done by connecting a vacuum evacuated 300cc cylinder to the gas bottle, drawing a vacuum on the connection, then charging the 300cc cylinder to full bottle pressure of approximately 1800 PSIG. The sample collection method minimized contamination from atmospheric air and if there was contamination it would be a much smaller percent of the total mass. Results from Empact Analytical closely matched the target fuel blends as shown in Table 9 below. In addition they are nearly identical to the certifications provided by the gas supplier.

Fuel #		1	2	3	4	5	6	7
Empact Analystical Report #		2014102 2-04	2014102 2-06	2014102 2-05	2014102 2-02	2014102 2-01	2014102 2-03	2014102 2-07
CRC Proposed	Methane Number	85	105	85	60	85	60	97
Targets	Wobbe Index (BTU/ft ³)	1225	1330	1330	1330	1425	1425	1345
Based on	Methane Number	84.96	105.48	85.37	60.32	85.05	60.07	96.83
Certification	Wobbe Index (BTU/ft3)	1228	1335	1338	1324	1405	1427	1343
		(% Vol)						
Methane	CH4	94.230%	98.760%	92.610%	75.120%	94.710%	77.830%	96.650%
Ethane	C2H6	0.000%	0.000%	0.000%	10.420%	0.000%	13.820%	2.210%
Propane	C3H8	0.000%	0.000%	4.290%	3.980%	5.270%	4.010%	0.000%
Butane	C4H10	0.000%	0.000%	0.000%	1.950%	0.000%	1.510%	0.000%
Pentane	C5H12	0.000%	0.000%	0.000%	0.450%	0.000%	0.500%	0.000%
Hexane	C6+	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%	0.000%
Oxygen	O2	1.010%	0.000%	0.470%	1.010%	0.010%	0.000%	0.000%
Nitrogen	N2	0.020%	0.720%	1.930%	4.760%	0.010%	0.010%	0.020%
Carbon Dioxide	CO2	4.740%	0.520%	0.690%	2.300%	0.000%	2.310%	1.120%
H/C Ratio		3.808	3.979	3.812	3.491	3.809	3.486	3.913
O/C Ratio		0.116	0.010	0.022	0.055	0.000	0.036	0.022
Stoich A/F Ratio		14.713	16.701	15.991	14.493	16.942	15.839	16.596
HHV (BTU/ft ³)		955.9	1001.8	1048.1	1131.0	1094.3	1207.7	1019.8
Spec	cific Gravity	0.606	0.563	0.614	0.729	0.606	0.716	0.576

Table 9. Empact Analytical Certification Analysis vs. Target CNG Blends

The AirGas chromatography targets and measured results were within 4.8% for hydrocarbon based constituents, and within 1.6% for non-hydrocarbon based constituents. The Empact Analytical results fell within 10% of the target values for the hydrocarbon constituents and within 6% for the non-hydrocarbon constituents. Fuel properties for emissions calculations were based on EPA 40CFR600.113 to determine the carbon weight fraction for the total natural gas blend, hydrocarbon specific carbon weight fraction, CO_2 weight fraction, and non-methane hydrocarbon weight fraction based on the AirGas certification values. This report's emissions calculations were also based on the AirGas certification reports.
5.0 Test Results Organization

Over 42 LA-92 exhaust emissions tests were performed for the study. The test results reside in a master dataset in Microsoft Excel[®] format. This master dataset is also illustrated in Appendices 5-20 of this report showing weighted and per-phase bag, engine-out, and tailpipe emissions in bar charts. To aid in visualization and understanding of data scatterplots, series sets have different symbols per fuel type as shown in Figure 30.

Figure 30. Key to Symbols for Fuel Type

6.0 LA-92 Exhaust Emissions Test Results, Plots, and Data Summaries

In this report, "Bag" emissions refers to the diluted exhaust emissions captured in bags and corrected for ambient background. The ambient sample was also simultaneously collected in bags from the test cell room. Bag emissions are therefore the post-catalyst emissions from the vehicle. Bag results are most accurate for mass emissions determination, and were used for the statistical analysis and to draw most conclusions.

"Engine" or "Engine-Out" designates modal emissions exhausted directly from the engine, with the sample being drawn continuously and upstream of the catalysts. "Tailpipe" modal results pertain to emissions downstream of all catalysts but prior to exhaust dilution. Unlike discrete batch-analyzed "Bag" emissions, both "Engine-Out" and "Tailpipe" modal emissions were sampled continuously and provided information about the time to catalyst light-off and catalyst conversion efficiency.

"Weighted" emissions were determined using results from the three phases of the LA92 cycle. The formula for weighting was the same as the FTP75, taking actual mileage from each phase of the LA92 cycle into account.

In the figures presented, "THC" and "HC" designations are used interchangeably and represent the total hydrocarbons measured using a flame ionization detector.

Natural gas fuel economy was calculated as MPGe (miles per gasoline gallon equivalent) based on EPA 40CFR600.113-12(k)(1) per the equation (4) below using the fuel properties shown in Section 4.0.

$$MPGe = \frac{CWF_{HC/NG} \times D_{NG} \times 121.5}{(0.749 \times CH_4) + (CWF_{NMHC} \times NMHC) + (0.429 \times CO) + (0.273 \times (CO_2 - CO_{2NG}))}$$
(4)

Where:

MPGe = miles per gasoline gallon equivalent of natural gas.

CWF_{HC/NG} = carbon weight fraction based on the hydrocarbon constituents in the natural gas fuel.

 D_{NG} = density of the natural gas fuel [grams/ft³ at 20 °C and 760 mmHg].

 CH_4 , NMHC, CO, and CO_2 = weighted mass exhaust emissions [grams/mile] for methane, non-methane hydrocarbons, carbon monoxide, and carbon dioxide.

 CWF_{NMHC} = carbon weight fraction of the non-methane hydrocarbon constituents in the fuel as determined from the speciated fuel composition.

 CO_{2NG} = grams of carbon dioxide in the natural gas fuel consumed per mile of travel.

6.1 Vehicle A Results

Vehicle A was the only dedicated NGV of the test group and did not have an evaporative emissions system. Therefore there were no special considerations needed for canister preconditioning during the soak period prior to the emissions test. Fourteen LA92 3-bag emissions tests were performed with bag-weighted (post-catalyst) results shown below in Table 10. Tests performed on the same fuel show good repeatability for all emissions measurements. Fuel economy changed significantly between fuels with the lowest value of 25.94 MPGe on CNG01 and the highest of 34.39 MPGe on CNG06. Fuel economy was found to be proportional to the Wobbe Index, as expected. Bag-weighted THC were below 0.0180 g/mi for all tests and bag-weighted NOx was nearly zero. CO fell between 0.255 g/mi and 0.354 g/mi.

	Test		Weighted Summary						
Date	Number	Fuel	BAG HC	BAG CO	BAG CO2	BAG NOx	BAG CH4	BAG N-CH4	BAG FE
Vehicle A			<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	(MPGe)
10/24/2014	3119919	CRC_CNG01	0.018	0.295	230.900	0.004	0.017	0.002	26.030
10/29/2014	3120008	CRC_CNG01	0.011	0.314	231.630	0.001	0.010	0.001	25.940
11/6/2014	3120196	CRC_CNG02	0.012	0.264	220.780	0.002	0.011	0.002	28.200
11/11/2014	3120305	CRC_CNG02	0.011	0.339	220.860	0.003	0.011	0.001	28.180
10/27/2014	3119966	CRC_CNG03	0.015	0.309	221.750	0.002	0.014	0.002	30.010
10/31/2014	3120066	CRC_CNG03	0.010	0.285	224.790	0.002	0.009	0.002	29.610
11/3/2014	3120102	CRC_CNG04	0.009	0.277	236.170	0.002	0.007	0.002	31.780
11/12/2014	3120347	CRC_CNG04	0.011	0.324	236.180	0.000	0.008	0.003	31.770
11/4/2014	3120122	CRC_CNG05	0.010	0.255	223.460	0.002	0.009	0.002	31.160
11/10/2014	3120272	CRC_CNG05	0.012	0.307	226.640	0.003	0.010	0.002	30.710
11/5/2014	3120155	CRC_CNG06	0.009	0.310	232.230	0.002	0.007	0.003	34.390
11/7/2014	3120216	CRC_CNG06	0.009	0.354	234.720	0.002	0.007	0.003	34.010
10/28/2014	3119987	CRC_CNG07	0.011	0.347	229.390	0.002	0.010	0.002	27.810
10/30/2014	3120045	CRC_CNG07	0.011	0.302	221.670	0.002	0.011	0.001	28.790

Table 10. Vehicle A LA92 Post-Catalyst Bag-Weighted Emissions Results

Post-catalyst bag NOx emissions were at very low levels, varying between zero (below detection limit) and 4 mg/mile. The engine-out NOx varied between fuels. The catalyst NOx conversion efficiency fell between 99.9% and 100% indicating accurate fueling and a well-developed control strategy. An increasing trend was seen in engine-out NOx when compared to the fuel's total NMHC concentration as shown in Figure 31.

Figure 31. Vehicle A Fuel NMHC % Concentration vs. Engine-Out-Weighted NOx

Differences were seen in NMHC emissions during Phase 1 which encompassed the cold start. CNG01 and CNG02 fuels did not contain any NMHC and showed near zero NMHC emissions. Fuel CNG04 and CNG06 had the highest concentration of NMHC (17.0% and 19.9% respectively) and had correspondingly higher NMHC emissions during Phase 1. Figure 32 below shows a linear trend with increasing fuel NMHC percentage as there was an increase in Phase 1 NMHC emissions.

Figure 32. Vehicle A Fuel NMHC Content vs. Phase 1 Bag NMHC

6.2 Vehicle B Results

Vehicle B had a bi-fuel system with dedicated CNG and gasoline fuel systems. An evaporative emissions charcoal canister was fitted to the vehicle which was purged prior to every emissions test to mitigate any influence in emissions due to canister purge events. Purge flow rate was recorded to identify when the system was commanding the canister purge valve to open. The purge volume recorded for all tests with Vehicle B were below 1.0 ft³.

Fourteen LA92 3-bag emissions tests were performed with bag-weighted results shown below in Table 11. Tests performed on the same fuel showed good repeatability for all emissions measurements. Fuel economy changed between fuels with the lowest value of 28.39 MPGe on CNG01 and the highest of 38.24 MPGe on CNG06. Bag-weighted THC were below 0.047 g/mi for all tests and bag-weighted NOx was had a maximum of 0.060 g/mi. CO fell between 0.255 g/mi and 0.354 g/mi.

	Test				<u> </u>	/eighted Su	ummary		
Date	Number	Fuel	BAG HC	BAG CO	BAG CO2	BAG NOx	BAG CH4	BAG N-CH4	BAG FE
Vehicle B			<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	(MPGe)
10/24/2014	3119916*	CRC_CNG01	0.047	0.182	211.740	0.051	0.032	0.017	28.390
10/29/2014	3120018	CRC_CNG01	0.039	0.093	207.340	0.033	0.040	0.002	29.010
11/6/2014	3120187	CRC_CNG02	0.039	0.087	199.820	0.030	0.040	0.002	31.190
11/11/2014	3120303	CRC_CNG02	0.040	0.072	198.800	0.040	0.042	0.001	31.350
10/27/2014	3119964*	CRC_CNG03	0.043	0.163	205.020	0.060	0.027	0.018	32.480
10/31/2014	3120071	CRC_CNG03	0.041	0.083	199.580	0.042	0.041	0.002	33.380
11/4/2014	3120114	CRC_CNG04	0.026	0.091	209.730	0.027	0.025	0.003	35.820
11/12/2014	3120343	CRC_CNG04	0.027	0.112	213.990	0.022	0.025	0.004	35.100
11/10/2014	3120270	CRC_CNG05	0.035	0.084	199.470	0.032	0.034	0.004	34.940
11/13/2014	3120367*	CRC_CNG05	0.038	0.132	208.540	0.027	0.022	0.017	33.410
11/5/2014	3120158	CRC_CNG06	0.028	0.097	209.930	0.036	0.025	0.005	38.080
11/7/2014	3120221	CRC_CNG06	0.027	0.103	209.060	0.036	0.024	0.005	38.240
10/28/2014	3119985*	CRC_CNG07	0.044	0.169	205.870	0.033	0.028	0.018	31.020
11/14/2014	3120391*	CRC_CNG07	0.040	0.151	207.030	0.032	0.025	0.017	30.850

Table 11. Vehicle B LA92 Post-Catalyst Bag-Weighted Emissions Results

*Tests with cold start operation on gasoline for first 160 seconds during Phase 1

Figure 33 below shows Phase 1 NMHC for Vehicle B. Five out of the fourteen tests had NMHC emissions above 0.05 g/mi during Phase 1. Correspondingly the instantaneous CNG flow measurement using the Coriolis meter was zero for the first 160 seconds of these tests. An example for Test #31120391 is shown in Figure 34 and indicates gasoline operation for the first 160 seconds of this test.

Figure 33. Vehicle B Phase 1 Bag NMHC (g/mi)

Figure 34. Vehicle B CNG07_run2 (Gasoline Cold Start)

Documentation provided for Vehicle B indicated that the control system uses gasoline if the ambient temperature is below -10°C for cold start operation. It is undetermined what parameter(s) are used for gasoline operation during cold starts at 74°F ambient temperature used for these tests, but it is apparent the control system used gasoline under certain operating conditions. The gasoline fuel use on start-up was part of the vehicle's control strategy, and could not be readily defeated by SGS during the testing program. The gasoline fuel use is therefore a confounding factor for some tests for this vehicle. Statistical analysis of the results presented later in this report excluded the tests with gasoline operation during the cold start for Vehicle B.

6.3 Vehicle C Results

Vehicle C had a bi-fuel system with dedicated CNG and gasoline fuel systems. An evaporative emissions charcoal canister was fitted to the vehicle which was purged prior to every emissions test to mitigate any influence in emissions due to canister purge events. Purge flow rate was recorded to identify when the system was commanding the canister purge valve to open. The purge volume recorded for all tests with Vehicle C varied between a total of 6.2-16.98 ft³.

The injection control strategy for Vehicle C consisted of gasoline operation while on CNG to help purge the gasoline injectors at predetermined intervals during a drive cycle to keep the fuel fresh. The manufacturer of Vehicle C provided a modified calibration to disable the periodic gasoline injection to eliminate influence on LA92 emissions test results with OBD scans provided in Appendix 12.3 showing the calibration identification numbers.

Fourteen LA92 3-bag emissions tests were performed with bag-weighted results shown below in Table 12. Tests performed on the same fuel showed good repeatability for all emissions measurements. Fuel economy changed between fuels with the lowest value of 8.79 MPGe on CNG01 and the highest of 11.53 MPGe on CNG06. Bag-weighted THC were below 0.146 g/mi for all tests and bag-weighted NOx had a maximum of 0.259 g/mi. CO fell between 0.369 g/mi and 0.871 g/mi.

	Test		Weighted Summary						
Date	Number	Fuel	BAG_HC	BAG_CO	BAG_CO2	BAG_NOx	BAG_CH4	BAG_N-CH4	BAG_FE
Vehicle C			<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	<u>(g/mi)</u>	(MPGe)
11/14/2014	3120386	CRC_CNG01	0.146	0.369	684.500	0.259	0.152	0.003	8.790
10/29/2014	3120013	CRC_CNG01	0.133	0.388	678.810	0.157	0.138	0.004	8.860
11/6/2014	3120191	CRC_CNG02	0.121	0.392	653.380	0.051	0.125	0.004	9.540
11/25/2014	3120572	CRC_CNG02	0.127	0.550	649.520	0.049	0.131	0.006	9.590
10/27/2014	3119960	CRC_CNG03	0.130	0.871	663.430	0.068	0.128	0.010	10.030
10/31/2014	3120069	CRC_CNG03	0.110	0.425	663.140	0.050	0.110	0.007	10.040
11/3/2014	3120096	CRC_CNG04	0.086	0.410	683.860	0.084	0.076	0.015	10.980
11/21/2014	3120529	CRC_CNG04	0.092	0.458	688.300	0.138	0.079	0.018	10.910
11/4/2014	3120121	CRC_CNG05	0.119	0.839	651.890	0.062	0.119	0.009	10.680
11/11/2014	3120295	CRC_CNG05	0.111	0.466	658.910	0.071	0.110	0.008	10.570
11/5/2014	3120148	CRC_CNG06	0.086	0.866	692.770	0.041	0.072	0.019	11.530
11/7/2014	3120218	CRC_CNG06	0.081	0.464	694.750	0.046	0.068	0.017	11.500
10/28/2014	3119982	CRC_CNG07	0.126	0.681	660.090	0.051	0.128	0.006	9.670
10/30/2014	3120044	CRC_CNG07	0.125	0.839	656.140	0.045	0.128	0.005	9.720

Table 12. Vehicle C LA92 Post-Catalyst Bag-Weighted Emissions Results

Overall the mass emissions from Vehicle C were higher than the other vehicles as expected for this heavier class vehicle. Differences were seen in NMHC emissions during Phase 1 which encompassed the cold start. Fuels CNG01 and CNG02 did not contain any NMHC and had near zero NMHC emissions in the exhaust. Fuels CNG04 and CNG06 had the highest concentration of NMHC (17.0% and 19.9% respectively) and had correspondingly higher NMHC during Phase 1. Figure 35 below shows a linear trend with increasing fuel NMHC percentage and Phase 1 NMHC emissions.

Figure 35. Vehicle C Fuel NMHC Content vs. Phase 1 Bag NMHC

6.4 Vehicle Comparison

To gain a better understanding of the fuel effects, the vehicles are further compared by using modal data, bag data, and other measurements in this section. The data can be used to determine the degree the fuel affected the engine-out emissions and catalyst conversion efficiency.

The stoichiometric air/fuel ratio (volume based) was calculated by taking the mass based Stoich A/F ratio and multiplying it by the fuel's specific gravity. The volume based Stoich A/F ratio versus the bag-weighted fuel economy is shown in Figure 36. The 42 data points for all emissions tests exhibited a strong increasing trend in MPGe with higher volume based Stoich A/F. As less fuel volume was required to achieve stoichiometric combustion, higher fuel economy was achieved.

Figure 36. Bag-Weighted FE vs. Volume Based Stoichiometric A/F

With decreasing fuel energy density there was an increase in average mass fuel flow required as shown in Figure 37. As energy content decreased, more fuel mass was required to maintain the same power level to drive the LA92 cycle. The five tests on Vehicle B showed the lowest average CNG mass fuel flow since the first 160 seconds of the test replace CNG flow with gasoline fuel flow.

Figure 37. Fuel Energy Density vs. Average CNG Mass Fuel Flow

A data quality check comparing the Coriolis flow meter integrated volume fuel flow to the bagweighted fuel economy is shown below in Figure 38. A linear trend was observed in this comparison and also highlighted the five Vehicle B tests (purple series) which operated on gasoline during the first 160 seconds of the cold start of Phase 1.

Figure 38. Bag-Weighted MPGe vs. Total Fuel Consumed (SCF)

Figure 39 illustrates that all vehicles had linear trends in Phase 1 NMHC emissions versus the total NMHC content percentage in the fuel. Vehicle B had five tests with NMHC greater than 0.02 g/mi corresponding to the first 160 seconds of Phase 1 operation on gasoline, circled in red.

Figure 39. Fuel NMHC Content (%) vs. Phase 1 Bag NMHC (g/mi) for all vehicles

Total canister purge volume for the two bi-fuel vehicles is shown below in Figure 40. The canisters were fully purged prior to emissions testing and the purge volume shown accounts for additional fresh air entering the engine. Purging the canister eliminated any emissions influence of gasoline vapors entering the engine while testing on CNG. Vehicle B had very low purge volume commanded over the LA92 drive cycle. Vehicle C commanded purge events were much more frequent with total volume between 6.2 ft³ and 16.98 ft³.

Figure 40. Bi-Fuel Vehicle Total Canister Purge Volume

A comparison of the NOx conversion efficiency is shown below in Figure 41 including engine-out NOx and bag-weighted NOx in grams per mile. Vehicle A demonstrated very good NOx conversion efficiency performance with the lowest value of 99.89% on CNG01. Both Vehicle B and Vehicle C exhibited lower NOx conversion efficiency on CNG01 compared to the other fuels.

Overall Vehicle A had the highest NOx conversion efficiency out of the group even though the engine-out NOx emissions were higher than Vehicle B's. The highest engine-out NOx was produced with fuel CNG06 for all vehicles which has the lowest methane number (60.07) and highest Wobbe Index (1427.46 BTU/ft³). Although cylinder pressure data was not captured for the emissions tests, it follows that the higher the Wobbe Index fuels should result in higher combustion temperatures that are a key contributor to in-cylinder NOx formation.

Figure 41. NOx Conversion Efficiency for All Vehicles

Vehicle B produced the lowest weighted composite engine-out CO and best overall CO conversion efficiency out of the group as shown below in Figure 42. The five tests where Vehicle B ran the first 160 seconds of Phase 1 on gasoline produced slightly lower composite CO conversion efficiency below 98.6% (CNG01_run1, CNG03_run1, CNG05_run1, CNG07_run1, and CNG07_run2) compared to the other tests. Vehicle A's CO conversion efficiency consistently fell between 96.87 to 97.54%. Vehicle C's tests show consistency with lower engine-out CO on fuels CNG01 and CNG02 which did not have any NMHC constituents in the fuel.

Figure 42. CO Conversion Efficiency for All Vehicles

Vehicle A did not have less than 98.43% weighted THC conversion efficiency as shown in Figure 43, whereas the overall average for Vehicle B and Vehicle C were as low as 95.7% and 93.59% respectively. The five tests where Vehicle B ran the first 160 seconds of Phase 1 on gasoline show on average 17% higher weighted THC emissions than the tests ran only with CNG. All vehicles had the lowest engine-out THC emissions on fuels CNG04 and CNG06 which are the two lowest MN fuels and have the highest NMHC concentrations (17% and 20%).

Figure 43. THC Conversion Efficiency for All Vehicles

All hydrocarbon related emissions had increasing relationships to MN and decreasing relationships to Wobbe Index as shown in Figure 44. The exceptions were the five tests ran on Vehicle B which operated on gasoline for the first 160 seconds of the test and are isolated as a separate series on the charts. For all vehicles an increasing trend was observed in bag-weighted THC as MN increased, and a decreasing relationship with Wobbe Index. All vehicles indicate NMHC decreased with higher MN. The methane emissions increased with higher MN and decreased with higher Wobbe Index.

Figure 44. THC, NMHC, and CH₄ Emissions vs. MN and Wobbe Index

Bag-weighted NOx, CO, CO_2 , and FE are shown below in Figure 45. Both Vehicle A and Vehicle B were nearly insensitive to MN and Wobbe Index related to NOx and CO post-catalyst. Vehicle C exhibited a strong decreasing trend in NOx as Wobbe Index increased. Engine-out NOx from Vehicle C increased with increasing Wobbe Index, which indicated the catalyst conversion efficiency was a key contributor to the higher bag NOx with lower Wobbe Index. CO_2 and FE trended with MN and Wobbe Index expected, since higher Wobbe Index fuels have higher energy density and require less fuel to achieve the same power level.

Figure 45. NOx, CO, CO₂, and FE vs. MN and Wobbe Index

Below in Figure 46 are bag-weighted THC, NOx, and CO trends for each vehicle including the conversion efficiency for each constituent. For all vehicles, bag and engine-out-weighted THC decreased with higher Wobbe Index with corresponding increases in THC conversion efficiency with higher Wobbe Index. NOx had a decreasing trend with Wobbe Index for Vehicle C, whereas Vehicle A and Vehicle B were insensitive. Increasing trends in weighted engine-out NOx are seen as Wobbe Index increased for all vehicles. Vehicle C showed sensitivity to NOx conversion efficiency with varying Wobbe Index fuels. As Wobbe Index increased, Vehicle C showed sensitivity to bag-weighted CO. For all vehicles engine-out-weighted CO had increasing trends with increasing Wobbe Index. CO conversion efficiency appeared insensitive for Vehicles A and B, with some differences seen for Vehicle C.

Figure 46. THC, NOx, and CO Conversion Efficiency vs. Wobbe Index

Exhaust gas temperatures at the engine-out location are plotted for the first 100 seconds of the LA92 in Figure 47 below. Vehicle A and Vehicle C had consistent engine-out exhaust gas temperature for all tests whereas Vehicle B has a wider spread between tests. Where Vehicle B performed tests operating on gasoline for the cold start portion of Phase 1, the exhaust gas temperature exceeded 850°F before 40 seconds elapsed. Also, tests on CNG06 with the highest Wobbe Index of 1427.46 BTU/ft³ show the lowest EGTs from 20 to 100 seconds for Vehicle B.

Figure 47. Engine-Out EGT during 1st 100 Seconds of LA92

Figure 48 shows engine-out exhaust gas temperature 40 seconds into the LA92 drive cycle. Linear trends were seen with a decrease in exhaust gas temperature as the fuel NMHC content increased. Since fuels with higher NMHC content generally have higher Wobbe Index, it follows that lower exhaust temperature corresponds to more of the fuel's energy being converted into mechanical energy with better fuel economy.

Figure 48. Engine-Out EGT at 40 Seconds vs. Fuel NMHC Percentage

Higher volume fuel flow corresponded to higher exhaust gas temperatures at 40 seconds into the LA92 as shown below in Figure 49. The tests where Vehicle B started on gasoline are grouped together with higher engine-out exhaust gas temperature at 40 seconds into the LA92 (purple series).

Figure 49. Engine-Out EGT at 40 Seconds vs. Total Volume Fuel Flow

Engine-out-weighted CO, NOx, and THC emissions are displayed below in Figure 50 along with bag-weighted emissions. As engine-out CO increased NOx also increased for all vehicles. Bag-weighted CO results had a strong hook for Vehicle C's data at 0.4 g/mi of CO showing increasing NOx. With increasing engine-out THC there was a decrease in NOx for all vehicles. Post-catalyst there was the opposite trend showing increased THC emissions with increasing NOx emissions. Comparing engine-out THC versus CO, a decreasing trend in NOx was observed with increasing THC. Lastly, the bag-weighted THC and bag-weighted CO only exhibited a strong linear relationship for Vehicle B.

Figure 50. Engine-Out and Bag-Weighted Emissions Comparison

A comparison of engine-out lambda versus time for all three vehicles and all tests is shown in Figure 51. Vehicle A exhibited instances of DFCO (deceleration fuel cut-off) during Phases 2 and 3 of the LA92 drive cycle where lambda was greater than 1.10. At the cold start portion of Phase 1, Vehicle A showed fueling varied between tests from zero to five percent lean (stoich to 5% excess air). Vehicle B showed fueling at the cold start of Phase 1 to be from zero to fifteen percent lean (stoich to 15% excess air), and the only vehicle with instances of DFCO during Phase 1. All of the Phase 3 hot starts for Vehicle B are fueled five to six percent lean for the first fifteen seconds for all tests. This was an indication that Vehicle B has an offset in adaptive learned fuel trims for hot start fueling, and then maintains lean fueling at the cold start of Phase 1 with minimal lean excursions and had its highest frequency of deceleration fuel cut occurring during Phase 2.

Figure 51. Lambda vs. Time for All Vehicles

Some emissions trends for Vehicle B and Vehicle C were unexpected, because the highest mass emissions (in g/mile) were not produced during the phase 1 cold start, but rather were produced after the initial catalyst light-off. The fueling strategies for both of these vehicles can be closely tied to characteristics of the emissions results. The lean operation of Vehicle B during the Phase 3 hot start corresponds to higher engine-out and tailpipe NOx, in addition to the DFCO events producing tailpipe NOx spikes.

The continuous engine-out and tailpipe measurements were further investigated for Vehicle B to analyze the differences in bag NOx results. During Phase 3, fueling differences were seen between CNG01_run2 and CNG03_run1 as shown below in Figure 52. When the engine-out lambda measurement steps towards lean operation this is an indication of deceleration fuel cut-off (DFCO). CNG03_run1 showed an instance of DFCO just after 1550 seconds with a corresponding increase in engine-out NOx starting at 1555 seconds followed by a spike in tailpipe NOx. As illustrated in Figure 53 bag NOx results from CNG03_run1 had higher engine-out and bag NOx during Phase 3. A decrease in catalyst conversion efficiency was also observed for this test.

Figure 52. Vehicle B LA92 Engine-Out NOx, Tailpipe NOx, Lambda Phase 3

INCA data from CNG01_run2 and CNG03_run1 is overlaid and shown below in Figure 54 corresponding to the charts shown above. The DFCO event described in Figure 52 is captured in the INCA data shown below. The variable *fuelAirCommandedEquivalenceRatio* goes to a value of 1.99882 when the engine controller turns off fuel injection during CNG03_run1. The event is following a brief rise in engine RPM prior to the acceleration event while the driver was releasing the clutch pedal. With too much throttle application the engine speed was higher than desired for a smooth takeoff. To bring the engine speed down, the driver let off the throttle and the controller cut fuel to decrease engine speed. Although there was the same driver for both tests, slight differences in throttle application resulted in different engine RPM/fuel cut results contributing to measureable differences in emissions.

Figure 54. Vehicle B LA92 CNG01_run2 vs. CNG03_run1 INCA Overlay

The continuous engine-out and tailpipe NOx measurements during Phase 2 are shown below for Vehicle C in Figure 55 for tests CNG01_run1 and CNG07_run1. Fueling differences were seen at 450 seconds where CNG01_run1 engine-out lambda indicates a DFCO event. Following the DFCO, a tailpipe NOx spike occurred. Figure 56 shows the bag NOx, engine-out NOx, and NOx catalyst efficiency results with Phase 2 highlighted in red. Whereas the engine-out NOx emissions are comparable for the two fuels, there is clearly poorer catalyst conversion efficiency for the CNG01 fuel.

Figure 55. Vehicle C LA92 Engine-Out NOx, Tailpipe NOx, Lambda Phase 3

The continuous engine-out and tailpipe NOx measurements during Phase 1 are shown below for Vehicle A in Figure 57 for tests CNG01_run1 and CNG07_run1. At 365 seconds both tests show a 5 second DFCO event followed by a tailpipe NOx spike. The difference for Vehicle A is that the NOx spike was always less than 100ppm. Slight fueling differences were seen at 387 seconds where CNG07_run1 engine-out lambda indicated an additional DFCO event whereas CNG01_run1 did not. Following the DFCO for both cases, a tailpipe NOx spike did not occur. After the DFCO event the fueling returned to approximately 3-5% rich of stoich. Figure 58 shows the bag NOx, engine-out NOx, and NOx catalyst efficiency results with both tests having near 100% NOx conversion. Engine-out NOx increased over each phase but post-catalyst NOx continued to decrease over each phase.

Figure 57. Vehicle A LA92 Engine-Out NOx, Tailpipe NOx, Lambda Phase 1

Figure 58. Vehicle A NOx by Phase Comparison

7.0 Statistical Analysis

7.1 Statistical Analysis of Vehicles Pooled Together

A statistical analysis was performed to determine if the fuel effects on emissions results discussed in Section 6.0 were statistically significant. The independent variable, or factor for the analysis, was fuel blend (each having a different methane number and Wobbe Index). The dependent variables, or responses of most interest, were gaseous emissions weighted over the LA92 emissions cycle. Weighted certification-quality bag emissions were the measure of most importance, due to the implication of fuel effects on real world emissions.

The test plan called for testing fuels from 60-105 MN, and Wobbe Index from 1225-1425 BTU/ft³ in three late model vehicles (Section 3.1). The order for testing each vehicle and fuel combination was randomized per Table 6. For a given vehicle-fuel combination, repeat tests were completed after a preparation cycle on the same fuel to condition the control system prior to the emissions test. Each vehicle and fuel combination was tested twice. The statistical analysis approach did not include hypothesis testing for the fuel blend effects on individual vehicle emissions because there were only two data points for the vehicle-fuel combinations.

The vehicles were pooled together for analysis excluding Vehicle B's tests with gasoline cold starts. Mean values for the responses were calculated for the test vehicle fleet for fuels CNG01, CNG02, CNG03, CNG04, CNG05, CNG06, and CNG07 as shown in Figure 59. A pairwise t-test was used to determine if the difference in the mean values between two fuels were statistically significant. The pairing of samples is a form of blocking where the test article (in this case a specific vehicle) is tested before and after some manipulation (in this case change in fuel blend). By comparing the same vehicle's results before and after the fuel change, each vehicle effectively becomes its own control. The pairwise t-test is statistically powerful because the random between-vehicle variation is eliminated.

The alternative hypothesis was tested for each fuel in matrix format:

H1: Mean of Paired Differences (CNG_A fuel – CNG_B fuel) not equal to Zero

One case to note in each table is CNG07 compared to others fuels, as it represents fuel most abundantly found in North American pipelines per CRC Project No. PC-2-12. The p-values (probability of falsely concluding the alternative hypothesis) from a two sample, 2-tailed paired t-test are shown in Table 13 to Table 19. There is (1-pvalue)*100 percent confidence that the mean of the paired differences is not equal to zero. Values in red text have ≥95% confidence means are not equal and values in blue text have ≥90% confidence that the means are not equal.

From the tables presented below, the percent difference between the mean values are shown with negative values indicating the mean value is higher for the fuel listed in the column versus the row, and positive values indicating the mean value is lower for the fuel in the column versus the row. Again with red values representing \geq 95% confidence that the means are not equal and values in blue text with \geq 90% confidence that the means are not equal.

All Vehicles Mean Response Values for Bag NMHC (g/mi) 0.0160 0.0140 Ĵ ^{0.0120} 0.0085 0.0100 0.0075 0.0074 0.0080 0.0047 0.0060 0.0035 0.0040 0.0024 0.0025 0.0020 0.0000 CNG01 CNG03 CNG07 CNG02 CNG04 CNG05 CNG06

All Vehicles Mean Response Values for Bag NOx (g/mi)

All Vehicles Mean Response Values for Bag CO2 (g/mi)

Figure 59. Mean Response Values for the Combined Test Vehicle Fleet

Compared to CNG04, THC emissions were 28.8% higher using CNG02 with greater than 95% confidence. The NMHC emissions mean values were lower for fuels CNG01 and CNG02 compared to the other fuels which follows as these fuel blends do not contain any NMHC constituents. The mean NMHC value for CNG01 and CNG02 was lower than CNG06 by over 200% with 90% confidence as indicated by blue values in Table 14. There was no statistical difference in bag-weighted NOx and CO results comparing each fuel to each other as shown in Table 16 and Table 17.

Almost every fuel comparison shows a statistical difference mean FE with greater than 90% confidence, except when comparing CNG07 to CNG02 and CNG03 as shown in Table 19. These three fuels had very similar Wobbe Indices that may explain this exception (from Figure 28).

	All Vehicles Paired t Test Analysis Bag HC (g/mi)											
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		0.213957	0.152789	0.093514	0.110665	0.088933	0.135079					
CNG02			0.760294	0.042107	0.244164	0.056619	0.847248					
CNG03				0.103615	0.355463	0.079311	0.662848					
CNG04					0.098079	0.482921	0.161373					
CNG05						0.095113	0.195505					
CNG06							0.154447					
CNG07												
Summary												
Mean	0.06928	0.058433	0.06088	0.041583	0.05778	0.04005	0.068175					
StDev	0.064793	0.052357	0.055263	0.0373	0.053505	0.034547	0.065848					
Count	5	6	5	6	5	6	4					
		Ме	an Value Pe	ercent Differ	rence							
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		15.7%	12.1%	40.0%	16.6%	42.2%	1.6%					
CNG02			-4.2%	28.8%	1.1%	31.5%	-16.7%					
CNG03				31.7%	5.1%	34.2%	-12.0%					
CNG04					-38.9%	3.7%	-63.9%					
CNG05						30.7%	-70.2%					
CNG06							-70.2%					
CNG07												

Table 13. Bag THC Pairwise t-Test P-Value Results for the Test Vehicle Fleet

ļ	All Vehicles Paired t Test Analysis Bag NMHC (g/mi)											
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		0.517417	0.146267	0.102525	0.148546	0.098499	0.198219					
CNG02			0.119386	0.068419	0.173498	0.055306	0.426836					
CNG03				0.124025	0.7573	0.087625	0.16106					
CNG04					0.848661	0.265244	0.137325					
CNG05						0.672922	0.13523					
CNG06							0.130678					
CNG07												
Summary												
Mean	0.00244	0.0025333	0.00466	0.0075333	0.00742	0.0084833	0.003525					
StDev	0.0010922	0.0018683	0.0036936	0.0070744	0.0061157	0.0075558	0.0021884					
Count	5	6	5	6	5	6	4					
		Ме	an Value P	ercent Diffe	rence							
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		-3.8%	-91.0%	-208.7%	-204.1%	-247.7%	-44.5%					
CNG02			-83.9%	-197.4%	-192.9%	-234.9%	-39.1%					
CNG03				-61.7%	-59.2%	-82.0%	24.4%					
CNG04					1.5%	-12.6%	53.2%					
CNG05						-14.3%	58.4%					
CNG06							58.4%					
CNG07												

Table 14. Bag NMHC Pairwise t-Test P-Value Results for the Test Vehicle Fleet

	All Vehicles Paired t Test Analysis Bag CH4 (g/mi)											
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		0.217715	0.139843	0.091167	0.113333	0.090802	0.140331					
CNG02			0.465631	0.046297	0.078766	0.054124	1.0					
CNG03				0.083131	0.307841	0.078303	0.458663					
CNG04					0.17677	0.200698	0.150801					
CNG05						0.168918	0.169777					
CNG06							0.147671					
CNG07												
Summary												
Mean	0.0716	0.059883	0.06026	0.036483	0.05398	0.033833	0.069275					
StDev	0.068241	0.054238	0.055309	0.0325	0.055524	0.028979	0.068158					
Count	5	6	5	6	5	6	4					
		Ме	an Value Pe	ercent Differ	ence							
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		16.4%	15.8%	49.0%	24.6%	52.7%	3.2%					
CNG02			-0.6%	39.1%	9.9%	43.5%	-15.7%					
CNG03				39.5%	10.4%	43.9%	-15.0%					
CNG04					-48.0%	7.3%	-89.9%					
CNG05						37.3%	-104.8%					
CNG06							-104.8%					
CNG07												

Table 15. Bag CH₄ Pairwise t-Test P-Value Results for the Test Vehicle Fleet

	All Vehicles Paired t Test Analysis Bag NOx (g/mi)											
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		0.219631	0.218418	0.285133	0.227309	0.210183	0.207981					
CNG02			0.303189	0.359102	0.262967	0.399767	0.215561					
CNG03				0.437164	0.567927	0.200074	0.249355					
CNG04					0.263361	0.327385	0.253583					
CNG05						0.304802	0.21747					
CNG06							0.430979					
CNG07												
Summary												
Mean	0.09062	0.029167	0.0329	0.045383	0.03286	0.02705	0.025025					
StDev	0.11362	0.022007	0.029586	0.054538	0.032271	0.020033	0.026873					
Count	5	6	5	6	5	6	4					
		Ме	an Value Pe	ercent Diffei	rence							
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		67.8%	63.7%	49.9%	63.7%	70.2%	72.4%					
CNG02			-12.8%	-55.6%	-12.7%	7.3%	14.2%					
CNG03				-37.9%	0.1%	17.8%	23.9%					
CNG04					27.6%	40.4%	44.9%					
CNG05						17.7%	7.5%					
CNG06							7.5%					
CNG07												

Table 16. Bag NOx Pairwise t-Test P-Value Results for the Test Vehicle Fleet

	All Vehicles Paired t Test Analysis Bag CO (g/mi)										
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07				
CNG01		0.408696	0.363995	0.173636	0.364945	0.242077	0.162128				
CNG02			0.538729	0.782175	0.484652	0.357051	0.148357				
CNG03				0.460779	0.815726	0.136488	0.617251				
CNG04					0.363397	0.29079	0.152935				
CNG05						0.330942	0.5477				
CNG06							0.738785				
CNG07											
Summary											
Mean	0.29186	0.28398	0.39458	0.2785	0.3999	0.36578	0.5422				
StDev	0.1176	0.1841	0.29318	0.15149	0.27303	0.28424	0.25987				
Count	5	6	5	6	5	6	4				
		Ме	an Value Pe	ercent Diffe	rence						
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07				
CNG01		2.7%	-35.2%	4.6%	-37.0%	-25.3%	-85.8%				
CNG02			-38.9%	1.9%	-40.8%	-28.8%	-90.9%				
CNG03				29.4%	-1.3%	7.3%	-37.4%				
CNG04					-43.6%	-31.3%	-94.7%				
CNG05						8.5%	-48.2%				
CNG06							-48.2%				
CNG07											

Table 17. Bag CO Pairwise t-Test P-Value Results for the Test Vehicle Fleet

	All Vehicles Paired t Test Analysis Bag CO2 (g/mi)											
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		0.023142	0.011324	0.037836	0.083743	0.092858	0.074156					
CNG02			0.0837	0.006046	0.06755	0.021449	0.043516					
CNG03				0.00229	0.405848	0.022656	0.676478					
CNG04					0.045769	0.720035	0.039478					
CNG05						0.077748	0.65407					
CNG06							0.079707					
CNG07												
Summary												
Mean	406.636	357.193	394.538	378.038	393.888	378.91	441.823					
StDev	251.255	228.137	245.524	238.864	238.837	244.12	249.778					
Count	5	6	5	6	5	6	4					
		Ме	an Value Pe	ercent Differ	rence							
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		12.2%	3.0%	7.0%	3.1%	6.8%	-8.7%					
CNG02			-10.5%	-5.8%	-10.3%	-6.1%	-23.7%					
CNG03				4.2%	0.2%	4.0%	-12.0%					
CNG04					-4.2%	-0.2%	-16.9%					
CNG05						3.8%	-16.6%					
CNG06							-16.6%					
CNG07												

Table 18. Bag CO₂ Pairwise t-Test P-Value Results for the Test Vehicle Fleet

	All Vehicles Paired t Test Analysis Bag FE (MPGe)											
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		0.01135	0.014131	0.00907	0.034362	0.012802	0.043028					
CNG02			0.01962	0.002656	0.007205	0.003651	0.598075					
CNG03				0.003975	0.011998	0.011774	0.126221					
CNG04					0.07248	0.007658	0.039302					
CNG05						0.024969	0.052886					
CNG06							0.049726					
CNG07												
Summary												
Mean	19.726	23.008	22.614	26.06	23.306	27.958	18.998					
StDev	10.028	10.504	11.576	11.826	11.621	12.86	10.749					
Count	5	6	5	6	5	6	4					
		Ме	an Value Pe	ercent Differ	ence							
	CNG01	CNG02	CNG03	CNG04	CNG05	CNG06	CNG07					
CNG01		-16.6%	-14.6%	-32.1%	-18.1%	-41.7%	3.7%					
CNG02			1.7%	-13.3%	-1.3%	-21.5%	17.4%					
CNG03				-15.2%	-3.1%	-23.6%	16.0%					
CNG04					10.6%	-7.3%	27.1%					
CNG05						-20.0%	32.1%					
CNG06							32.1%					
CNG07												

Table 19. Bag FE Pairwise t-Test P-Value Results for the Test Vehicle Fleet

<u>Red</u> values indicate ≥95% confidence means are not equal <u>Blue</u> values indicate ≥90% confidence means are not equal

7.2 Statistical Analysis of Individual Vehicle Effects

Statistical models were developed to further determine if some of the fuel effects on individual vehicles were statistically significant, discussed in Section 6. Figure 60 below shows mean value responses for each vehicle. CNG07 was excluded for Vehicle B as both tests recorded gasoline operation during the cold start of Phase 1.

The test plan had only up to 2 replicates x 7 fuels = 14 total observations that may be used to explore individual vehicle effects. Therefore the purpose of the individual vehicle models was to analyze the most obvious fuel effect trends, including FE for Vehicles A, B and C and NOx emissions from Vehicle C. The independent variables were Methane Number and Wobbe Index, and dependent variables were FE and Bag NOx. Polynomial models were developed to confirm the statistical validity of the conclusions being drawn for individual vehicles.

Figure 60. Mean Response Values for Each Test Vehicle

Mean Value (y-hat) models were developed for the effect of MN and WI on fuel economy for all vehicles as shown in Figure 61, Figure 62, and Figure 63. All terms included in the models shown here had p-values less than 0.05, indicating good model fidelity. All models exhibit increasing FE with increasing Wobbe Index and decreasing methane number. Vehicles A and B's models predict very linear trends, whereas Vehicle C has a second order sensitivity to methane number.

Figure 61. Vehicle A Bag-Weighted FE Mean Value Surface Plot Wobbe Index vs. MN

Figure 62. Vehicle B Bag-Weighted FE Mean Value Surface Plot Wobbe Index vs. MN

Figure 63. Vehicle C Bag-Weighted FE Mean Value Surface Plot Wobbe Index vs. MN

For Vehicle C, the effect of MN and Wobbe Index on NOx emissions was statistically significant with greater than 95% confidence. A strong second order relationship was observed against Wobbe Index and a linear trend was predicted against methane number (Figure 64).

Figure 64. Vehicle C Bag-Weighted NOx Mean Value Surface Plot Wobbe Index vs. MN

8.0 Knock Investigation #1

During the EPEFE/WOT preconditioning cycles at 100°F ambient temperature, vehicle CAN data were recorded to observe the commanded ignition timing from cylinder one. The EPEFE/WOT cycle was used as preconditioning for the emissions test sequence to allow the ECU to adjust to the change in fuel quality and ensure uniform catalyst conditioning.

Data analysis was performed on the second half of the WOT cycle for all fuels tested to quantify a possible reduction in ignition timing with the lowest MN fuels compared to the highest MN fuels. This testing was grouped together with the base emission test cycles to minimize the time for test setup, fuel use, and cost. Figure 65 below shows the EPEFE drive trace.

Figure 65. EPEFE (WOT) Drive Trace

Data were analyzed at discrete locations in the drive trace on the last 85 mph hill. This gave the vehicle's control system the ability to adapt to the fuel quality over two 65mph cruises, nine wide-open-throttle accelerations, and nine steady state cruises at 85mph and 30mph. Ignition timing values were noted at peak power and peak torque during WOT acceleration, 85mph steady state cruise, and 30mph steady state cruise for each vehicle. An example of the analyzed points for Vehicle A is shown below in Figure 66. The WOT peak power datum point was evaluated for Vehicle A in 2nd gear and 5500 RPM, for Vehicle B in 3rd gear at 5500 RPM, and Vehicle C in 3rd gear at 5000 RPM. The WOT peak torque datum point was evaluated for Vehicle C at 4000 RPM. Although Vehicle B's peak torque occurred from 1500 to 4500 RPM, wheel slip occurred at WOT on the chassis dynamometer in the first two gears. By third gear Vehicle B gained traction and no longer had wheel slip at WOT. After shifting from second gear at 6000 RPM the engine speed only dropped to 4000 RPM in third gear. 4200 RPM in 3rd gear was selected as Vehicle B's WOT peak torque RPM as it was the lowest RPM with no wheel spin and the turbocharger re-spooled after the shift event.

Figure 66. Vehicle A EPEFE CNG04_run2 INCA Example

Figure 67 below charts the four discrete data points for duplicates of each of the seven fuels. Knock was not detected at the peak power, peak torque, 85mph, or 30mph conditions when comparing ignition timing advance to methane number against each fuel for any of the vehicles. This conclusion is inferred because the control systems did not identify any knock and did not adjust ignition timing advance for the lower methane number fuels.

Figure 67. Ignition Timing Advance vs. MN (Peak Torque, Peak Power, 85mph SS, 30mph SS)

9.0 Knock Investigation #2

9.1 Set-Up and Test Procedure

A pseudo steady state engine RPM knock investigation was performed on all vehicles utilizing a spark plug mounted cylinder pressure transducer and A&D Redline CAS II combustion analyzer. Timing triggers for cylinder pressure sampling were generated from the stock 60-2 timing wheels by soldering a BNC connector onto the crank angle sensor harness for both Vehicle A and Vehicle B. Wire piercing probes were utilized on the easily accessible crank angle sensor harness on Vehicle C. Good engineering judgment was used for procurement of the spark plug with pressure transducer to achieve the correct heat range, gap, and protrusion to closely match the OEM spark plug. The engine's ignition coil/spark plug wire arrangement remained intact without modification. The cylinder pressure signal wire egress was afforded on Vehicle's A and B with an eccentric adapter and on Vehicle C with an ignition wire extension.

To minimize the modifications required to capture in-cylinder data, spark plug mounted pressure transducers were used with specifications closely matching the OEM spark plug as shown in Table 20 below. The Kistler spark plugs used the Bosch heat range scale which is listed as the last number in the Kistler part number.

Manufacturer	Vehicle A	Vehicle B	Vehicle C
OEM Spark Plug Mfg:	NGK	Bosch	NGK
OEM Spark Plug P/N:	SILKR8B8DS	BOM 06E905612 R1 DH	ILZFR5E 8D
Resistor Type (y/n)	Y	Y	Y
Seat (flat/conical)	Flat	Flat	Flat
Gap (mm)	0.8	0.8	0.7
Hex Size (in.)	5/8"	5/8"	5/8"
Thread Ø (mm)	14	12	14
Thread pitch (mm)	1.25	1.25	1.25
Thread reach (mm)	19	19	26.7
Heat Range (NGK)	8	6	5
Heat Range (Bosch)	4	6	8
Resistor Type (y/n)	Y	Y	Y
Kistler Measuring Plug	6115BFD34	6115BFD16	6117BCD39

Table 20. OEM Spark Plug Specifications with Kistler Equivalent

The heat ranges selected closely matched the OEM plugs to minimize influence of changing this in-cylinder component for the knock investigation. A comparison of the OEM and Kistler plugs and are shown below in Figure 68. Installation of the spark plugs for Vehicle A and Vehicle B required an offset extension be installed on the Kistler plug to regain eccentricity of the terminal nut and use the OEM ignition coils. Standoffs were utilized to securely mount the coils. Vehicle C's installation did not require an offset extension, but instead required two ignition wire length adapters with the dual-plug OEM ignition coil secured outside of its original location as shown in Figure 69.

Figure 68. OEM and Kistler Spark Plugs (Vehicle A, Vehicle B, Vehicle C)

Figure 69. Ignition Coil Standoff (Vehicle A, Vehicle B, Vehicle C)

The Volkswagen Golf TGI is shown with the A&D Redline II CAS unit in Figure 70. Cylinder pressure data was collected by manually triggering the recording just prior to the load transient.

Figure 70. Volkswagen Golf TGI on Site 3 with CAS

A steady state engine RPM was selected at peak engine torque with the chassis dynamometer set in speed control mode. The transmission gear selector was put into a fixed position to prevent influence from the transmission changing gears. The engine was brought from near zero-load to full-load in a fast step change and data were collected during this transient over 100 engine cycles.

The crank-angle resolved cylinder pressure trace was captured at light load, step change transient, and full load at the engine speed corresponding to peak torque. An engine knock condition is readily observed in the crank-angle resolved cylinder pressure shape characteristic, appearing as a rapidly oscillating pressure wave during the power stroke (so called "dinosaur back"). Other data were post-processed to identify knock, including the maximum pressure rise rate, knock intensity, and comparisons of ignition timing.

Testing was performed with the highest and the lowest MN fuels to compare the best and worst case knock tendency. Fuel CNG02 was selected as the highest quality fuel having a MN of 105.66 and the least amount of higher hydrocarbons (0%). Fuel CNG06 was selected as the poorest quality fuel with a MN of 60.06, the largest concentration of higher hydrocarbons (19.9%), and the least concentration of inert gasses (2.3%) of the low MN fuels. The higher hydrocarbons have lower auto-ignition temperatures and provide less margin to avoid in-cylinder knock.

Vehicle A was advertised to make peak torque of 106 ft-lbs at 4300 RPM. Normally, an engine's knock resistance is lowest at the engine speed associated with peak torque. This puts the highest amount of fresh air in the cylinder along with the longest residence time near TDC. A steady state speed of 41 mph with the transmission selector position in 'D2' generated an engine speed of 4200 RPM at full load. Vehicle C was advertised making peak torque of 400 ft-lbs at 4000 RPM. A road speed of 55 mph in

3rd gear was selected to perform the no-load to WOT test. One aspect of the automatic transmissions in Vehicles A and C was that the torque converters were not in full lock-up when minimal load is applied. Therefore, a slight increase in engine speed is seen during the transient event before the torque converter was near or at full lock.

Vehicle B was advertised making peak torque of 147 ft-lbs from 1500-4500 RPM. Since the engine RPM effects the transient response of the turbocharger, a no-load to WOT sweep was performed to determine the engine speed best suited for this knock investigation. Based on the transient response of the turbocharger the minimum response time to achieve peak torque during the WOT transient was 1.5 seconds measured at 2525 RPM as shown in Figure 71 below. Lower engine speeds did not produce as much torque as 2525 RPM and took as much as 4.2 seconds at 1500 RPM for the turbocharger to achieve its target boost pressure. Higher engine speeds slightly reduced the transient response, but will reduce the charge residence time near TDC, reducing knock tendency. The optimum engine speed with the highest engine torque and reasonable load response was selected to be 2525 RPM for this investigation.

Figure 71. Vehicle B No-Load to WOT Response

The test sequence listed below was followed for each vehicle to capture the zero to full load transient on the highest and lowest MN fuels (CNG02 at 105.48 and CNG06 at 60.07).

- 1. Two LA92 preconditioning cycles on CNG02
- 2. Drive vehicle up to target speed and shift into target gear with the chassis dynamometer in speed control mode
- 3. Maintain light load (less than 50%) on vehicle to attain stable engine coolant and exhaust temperatures (>2 minutes)
- 4. Apply load to the engine such that the measured dyno torque is near zero ft.-lbs
- 5. Apply full load as fast as possible, hold for 5 seconds after maximum load is reached
- 6. Let off throttle and bring vehicle back to idle
- 7. Turn off car and change to CNG06
- 8. Drive vehicle up to target speed and shift into target gear with the chassis dynamometer in speed control mode
- 9. Maintain light load (less than 50%) on vehicle to attain stable engine coolant and exhaust temperatures (>2 minutes)
- 10. Apply load to the engine such that the measured dyno torque is near zero ft.-lbs.
- 11. Apply full load as fast as possible, hold for 5 seconds after maximum load is reached
- 12. Let off throttle and bring vehicle back to idle
- 13. Vehicle CAN data are collected with ETAS INCA ODX during the entire procedure and CAS recording is initialized ~2 seconds prior to the WOT event to capture the load transient.
- 14. Post-process cylinder pressure data to identify if knock is present with the following criteria.
 - a. Maximum Pressure Rise Rate (MPRR) greater than 10 bar per °CA
 - b. Measureable change in knock intensity between CNG02 and CNG06
 - c. Measureable change in knock intensity squared between CNG02 and CNG06

9.2 Knock Investigation Results

INCA screenshots are shown in Figure 72, Figure 73, and Figure 74 with a time aligned overlay of the zero to full load transient events for all three vehicles using CNG02 and CNG06. Figure 72 shows the the ignition timing step change for Vehicle A went from 32°BTDC to 26°BTDC for both events, indicating the control system did not make any changes to spark timing between the two fuels. The calculated absolute load value went from approximately 16% to 60% for both tests.

	Cursor 1	Cursor 2
_SS-W0T_CNG06_knock2 dat PID0D_vehicleSpeedSensor\0BDonCAN:1#7EE#Diagnostics	66	67
_SS-W0T_CNG06_knock2.dat PID0E_ignitionTimingSparkAdvanceForNo1Cylinder\0BDonCAN:1#7EE#Diagnostics	32*	26*
_SS-W0T_CNG06_knock2.dat PID05_engineCoolantTemperature\0BDonCAN:1#7EE#Diagnostics	96*	96*
_SS-WOT_CNG06_knock2.dat PID0C_engineRPM\0BDonCAN:1#7EE#Diagnostics	3921.95*	4219.81*
_SS-WOT_CNG06_knack2.dat PID11_absoluteThrottlePosition\0BDonCAN:1#7EE#Diagnostics	18.8235*	78.0392*
_SS-WOT_CNG06_knock2.dat PID07_longTermFuelTrimBank1\0BDonCAN:1#7EE#Diagnostics	-3.90625*	-3.90625*
_SS-WOT_CNG06_knock2.dat PID43_absoluteLoadValue\0BDonCAN:1#7EE#Diagnostics	16.4706*	61.1765*
_SS-W0T_CNG06_knock2.dat PID44_fuelAirCommandedEquivalenceRatio\0BDonCAN:1#7EE#Diagnostics	0.973597*	0.95465*
_SS-W0T_CNG06_knock2.dat PID06_shortTermFuelTrimBank1\0BDonCAN:1#7EE#Diagnostics	-10.1562*	-9.375*
_SS-WOT_CNG02_knock2.dat PID0D_vehicleSpeedSensor\08DonCAN:1#7EE#Diagnostics	66"	67*
_SS-W0T_CNG02_knock2.dat PID0E_ignitionTimingSparkAdvanceForNo1Cylinder\0BDonCAN:1#7EE#Diagnostics	32*	26*
_SS-W/0T_CNG02_knock2.dat PID05_engineCoolantTemperature\0BDonCAN:1#7EE#Diagnostics	96*	96*
_SS-W0T_CNG02_knock2.dat PID0C_engineRPM\0BDonCAN:1#7EE#Diagnostics	3920.66*	4213*
_SS-WOT_CNG02_knack2.dat PID11_absoluteThrottlePosition\DBDonCAN:1#7EE#Diagnostics	19.2157*	78.0392*
_SS-WOT_CNG02_knock2.dat PID07_longTermFuelTrimBank1\OBDonCAN:1#7EE#Diagnostics	-1.5625*	-1.5625*
_SS-WOT_CNG02_knock2.dat PID43_absoluteLoadValue\DBDonCAN:1#7EE#Diagnostics	16.0784*	60.3922*
_SS-WOT_CNG02_knock2.dat PID44_fuelAirCommandedEquivalenceRatio\OBDonCAN:1#7EE#Diagnostics	1.01791*	0.95465*
_SS-W0T_CNG02_knock2.dat PID06_shortTermFuelTrimBank1\0BDonCAN:1#7EE#Diagnostics	-2.34375*	-3.90625*

Figure 72. INCA Screenshot (Vehicle A, CNG02 vs. CNG06)

Figure 73 shows the ignition timing step change for Vehicle B went to 10.5°BTDC at full load for both events, indicating the control system did not make any changes to spark timing between the two fuels once the system reached full load. The calculated absolute load value went from approximately 15% to 132% for both tests.

Figure 73. INCA Screenshot (Vehicle B, CNG02 vs. CNG06)

Figure 74 shows Vehicle C's ignition timing step change went from 24.5°BTDC to 24°BTDC for both events, indicating the control system did not make any changes to spark timing between the two fuels. The calculated absolute load value went from approximately 38% to 75% for both tests.

Results of the cylinder pressure data from Vehicle A are presented below in Figure 75. Displayed at left are waterfall plots of the cylinder pressure over 70 cycles. Displayed at right are peak cylinder pressure (MaxPress), maximum pressure rise rate (MPRR), and indicated mean effective pressure (IMEP) over 100 engine cycles. For this and subsequent plots in this section, the graphs at right are in the time domain and were intentionally not time-aligned for data visualization purposes.

The step change in load generated an IMEP step from approximately 2 bar to 9 bar over five engine cycles. The maximum pressure rise rate for both test fuels did not exceed 4 bar/degree and was well below the selected threshold of 10 bar/degree guideline that would indicate knock. Comparing CNG02 to CNG06, the maximum peak cylinder pressure increased from 65 bar to 72.8 bar, maximum peak pressure rise rate from 2.73 bar/deg to 3.54 bar/deg, and maximum IMEP from 9.02 bar to 9.29 bar. The 81mm cylinder bore of Vehicle A should knock (or ring) around 7.04kHz. Nothing was found in this frequency spectrum that would indicate a knocking cylinder for either fuel tested. Vehicle A's combination of compression ratio (12.7:1), valve timing, EGR, and ignition timing proved robust to knocking on these two fuels at a barometric pressure of 84 kPa.

Figure 75. Vehicle A Cylinder Pressure Transient CNG02 (green) vs. CNG06 (black)

Results of the cylinder pressure data from Vehicle B are presented below in Figure 76. The step change in load generated an IMEP step from approximately 2 bar to 18.6 bar over 40 engine cycles. The maximum pressure rise rate for both test fuels did not exceed 7.5 bar/degree and was well below the selected threshold of 10 bar/degree that would indicate knock. Comparing CNG02 to CNG06, the maximum peak cylinder pressure increased from 100.7 bar to 110.4 bar, maximum peak pressure rise rate from 6.02 bar/deg to 7.35 bar/deg, and maximum IMEP from 18.64 bar to 19.05 bar. The 76.5mm cylinder bore of Vehicle B should knock (or ring) around 7.45kHz. Nothing was found in this frequency spectrum that would indicate a knocking cylinder for either fuel tested. Vehicle B's combination of compression ratio (10.5:1), boost pressure, valve timing, EGR, and ignition timing proved robust to knocking on these two fuels at a barometric pressure of 84 kPa.

Results of the cylinder pressure data from Vehicle C are presented below in Figure 77. The step change in load generated an IMEP step from approximately 5 bar 10.7 bar over 10 engine cycles. The maximum pressure rise rate for both test fuels did not exceed 4 bar/degree and was well below the selected threshold of 10 bar/degree that would indicate knock. Comparing CNG02 to CNG06, the maximum peak cylinder pressure increased from 65.3 bar to 67.7 bar, maximum peak pressure rise rate from 3.17 bar/deg to 3.98 bar/deg, and maximum IMEP from 10.73 bar to 10.97 bar. The 99.5mm cylinder bore of Vehicle C should knock (or ring) around 5.73kHz. Nothing was found in this frequency spectrum that would indicate a knocking cylinder for either fuel tested. Vehicle C's combination of compression ratio (10.5:1), valve timing, EGR, and ignition timing proved robust to knocking on these two fuels at a barometric pressure of 84 kPa.

Figure 77. Vehicle C Cylinder Pressure Transient CNG02 (green) vs. CNG06 (black)

Each vehicle had a slight increase in peak cylinder pressure, maximum cylinder pressure rise rate, and IMEP with the lower methane number CNG06 fuel which also had higher Wobbe Index. Figure 78 below shows Vehicle A experienced a 10.7% increase in maximum peak pressure and a 22.9% increase in maximum cylinder pressure rise rate. IMEP increased by more than 2% for all three vehicles while operating on CNG06.

Figure 78. CNG06 vs. CNG02 Parameter Increase

9.3 Additional Knock Investigation - Environmental Conditions and Engine Speed Sweeps

The maximum IMEP of the naturally aspirated vehicles was reduced by approximately 17% at SGS's test lab located at high altitude near Denver, compared to sea level labs (101.325 kPa vs. 84 kPa barometric pressure). Vehicle A's IMEP at peak torque theoretically dropped from 11.3 bar to 9.4 bar and Vehicle C's dropped from 12.0 bar to 9.9 bar. The turbocharged control strategy for Vehicle B may target an absolute load the same or higher than what is commanded at sea level conditions, but was unknown. The reduction in mean effective pressure equates to lower peak cylinder pressure and temperature that will reduce knock tendency. Another item to note is that the bi-fuel vehicle's engine compression ratios must accommodate both gasoline and CNG operation, leaving room for increased efficiency with higher compression ratio if the engine were dedicated to CNG operation only. Vehicle A has the highest compression ratio of the vehicle group at 12.7:1 and is a dedicated CNG vehicle. Even so, it did not experience knock during the load step change transient.

Additional testing was conducted on Vehicle C utilizing SGS BASE[™] (Balancing Altitude Simulation Equipment) shown below in Figure 79. This modular air handling system was used to simulate different altitude and ambient temperature conditions to explore knock potential. To achieve higher pressures than the local barometric pressure, the system compresses the intake air to the engine. To achieve pressures lower than the local barometric pressure, the system creates a slight vacuum to the engine intake system. The pressure is dynamically balanced at the intake, exhaust, and crankcase, correctly simulating variable altitudes and the corresponding effects that barometric pressure has on engine breathing, gas exchange, combustion, exhaust pollutant formation, fuel consumption, and pumping losses.

Figure 79. Balancing Altitude Simulation Equipment[™] (BASE[™])

9.3.1 Vehicle C Knock Investigation #2 with BASE[™], Altitude Effects

Increasing the in-cylinder pressure and temperature can lead to increased propensity for engine knock. To create a worst-case knock scenario the BASE[™] system was installed on Vehicle C and set to sea level pressure (101.3 kPa) and elevated intake air temperature (35°C). An additional test cycle was run with the poorer-quality CNG06 producing cylinder pressure data shown in Figure 82 below. The step change in load generated an IMEP step from 5 bar to 11.0 bar at local altitude (84kPa/25C, green) compared to 5 bar to 13.7 bar at low altitude (101kPa/35C, black) over 10 engine cycles. The maximum pressure rise rate for both test fuels did not exceed 5 bar/degree and is well below the selected threshold of 10 bar/degree that would indicate knock.

Figure 80. Vehicle C Cylinder Pressure Transient at 84kPa/25C and 101kPa/35C for CNG06 Fuel

9.3.2 Vehicle C Knock Investigation #2 with BASE[™], Fuel Effects

Both CNG02 and CNG06 were tested with BASE[™] set to 101.3 kPa and 35°C. Comparing CNG02 to CNG06, the maximum peak cylinder pressure increased from 76.2 bar to 81.7 bar, maximum peak pressure rise rate from 3.82 bar/deg to 4.89 bar/deg, and maximum IMEP from 13.23 bar to 13.74 bar. The 99.5mm cylinder bore of Vehicle C should knock (or ring) around 5.73kHz. Nothing was found in this frequency spectrum that would indicate a knocking cylinder for either fuel tested. Vehicle C's combination of compression ratio (10.5:1), valve timing, EGR, and ignition timing proved robust to knocking on these two fuels at a barometric pressure of 101.325 kPa and 35°C intake air temperature.

Figure 81. Vehicle C Cylinder Pressure Transient CNG02 (green) vs. CNG06 (Black) with BASE™

Comparing CAN data in Figure 82, the ignition timing step change went from 24.5°BTDC to 23.5°BTDC for both events, indicating the control system did not make any changes to spark timing between the two fuels. The higher load with BASE™ resulted in the absolute load parameter changing from approximately 38% to 91.4% for both tests. Compared to the tests at 84 kPa barometric pressure, Vehicle C commanded 0.5 degrees less spark advance at this higher WOT load.

Figure 82. INCA Screenshot (Vehicle C, CNG02 vs. CNG06) with BASE

9.3.3 Vehicle C Knock Investigation #2 with BASE™, CNG06, Engine Speed Sweep

To further explore the engine operating map and resistance to knock, Vehicle C was tested on CNG06 with the transmission fixed in fourth gear and fixed engine speeds from 1900 to 2900 RPM in 200 RPM increments. The same test procedure was repeated, but BASE[™] was again used to set the barometric pressure to 101.3 kPa and the intake air temperature to 35°C. Figure 83 below shows peak pressure, maximum cylinder pressure rise rate, and IMEP per cycle for the 6 data points taken during the RPM sweep. Knock was not seen during any of the test cycle, again indicating the vehicle configuration and calibration is robust to this fuel for the test conditions given.

Figure 83. Vehicle C Load Transient Engine Speed Sweep with BASE™, CNG06

9.3.4 Vehicle A Knock Investigation #2, CNG06, Engine Speed Sweep

Vehicle A was further tested at various engine speeds at 84 kPa barometric pressure. With the transmission gear selector in second gear, vehicle speed was set to repeat the test at fixed engine speeds from 2040 RPM to 4300 RPM. Figure 84 below shows peak pressure, maximum cylinder pressure rise rate, and IMEP per cycle for the 8 data points taken during the RPM sweep. Knock was not seen during any of the test cycle, again indicating the vehicle configuration and calibration is robust to this fuel for the test conditions given.

Figure 84. Vehicle A Load Transient Engine Speed Sweep, CNG06

10.0 Conclusions

Conclusions from this investigation are as follows:

- 1. The bag-weighted fuel economy, in miles per gasoline gallon equivalent (MPGe), varied in direct proportion to the Wobbe Index for all vehicles in the study. This effect was expected due to different energy content of the test fuels.
- 2. NOx and CO bag-weighted emissions from Vehicle A and Vehicle B were unaffected by the fuel type.
- 3. NOx engine-out-weighted emissions increased with higher Wobbe Index fuels for all three vehicles tested.
- 4. HC and CH₄ bag emissions increased with lower Wobbe Index fuels for all three vehicles tested.
- 5. Of the three vehicles in the study, Vehicle C was most affected by fuel type.
 - a. When run on the fuel with lowest Wobbe Index (CNG01), bag-weighted NOx emissions increased by over 300% compared to the average CNG fuel (CNG07). For all tests the lowest Wobbe Index fuel produced highest NOx emissions during the Phase 2 stabilized portion of the LA92 cycle.
 - b. CO bag-weighted emissions decreased for the lowest Wobbe Index fuel.
 - c. Methane emissions increased by over 50% for the lowest Wobbe Index fuel.
 - d. The effects appeared to be catalyst-conversion related as the trends were less apparent from engine-out emissions data.
- 6. A statistical analysis for all vehicles pooled together revealed:
 - a. The effect of fuel type on mean bag-weighted fuel economy was significant with 95% confidence.
 - b. The effect of fuel type on mean bag-weighted NOx and CO was not statistically significant.
 - c. The effect of fuel type on mean bag-weighted CH_4 and total THC emissions was significant with 95% confidence.
- 7. Engine knock was not observed for either Knock Investigation #1 or #2, indicating that the combination of compression ratio, EGR, ignition timing, and valve timing employed on these vehicles can accommodate the lowest methane number fuel under the conditions tested.

11.0 References

CRC PC-2-12, *Compressed Natural Gas Vehicle Fuel Survey*, Coordinating Research Council, Alpharetta, GA, USA, <u>www.crc.org</u>, May 27, 2014

U.S. Code of Federal Regulations, Title 40: *Transportation*, Part 86 – *Control of Air Pollution from Mobile Sources*, Part 600 – Fuel Economy and Greenhouse Gas Exhaust Emissions of Motor Vehicles, Subpart B – Fuel Economy and Carbon-Related Exhaust Emission Test Procedures <u>www.ecfr.gov</u>, December 11, 2014.

ASTM Standard D1945-03(2010), *Standard Test Method for Analysis of Natural Gas by Gas Chromatography*, ASTM International, West Conshohocken, Pennsylvania, USA, www.astm.org, March 2010.

ASTM Standard D3588-98(2011), *Standard Practice for Calculating Heat Value, Compressibility Factor, and Relative Density of Gaseous Fuels*, ASTM International, West Conshohocken, Pennsylvania, USA, <u>www.astm.org</u>, November 2011.

Ryan, T. W., and Callahan, T. J (Southwest Research Institute), *Effects of Gas Composition on Engine Performance and Emissions*, Gas Research Institute Topical Report GRI-92/0054, published by Gas Technology Institute, Des Plaines, Illinois, USA, <u>www.gastechnology.org</u>, December 1991.

Ryan, T. W., Callahan, T. J., and King, S. R., "Engine Knock Rating of Natural Gases – Methane Number," *ASME Journal of Engineering for Gas Turbines and Power*, Volume 115, pp. 769-776, October 1993.

Davis, P., Peckham, M., "The Analysis of Gasoline Transient Emissions Behavior Using Fast Response Gas Analyzers", SAE Paper No. 2007-26-015, 2007.

Lee, Y.J., Kim, G.C., "Effect of Gas Composition on NGV Performance", Seoul 2000 FISITA World Automotive Congress, Paper F2000A174, June 12, 2000.

12.0 Appendices

12.1 Appendix 1: CRC E-109 Vehicle and Fuel Test Order, and Date of Emissions Test

12.2 Appendix 2: Properties for SGS Tank 3 T2SHED7.8 Gasoline

haltermannsolutions
funding the world, one solution at a time

Product Information

Telephone: (800) 969-2542

FAX: (281) 457-1469 Johann Haltermann Ltd.

PRODUCT:

PRODUCT CODE:

HIGH ALTITUDE EMISSION FUEL CFR 86. 113-04 Tier 2 HF0073 Batch No.: CD1421GP02 TMO NO.: 802765 Tank No.: 52 Date: 4/23/2014

TEST	METHOD	UNITS	SP	RESULTS		
			MIN	TARGET	MAX	
Distillation - IBP	ASTM D86	°C	24		41	34
5%		°C			-	46
10%		°C	49		57	54
20%		°C				66
30%		°C				79
40%		°C				94
50%		°C	93		110	104
60%		°C				110
70%		°C				117
80%		°C				129
90%		°C	149		163	160
95%		°C				168
Distillation - EP		°C			213	185
Recovery		vol %		Report		97.0
Residue		vol %			2	1.1
Loss		vol %		Report		1.4
Gravity	ASTM D4052	°API		Report		60.0
Specific Gravity	ASTM D4052		0.734		0.744	0.739
Reid Vapor Pressure	ASTM D5191	kPa	52	-	55	55.9*
Sulfur	ASTM D5453	ppm wt	25		35	32
Lead	ASTM D3237	g/i			0.013	None Detected
Phosphorous	ASTM D3231	g/l			0.0013	None Detected
Composition, aromatics	ASTM D1319	vol %			35	26
Composition, olefins	ASTM D1319	vol %			10	1
Composition, saturates	ASTM D1319	vol %		Report		73
Oxidation Stability	ASTM D525	minutes	240			1000+
Copper Corrosion	ASTM D130				1B	1a
Gum content, washed	ASTM D381	mg/100mls			5	<0.5
Net Heat of Combustion	ASTM D240	btu/lb		Report		18363
Carbon	ASTM D5291	wt fraction		Report		0.8612
Research Octane Number	ASTM D2699		93			97
Motor Octane Number	ASTM D2700			Report		89
Sensitivity	D2699/2700		7.5			8.1
	DIA	*0			*Waiv	ed by Customer

APPROVED BY:

_ for the Wem_

12.3 Appendix 3: Vehicle C ECU Scan Reports

Vehicle Scan Report												
Year: 2014 Date: Friday, September 26 2014 225:00 Body: DJ CD Version: 6.5. Odometer: 3364.6 miles Device Sivi: 3 Odometer: 3364.6 miles Device Platform: Ve											ember 26 2014 2:25:09 PM CDA Version: 6.5.368 Device S/N: 12942 Device Platform: Vector	
ECU	ECU Can Req Can Res Part Software Version □ HEX Hardware Software PN Variant Version Supplier ENG File U U U Number Software Version □ HEX Hardware Version Software PN Variant Version Supplier ENG File										ENG File	
ABS_PN	747	4C7	68212541AC	#0: 13.20.5	02.27.0C	#0: 68212541AC	40	06		1247	TRW	ABS-ABS_PN-40-4006- 001
BCM_PN	620	504	68236153AB	#0: 13.35.49	10.20.0	#0: 68236152AB	40	11		1247	Continental	BCM-BCM_PN-40-4011- 014
CMCM_PN	7BF	53F	68224531AB	#0: 2013.21.04	2012.45.01	#0: 13210484AA	80	16			Harman / Becker	RADIO-CMCM_PN-80- 8003-000
DDM_PN	784	504	68155771AD	#0: 12.48.01	11.30.00	#0: 68155771AD	41	00		1210	Continental	DDM-DDM_PN-41-4100- 008
DTCM_PN	74B	4CB	56029590AE	#0: 030108	1011	56029590AE	40	02	-	1131	Huntsville	DTCM-DTCM_PN-40- 4002-004
HVAC_PN	783	503	68186216AB	#0: 2013.17.5	2013.18.04	#0: 68186216AB	42	01		1232	KDAC	HVAC-HVAC_PN-42- 4201-003
ICS_PN	7BC	53C	1UJ96DX9AE	#0: 12.44.30	0C.26.42	#0: 14179681	41	00		1223	TRW	ICS-ICS_PN-41-4100-007
IPC_PN	742	4C2	56054954AF	#0: 13.37.0	05.6.00	#0: 56054952AF	42	01		1247	00C6	IPC-IPC_PN-42-4201-003
ITBM_PN	754	4D4	68092732AE	#0: 13.11.31	0D.5.00	#0:68092740AE	40	00	-	1223	Conti Temic	ITBM-ITBM_PN-40-4000- 008
ORC_PN	744	4C4	68085883AF	#0: 13.12.0, #1: 13.19.0	12.37.2	#0: 10DT00D11, #1: DT00D11 21	42	01	-	1149	Bosch	ORC-ORC_PN-42-4201- 008
PCM	7E0	7E8	68153863AF	#0: 090404	1A2F	68153863AF	42	C6		4712	Motorola	PCM-PCM-42-42C6-006
PDM_PN	785	505	68155770AD	#0: 12.48.01	11.30.00	#0: 68155770AD	41	00	-	1210	Continental	PDM-PDM_PN-41-4100- 008
RFH_PN	740	4C0	68207773AD	#0: 13.31.1, #1: 13.31.1	0C.1A.01	#0: 14D50731AA, #1: 14D50731CA, #2: 5576AB445566778899AA	41	02		1247	TRW	RFH-RFH_PN-41-4102- 002
SCCM_PN	763	4E3	68110739AC	#0: 11.38.0, #1: 11.38.0, #2: 11.38.1, #3: 11.2.1, #4: 11.2.1, #5: 11.2.1	2010.46.04	?	41	01	-	1117	Delphi	SCCM-SCCM_PN-41- 4101-008
ENG files shown above in red indicate a Diagnostic Variant or ISO Code mismatch. ENG files shown above in yellow indicate a Diagnostic Version mismatch.												

Figure 85. Vehicle C OEM Calibration ECU Scan Report (Software PN: 68153863AF)

Vehicle Scan Report												
Verificit Scall Report Verificit Scall Report Verificit Scall Report Date: Friday, October 17 2014 12:08:45 PM Body: D COA Version: 6.5.36 COA Version: 6.5.36 Operation Device 5/W: 12:42 Device 5/W: 12:42 Device Filterom: Vecto ECU Information											ober 17 2014 12:08:45 PM CDA Version: 6.5.368 Device 5/N: 12942 Device Platform: Vector	
ECU	Can Req ID	Can Res ID	Part Number	Software Version 🗆 HEX	Hardware Version	Software PN	Variant	Version	ISO Code	VMM Version	Supplier	ENG File
ABS_PN	747	4C7	68212541AC	#0: 13.20.5	02.27.0C	#0: 68212541AC	40	06		1247	TRW	ABS-ABS_PN-40-4006- 001
BCM_PN	620	504	68236153AB	#0: 13.35.49	10.20.0	#0: 68236152AB	40	11	-	1247	Continental	BCM-BCM_PN-40-4011- 014
CMCM_PN	7BF	53F	68224531AB	#0: 2013.21.04	2012.45.01	#0: 13210484AA	80	16	-	•	Harman / Becker	RADIO-CMCM_PN-80- 8003-000
DDM_PN	784	504	68155771AD	#0: 12.48.01	11.30.00	#0: 68155771AD	41	00		1210	Continental	DDM-DDM_PN-41-4100- 008
DTCM_PN	74B	4CB	56029590AE	#0: 030108	1011	56029590AE	40	02		1131	Huntsville	DTCM-DTCM_PN-40- 4002-004
HVAC_PN	783	503	68186216AB	#0: 2013.17.5	2013.18.04	#0:68186216AB	42	01		1232	KDAC	HVAC-HVAC_PN-42- 4201-003
ICS_PN	7BC	53C	1UJ96DX9AE	#0: 12.44.30	0C.26.42	#0: 14179681	41	00		1223	TRW	ICS-ICS_PN-41-4100-007
IPC_PN	742	4C2	56054954AF	#0: 13.37.0	05.6.00	#0: 56054952AF	42	01		1247	00C6	IPC-IPC_PN-42-4201-003
ITBM_PN	754	4D4	68092732AE	#0: 13.11.31	0D.5.00	#0: 68092740AE	40	00	-	1223	Conti Temic	ITBM-ITBM_PN-40-4000- 008
ORC_PN	744	4C4	68085883AF	#0: 13.12.0, #1: 13.19.0	12.37.2	#0: 10DT00D11, #1: DT00D11 21	42	01		1149	Bosch	ORC-ORC_PN-42-4201- 008
PCM	7E0	7E8	68153863CN	#0: 090404	1A2F	68153863CN	42	C6		4712	Motorola	PCM-PCM-42-42C6-006
PDM_PN	785	505	68155770AD	#0: 12.48.01	11.30.00	#0: 68155770AD	41	00		1210	Continental	PDM-PDM_PN-41-4100- 008
RFH_PN	740	4C0	68207773AD	#0: 13.31.1, #1: 13.31.1	0C.1A.01	#0: 14D50731AA, #1: 14D50731CA, #2: 5576AB445566778899AA	41	02		1247	TRW	RFH-RFH_PN-41-4102- 002
SCCM_PN	763	4E3	68110739AC	#0: 11.38.0, #1: 11.38.0, #2: 11.38.1, #3: 11.2.1, #4: 11.2.1, #5: 11.2.1	2010.46.04	?	41	01		1117	Delphi	SCCM-SCCM_PN-41- 4101-008
ENG files shown above in red indicate a Diagnostic Variant or ISO Code mismatch. ENG files shown above in yellow indicate a Diagnostic Version mismatch.												

Figure 86. Vehicle C Modified Calibration ECU Scan Report (Software PN: 68153863CN)

12.4 Appendix 4: Bag-Weighted Dataset Charts

12.5 Appendix 5: Bag Phase 1 Dataset Charts

12.6 Appendix 6: Bag Phase 2 Dataset Charts

12.7 Appendix 7: Bag Phase 3 Dataset Charts

12.8 Appendix 8: Engine-Out-Weighted Dataset Chart

12.9 Appendix 9: Engine-Out Phase 1 Dataset Chart

12.10 Appendix 10: Engine-Out Phase 2 Dataset Chart

12.11 Appendix 11: Engine-Out Phase 3 Dataset Chart

12.12 Appendix 12: Tailpipe-Weighted Dataset Charts

12.13 Appendix 13: Tailpipe Phase 1 Dataset Charts

12.14 Appendix 14: Tailpipe Phase 2 Dataset Charts

12.15 Appendix 15: Tailpipe Phase 3 Dataset Charts

12.19 Appendix 19: EPA 40CFR1066 EER Dataset Charts

NATURAL GAS ANALYSIS							
PROJECT NO. :	201410122	ANALYSIS NO. :	04				
COMPANY NAME :	SGS AUTOMOTIVE	ANALYSIS DATE: SAMPLE DATE :	OCTOBER 22, 2014 OCTOBER 21, 2014				
ACCOUNT NO. : NAME/DESCRIP :	SGS FUEL #1 BOTTLE #149765_	CYLINDER NO. :	0840				
FIELD DATA							
SAMPLED BY :	MARC HENDERSON	SAMPLE TEMP. :	74 F				
SAMPLE PRES. :	1800 PSIG	AMBIENT TEMP .:					
COMMENTS :	SPOT; NO PROBE						
	VACUUM DRAWN ON CONN	ECTION PRIOR TO SA	AMPLE				
	NORM.	GPM @	GPM @				
COMPONENTS	MOLE%	14.73	14.696				
HELIUM	0.00	-	-				
HYDROGEN	0.00	-	-				
OXYGEN/ARGON	1.01	-	-				
NITROGEN	0.02	-	-				
CO2	4.74	-	-				
METHANE	94.23	-	-				
ETHANE	0.00	0.000	0.000				
PROPANE	0.00	0.000	0.000				
ISOBUTANE	0.00	0.000	0.000				
N-BUTANE	0.00	0.000	0.000				
ISOPENTANE	0.00	0.000	0.000				
N-PENTANE	0.00	0.000	0.000				
HEXANES+	0.00	0.000	0.000				
TOTAL	100.00	0.000	0.000				
BTU @ 60 DEG F		14.73	14.696				
LOW NET DRY	REAL=	860.7	858.7				
NET SATU	RATED REAL=	845.7	843.7				
HIGH GROSS DE	Y REAL =	955.9	953.7				
GROSS SA	TURATED REAL =	939.3	937.1				
RELATIVE DENSITY	(ATR=1 @14 606 DSTA 60E) ·	0.6063					
COMPRESSIBILITY F	ACTOR :	0.99791					
NOTE: REFERENCE GPA	2261(ASTM D1945 & ASME-PTC), 21	45, & 2172 CURRENT PUBL	ICATIONS				
EMPACT Analytical System	is Inc. 365 S Main St	Brighton, CO 806	01 303-637-0150				

12.20 Appendix 20: Empact Analytical Certification Reports

	EMPA	CT	
	NATURAL GAS AN	ALYSIS	
NDOWCT NO .	201410122	ANALYSIS NO .	0.5
COMPANY NAME:	SCS AUTOMOTIVE	ANALYSIS NO. :	00 00TOPER 22 2014
COMPANT NAME .	365 AUTOMOTIVE	SAMPLE DATE :	OCTOBER 21, 2014
ACCOUNT NO		CYLINDER NO :	1668
NAME/DESCRIP :	SGS FUEL #2	01220220000	
	BOTTLE #466446		
FIELD DATA			
SAMPLED BY :	MARC HENDERSON	SAMPLE TEMP. :	74 F
SAMPLE PRES. :	1800 PSIG	AMBIENT TEMP.:	
COMMENTS :	SPOT; NO PROBE		
	VACUUM DRAWN ON CONN	NECTION PRIOR TO SA	MPLE
	NORM.	GPM @	GPM @
COMPONENTS	MOLE%	14.73	14.696
HELIUM	0.00	-	-
HYDROGEN	0.00	-	-
OXYGEN/ARGON	0.00	-	-
NITROGEN	0.72	-	-
CO2	0.52	-	-
METHANE	98.76	-	-
ETHANE	0.00	0.000	0.000
PROPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0.00	0.000	0.000
TOTAL	100.00	0.000	0.000
	_		
BTU @ 60 DEG I	F	14.73	14.696
LOW NET DRY	REAL=	902.0	899.9
NET SAT	URATED REAL=	886.3	884.2
HIGH GROSS D	RY REAL =	1001.8	999.4
GROSS S.	ATOKATED REAL =	984.4	982.0
	(ATD-1 @14 (04 DOTA (07) .	0.5500	
COMPRESSIBILITY	(ALK=1 @14.090 PSIA OUP):	0.5028	
COMPRESSIBILITY	FACTOR .	0.99603	
NOTE: REFERENCE GP.	4 2261(ASTM D1945 & ASME-PTC), 21	145, & 2172 CURRENT PUBL	ICATIONS
EMPACT Analytical System	ns Inc. 365 S Main St	Brighton, CO 8060	01 303-637-0150

		EMP/	ACT	
		NATURAL GAS A	NALYSIS	
PROJECT NO	: 20141	0122	ANALYSIS NO. :	05
COMPANY N	AME : SGS A	UTOMOTIVE	ANALYSIS DATI	E: OCTOBER 22, 2014
			SAMPLE DATE	: OCTOBER 21, 2014
ACCOUNT N	D. :		CYLINDER NO.	1691
NAME/DESCI	RIP : SGS F	UEL #3		
	BOTT	LE #425272		
FIELD DA	TA			
SAMPLED BY	: MARO	C HENDERSON	SAMPLE TEMP.	: 74 F
SAMPLE PRE	S.: 1800 I	SIG	AMBIENT TEMP	-
COMMENTS	: SPOT	NO PROBE		
	VACU	JUM DRAWN ON CON	NECTION PRIOR TO	SAMPLE
		NORM.	GPM @	GPM @
COMPONENT	rs -	MOLE%	14.73	14.696
HELIUM		0.01	-	-
HYDROGEN		0.00	-	-
OXYGEN/AR	GON	0.47	-	-
NITROGEN		1.93	-	-
CO2		0.69	-	-
METHANE		92.61	-	-
ETHANE		0.00	0.000	0.000
PROPANE		4.29	1.182	1.179
ISOBUTANE		0.00	0.000	0.000
N-BUTANE		0.00	0.000	0.000
ISOPENTANE	1	0.00	0.000	0.000
N-PENTANE		0.00	0.000	0.000
HEXANES+		0.00	0.000	0.000
TOTAL		100.00	1.182	1.179
BTU @ 6	0 DEG F		14.73	14.696
LOW N	T DRY REAL		945.9	943.7
N	T SATURATE	D REAL=	929.5	927.3
HIGH G	OSS DRY REA	L =	1048.1	1045.7
GI	ROSS SATURA	TED REAL =	1029.9	1027.5
	ENGTEV (AD-	1 @14.606 DETA 60Ph -	0.6130	
COMPRESS	ULITY FACTO	r @14.090 PSLR 00F) : R ·	0.0139	
COMPRESSIE	ALITI FACIO		0.55771	
NOTE: REFERE	NCE GPA 2262(AS	TM D1945 & ASME-PTC),	2145, & 2172 CURRENT PU	BLICATIONS

	NATURAL GAS AN	ALYSIS	
PROJECT NO. :	201410122	ANALYSIS NO. :	02
COMPANY NAME :	SGS AUTOMOTIVE	ANALYSIS DATE:	OCTOBER 22, 2014
		SAMPLE DATE :	OCTOBER 21, 2014
ACCOUNT NO. :		CYLINDER NO. :	1705
NAME/DESCRIP :	SGS FUEL #4		
	BOTTLE #166681904		
FIELD DATA			
SAMPLED BY :	MARC HENDERSON	SAMPLE TEMP. :	74 F
SAMPLE PRES. :	1800 PSIG	AMBIENT TEMP .:	
COMMENTS :	SPOT; NO PROBE		
	VACUUM DRAWN ON CONN	VECTION PRIOR TO S.	AMPLE
	NORM.	GPM @	GPM @
COMPONENTS	MOLE%	14.73	14.696
HELIUM	0.01	-	-
HYDROGEN	0.00		-
OXYGEN/ARGON	1.01	-	-
NITROGEN	4.76	-	-
CO2	2.30	-	-
METHANE	75.12	-	-
ETHANE	10.42	2.786	2.780
PROPANE	3.98	1.096	1.094
ISOBUTANE	0.01	0.003	0.003
N-BUTANE	1.94	0.611	0.610
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.45	0.163	0.163
HEXANES+	0.00	0.000	0.000
TOTAL	100.00	4.659	4.650
BTU @ 60 DEG E	7	14 73	14 696
LOW NET DRY	REAL=	1024.0	1022.5
NET SATU	IRATED REAL	1007.1	1004.7
HICH GROSS D	RV REAL =	1131.0	1128.4
GROSS SA	ATURATED REAL =	1111.3	1108.7
RELATIVE DENSITY COMPRESSIBILITY F	(AIR=1 @14.696 PSIA 60F) : FACTOR :	0.7293 0.99691	
NOTE: REFERENCE GPA	2261(ASTM D1945 & ASME-PTC), 21	45, & 2172 CURRENT PUB.	LICATIONS

NATURAL CAS ANALYSIS							
PROJECT NO. :	201410122	ANALYSIS NO. :	01				
COMPANY NAME :	SGS AUTOMOTIVE	ANALYSIS DATE: (OCTOBER 21, 2014				
		SAMPLE DATE : 0	OCTOBER 21, 2014				
ACCOUNT NO. :		CYLINDER NO. :	1713				
NAME/DESCRIP :	SGS FUEL GAS #5						
	BOTTLE #295730						
FIELD DATA							
SAMPLED BY :	MARC HENDERSON	SAMPLE TEMP. :	74 F				
SAMPLE PRES. :	1800 PSIG	AMBIENT TEMP .:					
COMMENTS :	SPOT; NO PROBE						
	VACUUM DRAWN ON COM	NECTION PRIOR TO SA	MPLE				
	NORM.	GPM @	GPM @				
COMPONENTS	MOLE%	14.73	14.696				
HELIUM	0.00						
HYDROGEN	0.00		-				
OXYGEN/ARGON	0.01		-				
NITROGEN	0.01		-				
CO2	0.00						
METHANE	94.71						
ETHANE	0.00	0.000	0.000				
PROPANE	5.27	1.452	1.448				
ISOBUTANE	0.00	0.000	0.000				
N-BUTANE	0.00	0.000	0.000				
ISOPENTANE	0.00	0.000	0.000				
N-PENTANE	0.00	0.000	0.000				
HEXANES+	0.00	0.000	0.000				
TOTAL	100.00	1.452	1.448				
BTU @ 60 DEG I	7	14.73	14 696				
LOW NET DRY	DEAL-	000 0	005.7				
NET SATI	IRATED REAL =	988.0	963.7				
HIGH GROSS D	RV REAL =	1004 3	1001.8				
GROSS SA	ATURATED REAL =	1075.3	1072.8				
21000 0							
RELATIVE DENSITY	(AIR=1 @14.696 PSIA 60F);	0.6062					
COMPRESSIBILITY 1	FACTOR :	0.99759					
NOTE: REFERENCE GPA	4 2261(ASTM D1945 & ASME-PTC), 2	145, & 2172 CURRENT PUBLI	ICATIONS				
EMPACT Analytical System	ns Inc. 365 S Main St	Brighton, CO 8060	01 303-637-0150				

PROJECT NO. : 201410122 COMPANY NAME : SGS AUTOMOTIVE ACCOUNT NO. : NAME/DESCRIP : SGS FUEL #6 BOTTLE #1001304 ***FIELD DATA*** SAMPLED BY : MARC HENDERSON SAMPLE PRES. : 1800 PSIG COMMENTS : SPOT; NO PROBE VACUUM DRAWN ON CON NORM. COMPONENTS MOLE% HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	ANALYSIS NO. ANALYSIS DAT SAMPLE DATE CYLINDER NO. SAMPLE TEMP AMBIENT TEM ONNECTION PRIOR TO GPM @ 14.73 - - - - 3.695 1.104 0.003 0.473	 03 TE: OCTOBER 22, 2014 COTOBER 21, 2014 1714 1714 74 F 74 F 0 SAMPLE GPM @ 14.696 - - - - - 3.687 1.102 0.003
COMPANY NAME : SGS AUTOMOTIVE ACCOUNT NO. :: NAME/DESCRIP : SGS FUEL #6 BOTTLE #1001304 ***FIELD DATA**** SAMPLED BY :: MARC HENDERSON SAMPLE PRES. : 1800 PSIG COMMENTS : SPOT; NO PROBE COMMENTS :: SPOT; NO PROBE COMPONENTS MOLE% MELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 0.01 N-BUTANE 0.00 N-PENTANE 0.00 N-PENTANE 0.00 N-PENTANE 0.00 N-PENTANE 0.00 M-PENTANE 0.00	ANALYSIS DAT SAMPLE DATE CYLINDER NO. SAMPLE TEMP AMBIENT TEM ONNECTION PRIOR TO GPM @ 14.73 - - - - - 3.695 1.104 0.003 0.473	TE: OCTOBER 22, 2014 3 : OCTOBER 21, 2014 0 : 1714 0 : 74 F IP.: O SAMPLE GPM @ 14.696 - - - - - - - - - - - - -
ACCOUNT NO. :: NAME/DESCRIP: SGS FUEL #6 BOTTLE #1001304 ***FIELD DATA*** SAMPLED BY :: MARC HENDERSON SAMPLE PRES. : 1800 PSIG COMMENTS :: SPOT; NO PROBE COMMENTS :: SPOT; NO PROBE COMPONENTS MOLE% HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 0.00 N-PENTANE 0.00 N-PENTANE 0.00 M-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	SAMPLE DATE CYLINDER NO SAMPLE TEMP AMBIENT TEM ONNECTION PRIOR TO GPM @ 14.73 - - - - - - 3.695 1.104 0.003 0.473	8 : OCTOBER 21, 2014 6 : 1714 9 : 74 F IP.: O SAMPLE GPM @ 14.696 - - - - - - - - - - - - -
ACCOUNT NO. : NAME/DESCRIP : SGS FUEL #6 BOTTLE #1001304 ***FIELD DATA*** SAMPLED BY : MARC HENDERSON SAMPLE PRES. : 1800 PSIG COMMENTS : SPOT; NO PROBE VACUUM DRAWN ON CON NORM. COMPONENTS MOLE% HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	CYLINDER NO SAMPLE TEMP AMBIENT TEM ONNECTION PRIOR TO GPM @ 14.73 - - - - - - 3.695 1.104 0.003 0.473	0.: 1714 0.: 74 F 10.: O SAMPLE GPM @ 14.696 - - - - - - - - - - - - -
NAME/DESCRIP : SGS FUEL #6 BOTTLE #1001304 ***FIELD DATA*** SAMPLED BY : MARC HENDERSON SAMPLE PRES. : 1800 PSIG COMMENTS : SPOT; NO PROBE VACUUM DRAWN ON C NORM. COMPONENTS MOLE% HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	SAMPLE TEMP AMBIENT TEM ONNECTION PRIOR TO GPM @ 14.73 - - - - - - - 3.695 1.104 0.003 0.473	P.: 74 F IP.: O SAMPLE GPM @ 14.696 - - - - - - - - - - - - -
BOTTLE #1001304 ***FIELD DATA*** SAMPLED BY : MARC HENDERSON SAMPLE PRES.: 1800 PSIG COMMENTS : SPOT; NO PROBE VACUUM DRAWN ON CONC NORM. COMPONENTS MOLE% HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	SAMPLE TEMP AMBIENT TEM ONNECTION PRIOR TO GPM @ 14.73 - - - - - - - 3.695 1.104 0.003 0.473	P.: 74 F IP.: O SAMPLE GPM @ 14.696 - - - - - - - - - - - - -
FIELD DATA SAMPLED BY : MARC HENDERSON SAMPLE PRES. : 1800 PSIG COMMENTS : SPOT; NO PROBE VACUUM DRAWN ON C NORM. COMPONENTS MOLE% HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 0.01 N-BUTANE 0.01 N-BUTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	SAMPLE TEMP AMBIENT TEM ONNECTION PRIOR TO GPM @ 14.73 - - - - - - - - 3.695 1.104 0.003 0.473	P.: 74 F IP.: O SAMPLE GPM @ 14.696 - - - - - - - - - - - - - - - - - -
SAMPLED BY : MARC HENDERSON SAMPLE PRES. : 1800 PSIG COMMENTS : SPOT; NO PROBE VACUUM DRAWN ON C NORM. COMPONENTS MOLE% HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	SAMPLE TEMP AMBIENT TEM ONNECTION PRIOR TO GPM @ 14.73 - - - - - - - - 3.695 1.104 0.003 0.473	P.: 74 F IP.: O SAMPLE GPM @ 14.696 - - - - - - - - - - - - -
SAMPLE PRES. : 1800 PSIG COMMENTS : SPOT; NO PROBE VACUUM DRAWN ON C NORM. COMPONENTS MOLE% HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	AMBIENT TEM NNECTION PRIOR TO GPM @ 14.73 - - - - 3.695 1.104 0.003 0.473	IP.: O SAMPLE GPM @ 14.696 - - - - - - - - - - - - -
COMMENTS : SPOT; NO PROBE VACUUM DRAWN ON C NORM. COMPONENTS MOLE% HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	DNNECTION PRIOR TO GPM @ 14.73 - - - - 3.695 1.104 0.003 0.473	O SAMPLE GPM @ 14.696 - - - - - - - - - - - - -
VACUUM DRAWN ON C NORM. COMPONENTS MOLE% HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 77.83 ETHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 0.01 N-BUTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	DNNECTION PRIOR TO GPM @ 14.73 - - - - - 3.695 1.104 0.003 0.473	O SAMPLE GPM @ 14.696 - - - - - - - - 3.687 1.102 0.003
NORM.COMPONENTSMOLE%HELIUM0.01HYDROGEN0.00OXYGEN/ARGON0.00NITROGEN0.01CO22.31METHANE77.83ETHANE13.82PROPANE4.01ISOBUTANE0.01N-BUTANE1.50ISOPENTANE0.00N-PENTANE0.50HEXANES+0.00TOTAL100.00	GPM @ 14.73 - - - - - - - - - - - - - - - - - - -	GPM @ 14.696 - - - - - 3.687 1.102 0.003
COMPONENTS MOLE% HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	14.73 - - - - - - - - - - - - - - - - - - -	14.696 - - - - - 3.687 1.102 0.003
HELIUM 0.01 HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	- - - - 3.695 1.104 0.003 0.473	- - - - - - - - - - - - - - - - - - -
HYDROGEN 0.00 OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	- - - 3.695 1.104 0.003 0.473	- - - 3.687 1.102 0.003
OXYGEN/ARGON 0.00 NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 0.01 N-PENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	- - - 3.695 1.104 0.003 0.473	- - - 3.687 1.102 0.003
NITROGEN 0.01 CO2 2.31 METHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	- 3.695 1.104 0.003 0.473	- - 3.687 1.102 0.003
CO2 2.31 METHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	- 3.695 1.104 0.003 0.473	- 3.687 1.102 0.003
METHANE 77.83 ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	3.695 1.104 0.003 0.473	- 3.687 1.102 0.003
ETHANE 13.82 PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	3.695 1.104 0.003 0.473	3.687 1.102 0.003
PROPANE 4.01 ISOBUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00	1.104 0.003 0.473	0.003
ISOBUTANE 0.01 N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 <u>HEXANES+</u> 0.00 TOTAL 100.00 BTU @ 60 DEG F	0.003	0.003
N-BUTANE 1.50 ISOPENTANE 0.00 N-PENTANE 0.50 <u>HEXANES+</u> 0.00 TOTAL 100.00 BTU @ 60 DEG F	0.473	
ISOPENTANE 0.00 N-PENTANE 0.50 HEXANES+ 0.00 TOTAL 100.00 BTU @ 60 DEG F		0.472
N-PENTANE 0.50 <u>HEXANES+</u> 0.00 TOTAL 100.00 BTU @ 60 DEG F	0.000	0.000
HEXANES+ 0.00 TOTAL 100.00 BTU @ 60 DEG F 000000000000000000000000000000000000	0.181	0.181
TOTAL 100.00 BTU @ 60 DEG F	0.000	0.000
BTU @ 60 DEG F	5.456	5.445
	14.73	14.696
LOW NET DRY REAL=	1094.6	1092.1
NET SATURATED REAL=	1075.6	1073.1
HIGH GROSS DRY REAL =	1207.7	1204.9
GROSS SATURATED REAL =	1186.7	1183.9
PET ATTRE DENSITY (AIR=1 @14 606 DETA 600	0.7158	
COMPRESSIBILITY FACTOR	0.00662	
COMPRESSION PROTOR .	0.99002	
NOTE: REFERENCE GPA 2261(ASIM D1945 & ASME-PIV), 2145, & 2172 CURRENT P	PUBLICATIONS

	ut EMPA	CT	
	NATURAL GAS AN	ALYSIS	
PROJECT NO. :	201410122	ANALYSIS NO. : 07	,
COMPANY NAME :	SGS AUTOMOTIVE	ANALYSIS DATE: O	CTOBER 21, 2014
		SAMPLE DATE : O	CTOBER 21, 2014
ACCOUNT NO. :		CYLINDER NO.: 17	20
NAME/DESCRIP :	SGS FUEL #7		
	BOTTLE #US-09545		
FIELD DATA			
SAMPLED BY :	MARC HENDERSON	SAMPLE TEMP.: 74	F
SAMPLE PRES. :	1800 PSIG	AMBIENT TEMP .:	
COMMENTS :	SPOT; NO PROBE		
	VACUUM DRAWN ON CONN	VECTION PRIOR TO SAM	PLE
	NORM.	GPM @ GI	PM @
COMPONENTS	MOLE%	14.73	14.696
HELIUM	0.00		
HYDROGEN	0.00		
OXYGEN/ARGON	0.00		
NITROGEN	0.02		
CO2	1.12		
METHANE	96.65		
ETHANE	2.21	0.591	0.590
PROPANE	0.00	0.000	0.000
ISOBUTANE	0.00	0.000	0.000
N-BUTANE	0.00	0.000	0.000
ISOPENTANE	0.00	0.000	0.000
N-PENTANE	0.00	0.000	0.000
HEXANES+	0.00	0.000	0.000
TOTAL	100.00	0.591	0.590
BTU @ 60 DEG	F	14.73	14 696
LOW NET DRY	PEAT-	010.0	016.6
NET SAT	IRATED PEAL =	918.8	910.0
HICH GROSS D	DV DEAL -	1010.9	1017.4
GROSS S	ATURATED REAL =	1002.1	999.7
RELATIVE DENSITY	(AIR=1 @14.696 PSIA 60F) :	0.5764	
COMPRESSIBILITY	FACTOR :	0.99790	
NOTE: REFERENCE GP	A 2261(ASTM D1945 & ASME-PTC), 21	45, & 2172 CURRENT PUBLIC.	ATIONS

12.21 Appendix 21: Air Gas Certification Reports

Airgas			A 61 Li	Iningas USA, LLC
C	ERTIFICATE OF	ANALYSIS	(2 W	81) 842-6900 Fax: (281) 471-2518 ww.airgas.com
Grade of	Product: CERTIFI	ED STANDAR	D-SPEC	
Customer: Part Number: Cylinder Number: Laboratory: Analysis Date: Lot Number:	HENDERSON , CO - SGS NO X03ME94C300CPL6 W475945 ASG - LaPorte Mix (SAP) - TX Aug 19, 2014 126-400413793-1 Expiration Date	RTH AMERICA . Aug 19, 2017	Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet:	126-400413793-1 274.0 CF 1800 PSIG 350
Product compositio	n verified by direct comparison Gas Mix	to calibration standards ture reference materials	traceable to N.I.S.T. v s.	veights and/or N.I.S.T.
	ANAL	YTICAL RESU	LTS	
Component	Requested	Actual Concent	ration	Analytical
	Concentration	(Mole %)		Uncertainty
OXYGEN CARBON DIOXIDE METHANE	1.000 % 4.700 % 94.30 %	1.016 % 4.716 % 94.27 %		+/- 2% +/- 2% +/- 2%
METHANE BALANCE : PO # 335223 SGS AUTOMOTIVE FU BTU @ 14.73 PSIA & 6 WOBBE INDEX : 1228 BTU REPORT ADDEN	94.2680% JEL 1 to DEG F 4 DUM ATTACHED			

	DAS®	Hydroca 61 Phone: 281-	rbon Center of I L6 Miller Cut-Off a Porte, TX 775 842-6900 Fax: www.airgas.cor	Excellence 7 Rd 771 281-471-2518 m	
	Gu	stomer Information			
Customer Name Customer Rep Address City, State, Zip Phone Customer PO# Work Order Part Number	SGS NORTH AMERICA HENDERSON , CO 335223 126-400413793-1 X03ME94C300CPL6		Cylinder Number Cylinder Size Cylinder Pressure CGA Traceability (NIST) Certification Date Expiration Date Ticket Number	W475945 300 1800 PSIG 350 741720-1 8/19/2014 8/19/2017	
L	Compon	ents and Concentra	tions		
	Pressure Base <u>CAS #</u> 124-38-9 7782-44-7 74-82-8	14.73 Component CARBON DIOXIDE OXYGEN METHANE	100.0000% <u>Concentration</u> 4.7160% 1.0160% 94.2680%		
REAL, DRY REAL, SATURATED IDEAL, DRY IDEAL, SATURATED WOBBE INDEX COMPRESSIBILITY FA	B GROSS BTU 956.3 940.0 954.3 937.7 1228.4 ACTOR (Dry) (Z Factor) ACTOR (Wet) (Z Factor)	TU CALCULATION <u>NET BTU</u> 861.1 846.4 859.3 844.3 1106.1 0.99790 0.99757	Relative Density 0.6060 0.6065 0.6050 0.6053		
Note: All reported values are calculated at 14.73 psia and 60°F in accordance with GPA Standard 2172.09 - "Calculation of Gross Heat Value, Relative Density and Compressibility Factor for Natural Gas Mixtures from Compositional Analysis"					
SPECIAL INSTRUCT	IONS				
SPESIAL INSTRUCT	iuna				
1	SGS	AUTOMOTIVE FUEL 1			
Approved By : _	pf Sepulanda		Date : _	8/19/2014	

Airgas. Airgas USA, LLC 616 Miller Cut Off Road Laporte, TX 77571 (281) 842-6900 Fax: (281) 471-2518 CERTIFICATE OF ANALYSIS www.airgas.com Grade of Product: CERTIFIED HYDROCARBON HENDERSON, CO - SGS NORTH AMERICA Customer: Reference Number: 126-400411188-1 Part Number: X03ME98C300CDN5 Cylinder Volume: 270.0 CF Cylinder Number: 4147475Y Cylinder Pressure: 1800 PSIG Laboratory: ASG - LaPorte Mix (SAP) - TX Aug 18, 2014 Valve Outlet: 350 Analysis Date: Expiration Date: Aug 18, 2017 Lot Number: 126-400411188-1 Traceability Statement: Hydrocarbon Process standards are NIST traceable either directly by weight or by comparison to Airgas laboratory standards that are directly NIST traceable by weight. CERTIFIED CONCENTRATIONS Reported Requested Accuracy Concentration Mole % Component 0.4891 % +/- 2% CARBON DIOXIDE 0.5000 % +/- 2% 0.7020 % NITROGEN 0.7000 % +/- 2% 98.81 % METHANE 98.80 % Permanent Notes:SGS AUTOMOTIVE FUEL 2 Notes:. METHANE BALANCE = 98.8089% PO # 335223 BTU @ 14.73 PSIA & 60 DEG F WOBBE INDEX : 1336.5 BTU REPORT ADDENDUM ATTACHED

Page 1 of 126-400411188-1

Approved for Release

		Hydrocar 610	bon Center of E 5 Miller Cut-Off	Excellence Rd			
L'ANIL G	ES®	La Porte, TX 77571					
You'll	find it with us	Phone: 281-842-6900 Fax: 281-4/1-2518 www.airgas.com					
		Customer Information					
Customer Name Customer Rep	SGS NORTH AMERICA		Cylinder Number Cylinder Size Cylinder Pressure	4147475Y 300 1800			
City, State, Zip	HENDERSON , CO		CGA Traceability (NIST)	350 741720-1			
Customer PO# Work Order	335223 126-400411188-1		Certification Date Expiration Date	8/18/2014 8/18/2017			
Part Number	X03ME98C300CDN5		Ticket Number				
	Comp	onents and Concentrat	lons				
	Pressure Base CAS#	14.73 Component	100.0000% Concentration				
	124-38-9	CARBON DIOXIDE	0.4891%				
	74-82-8	METHANE	98.8089%				
	BTU CALCUL ATION						
	GROSS BTU	NET BTU	Relative Density				
REAL, DRY	1002.3	902.4	0.5624				
REAL, SATURATED	965.1	900.6	0.5615				
IDEAL, SATURATED	982.9	885.0	0.5626				
WOBBE INDEX	1336.5	1203.4					
COMPRESSIBILITY FA	CTOR (Dry) (Z Factor) CTOR (Wet) (Z Factor)	0.99802					
COMPRESSIBILITY	CIOR (WEL) (2 Tackor)	0.00100					
Note: All reported va Gross Heat Value, Rel	Note: All reported values are calculated at 14.73 psia and 60°F in accordance with GPA Standard 2172.09 - "Calculation of Gross Heat Value, Relative Density and Compressibility Factor for Natural Gas Mixtures from Compositional Analysis"						
SPECIAL INSTRUCT	IONS						
Approved By :	pfSepwerda		Date :	8/18/2014			

<u>Airgas</u>

CERTIFICATE OF ANALYSIS

Airgas USA, LLC 616 Miller Cut Off Road Laporte, TX 77571

www.airgas.com

Grade of Product: CERTIFIED HYDROCARBON

Customer: Part Number: Cylinder Number: 425272 Laboratory: Analysis Date: Lot Number:

HENDERSON, CO - SGS NORTH AMERICA X05ME92C300CRC6 ASG - LaPorte Mix (SAP) - TX Aug 27, 2014 126-400414939-1A

Reference Number: 126-400414939-1A Cylinder Volume: Cylinder Pressure: Valve Outlet: 350 Expiration Date:

281.0 CF 1800 PSIG Aug 27, 2017

(281) 842-6900 Fax: (281) 471-2518

Traceability Statement: Hydrocarbon Process standards are NIST traceable either directly by weight or by comparison to Airgas laboratory standards that are directly NIST traceable by weight.

	CERTIFIE	D CONCENTRATIONS	
	Requested	Reported	
Component	Concentration	Mole %	Accuracy
OXYGEN	0.5000 %	0.4847 %	+/- 2%
CARBON DIOXIDE	0.7000 %	0.6663 %	+/- 2%
NITROGEN	2.000 %	1.987 %	+/- 2%
PROPANE	4.300 %	4.352 %	+/- 2%
METHANE	Balance	Balance	

Permanent Notes:SGS AUTOMOTIVE FUEL 3

Notes:.

METHANE BALANCE = 92.5100% PO # 335223 SGS AUTOMOTIVE FUEL 3 BTU @ 14.73 PSIA & 60 DEG F WOBBE INDEX : 1337.7 BTU REPORT ADDENDUM ATTACHED

for Release

Page 1 of 126-400414939-1A

AIrg You'll)as find it with us	Hydrocar 61 La Phone: 281-8	ocarbon Center of Excellence 616 Miller Cut-Off Rd La Porte, TX 77571 81-842-6900 Fax: 281-471-2518 www.airgas.com					
	Customer Information							
Customer Name Customer Rep Address City, State, Zip Phone Customer PO# Work Order Part Number	SGS NORTH AMERICA HENDERSON , CO 335223 126-400414939-1A X05ME92C300CRC6		Cylinder Number Cylinder Size Cylinder Pressure CGA Traceability (NIST) Certification Date Expiration Date Ticket Number	425272 300 1800 PSIG 350 741720-1 8/27/2014 8/27/2017				
	Com	ponents and Concentral	tions					
	Pressure Base <u>CAS #</u> 7782-44-7 124-38-9 7727-37-9 74-98-6 74-82-8	14.73 Component OXYGEN CARBON DIOXIDE NITROGEN PROPANE METHANE	100.0000% <u>Concentration</u> 0.4847% 0.6663% 1.9870% 4.3520% 92.5100%					
REAL, DRY REAL, SATURATED IDEAL, DRY IDEAL, SATURATED WOBBE INDEX COMPRESSIBILITY F/ COMPRESSIBILITY F/ Note: All reported va Gross Heat Value, Ref	GROSS BTU 1048.7 1030.8 1046.3 1028.1 1337.7 ACTOR (Dry) (Z Factor) ACTOR (Wet) (Z Factor) Iues are calculated at 14.73 plative Density and Compressi	BTU CALCULATION 946.4 930.2 944.2 927.8 1207.3 0.99770 0.99735	Relative Density 0.6145 0.6149 0.6134 0.6135 ce with GPA Standard 2: as Mixtures from Compo	172.09 - "Calculation of isitional Analysis"				
SPECIAL INSTRUCT	<u>'IONS</u>	SGS AUTOMOTIVE FUEL 3						
Approved By :	61Sepulua	L	Date :	8/27/2014				

Airgas

Airgas USA, LLC 616 Miller Cut Off Road

CERTIFICATE OF ANALYSIS

Grade of Product: CERTIFIED HYDROCARBON

Customer:	HENDERSON, CO - SGS NORTH AMERICA
Cylinder Number:	W475941
Laboratory:	ASG - LaPorte Mix (SAP) - TX
Analysis Date:	Aug 26, 2014
Lot Number:	126-400410049-1

Laporte, TX 77571 (281) 842-5900 Fax: (281) 471-2518 www.airgas.com

Reference Number:	126-400410049-1
Cylinder Volume:	315.0 CF
Cylinder Pressure:	1800 PSIG
Valve Outlet:	350
Expiration Date:	Aug 26, 2017

Traceability Statement: Hydrocarbon Process standards are NIST traceable either directly by weight or by comparison to Airgas laboratory standards that are directly NIST traceable by weight.

CERTIFIED CONCENTRATIONS				
	Requested	Reported		
Component	Concentration	Mole %	Accuracy	
N PENTANE	0.5000 %	0.5013 %	+/- 2%	
OXYGEN	1,000 %	1.000 %	+/- 2%	
N BUTANE	2.000 %	1.999 %	+/- 2%	
CARBON DIOXIDE	2.300 %	2.300 %	+/- 2%	
PROPANE	4.000 %	4,000 %	+/- 2%	
NITROGEN	4,700 %	4,700 %	+/- 2%	
ETHANE	10.50 %	10.50 %	+/- 2%	
METHANE	75.00 %	75.00 %	+/- 2%	

Permanent Notes:SGS AUTOMOTIVE FUEL 4

MAINTAIN CYLINDER ABOVE 60F OR CALIBRATION ERROR MAY OCCUR.

Notes:.

METHANE BALANCE = 74.9997% PO # 335223 SGS AUTOMOTIVE FUEL 4 BTU @ 14.73 PSIA & 60 DEG F WOBBE INDEX : 1327.7 BTU REPORT ADDENDUM ATTACHED

luth Approved for Release

Page 1 of 126-400410049-1

					_
	Hydrocarbon Center of Excellence				
//\\ār???	A TRADE 616 Miller Cut-Off Rd				
/ La Porte, TX 77571					
1 31 2	Phone: 281-842-6900 Fax: 281-471-2518				
You'll	find it with us		www.airgas.com		4
		Customer Information			
Carlos Harra			Cylinder Number	W475941	
Customer Name	SGS NORTH AMERICA		Cylinder Size	300	
Addross			Cylinder Pressure	1800 PSIG	
City, State, Zip	HENDERSON , CO		CGA	350	
Phone			Traceability (NIST)	741720-1	
Customer PO#	335223		Certification Date	8/26/2014	
Work Order	126-400410049-1		Expiration Date	8/26/2017	
Part Number	X08ME75C300CNL2		Ticket Number		
	Com	ponents and Concentrat	tions		
	Pressure Base	14.73	100.0000%		
	CAS #	Component	Concentration		
	404.00.0	CARRON DIOXIDE	2 3000%		
	124-36-9	ETHANE	10.5000%		
	106-97-8	N BUTANE	1.9990%		
	109-66-0	N PENTANE	0.5013%		
	7727-37-9	NITROGEN	4.7000%		
	7782-44-7	OXYGEN	1.0000%		
	74-98-6	PROPANE	4.0000%		
	74-82-8	METHANE	74.9997%		
REAL, DRY REAL, SATURATED IDEAL, DRY IDEAL, SATURATED WOBBE INDEX	GROSS BTU 1135.4 1116.1 1131.9 1112.2 1327.7	BTU CALCULATION <u>NET BTU</u> 1029.0 1011.5 1025.8 1007.9 1203.2 0 00029	<u>Relative Density</u> 0.7314 0.7298 0.7294 0.7275		
COMPRESSIBILITY F	ACTOR (Dry) (Z Factor)	0.99688			
COMPRESSIBILITY	ACTOR (Wet) (2 Factor)	0.00040			
Note: All reported va Gross Heat Value, Re	alues are calculated at 14.73 lative Density and Compressi	psia and 60°F in accordan bility Factor for Natural G	ce with GPA Standard 2 as Mixtures from Comp	172.09 - "Calculation of ositional Analysis"	-
SPECIAL INSTRUCT	TIONS				
		SGS AUTOMOTIVE FUEL	4		
Approved By :		Udh	Date	8/26/2014	

Airgas. Airgas USA, LLC 616 Miller Cut Off Road Laporte, TX 77571 (281) 842-6900 Fax: (281) 471-2518 CERTIFICATE OF ANALYSIS www.airgas.com Grade of Product: CERTIFIED HYDROCARBON HENDERSON, CO - SGS NORTH AMERICA Customer: 126-400412626-1 Reference Number: Part Number: X02ME94C300CQ08 Cylinder Volume: 286.0 CF Cylinder Number: 295730 Cylinder Pressure: 1800 PSIG ASG - LaPorte Mix (SAP) - TX Laboratory: Aug 19, 2014 Valve Outlet: 350 Analysis Date: Aug 19, 2017 Expiration Date Lot Number: 126-400412626-1 Traceability Statement: Hydrocarbon Process standards are NIST traceable either directly by weight or by comparison to Airgas laboratory standards that are directly NIST traceable by weight. CERTIFIED CONCENTRATIONS Reported Requested Concentration Mole % Accuracy Component 5.295 % +/- 2% PROPANE 5.300 % +/- 2% 94.71 % METHANE 94.70 % Permanent Notes:SGS AUTOMOTIVE FUEL 5 Notes: METHANE BALANCE = 94.705% PO # 335223 SGS AUTOMOTIVE FUEL 5 BTU @ 14.73 PSIA & 60 DEG F WOBBE INDEX : 1406.1 BTU REPORT ADDENDUM ATTACHED Julueda Approved for Release Page 1 of 126-400412626-1

Customer Name SGS NORTH AMERICA Customer Rep Address City, State, Zip HENDERSON , CO Phone Customer PO# 335223 Work Order 128-400412626-1 Part Number X02ME9E94C300CQ08		Hydroca 61 L Phone: 281-	rbon Center of E 6 Miller Cut-Off a Porte, TX 775 842-6900 Fax: 2 www.airgas.con Cylinder Number Cylinder Pressure Cylinder Pressure CGA Traceability (NIST) Certification Date Expiration Date Ticket Number	Excellence Rd 71 281-471-2518 n 295730 300 1800 PSIG 350 741720-1 8/19/2014 8/19/2017	
	Comp	onents and Concentra	tions		
	Pressure Base CAS #	14.73 Component	100.0000% Concentration		
	74-98-6 74-82-8	PROPANE	5.2950% 94.7050%		
REAL, DRY REAL, SATURATED IDEAL, DRY IDEAL, SATURATED WOBBE INDEX COMPRESSIBILITY FA	GROSS BTU 1094.9 1076.2 1092.3 1073.3 1406.1 CTOR (Dry) (Z Factor) CTOR (Wet) (Z Factor)	BTU CALCULATION 988.5 971.6 906.1 968.9 1269.4 0.99758 0.99722	Relative Density 0.6054 0.6059 0.6052 0.6055		
Note: All reported val Gross Heat Value, Rela	Note: All reported values are calculated at 14.73 psia and 60°F in accordance with GPA Standard 2172.09 - "Calculation of Gross Heat Value, Relative Density and Compressibility Factor for Natural Gas Mixtures from Compositional Analysis"				
SPECIAL INSTRUCTI	ONS				
	5	GS AUTOMOTIVE FUEL 5			
Approved By : Dete : BY September 2014					

Airgas

Airgas USA, LLC

616 Miller Cut Off Road Laporte, TX 77571 (281) 842-6900 Fax: (281) 471-2518 www.airgas.com

CERTIFICATE OF ANALYSIS Grade of Product: CERTIFIED HYDROCARBON

Customer:	HENDERSON, CO - SGS NORTH AMERICA			
Part Number:	X06ME77C300CX49		Reference Number:	126-400410051-1
Cylinder Number:	1001304		Cylinder Volume:	315.5 CF
Laboratory:	ASG - LaPorte Mix (SAP) - TX		Cylinder Pressure:	1800 PSIG
Analysis Date:	Aug 18, 2014		Valve Outlet:	350
Lot Number:	126-400410051-1		Expiration Date:	Aug 18, 2017
and the second se		and the second se		and the second se

Traceability Statement: Hydrocarbon Process standards are NIST traceable either directly by weight or by comparison to Airgas laboratory standards that are directly NIST traceable by weight.

CERTIFIED CONCENTRATIONS				
	Requested	Reported		
Component	Concentration	Mole %	Accuracy	
N PENTANE	0.5000 %	0.5027 %	+/- 2%	
N BUTANE	1.500 %	1.500 %	+/- 2%	
CARBON DIOXIDE	2.300 %	2.303 %	+/- 2%	
PROPANE	4.000 %	4.001 %	+/- 2%	
ETHANE	13.90 %	13.90 %	+/- 2%	
METHANE	77.80 %	77.79 %	+/- 2%	

Notes:

METHANE BALANCE = 77.7933% PO # 335223 SGS AUTOMOTIVE FUEL 6 BTU @ 14.73 PSIA & 60 DEG F WOBBE INDEX : 1428.2 BTU REPORT ADDENDUM ATTACHED

ela Approved for Release

Page 1 of 126-400410051-1

All folds with us Hydrocarbon Center of Excellence 616 Miller Cut-Off Rd La Porte, TX 77571 Phone: 281-842-6900 Fax: 281-471-2518 Www.airgas.com				
		Customer Information		
		Contrast in print the		
Customer Name Customer Rep Address City, State, Zip Phone Customer PO# Work Order Part Number	SGS NORTH AMERICA HENDERSON , CO 335223 125-400410051-1 X06ME77C300CX49		Cylinder Number Cylinder Size Cylinder Pressure CGA Traceability (NIST) Certification Date Expiration Date Ticket Number	1001304 300 1800 PSIG 350 741720-1 8/18/2014 8/18/2017
	Gom	ponents and Concentra	crons	
	Pressure Base CAS #	14.73 Component	100.0000% Concentration	
	124-38-9 74-84-0 106-97-8 109-66-0 74-98-6 74-82-8	CARBON DIOXIDE ETHANE N BUTANE N PENTANE PROPANE METHANE	2.3030% 13.9000% 1.5000% 0.5027% 4.0010% 77.7933%	
REAL, DRY REAL, SATURATED IDEAL, DRY IDEAL, SATURATED WOBBE INDEX COMPRESSIBILITY FA COMPRESSIBILITY FA	GROSS BTU 1208.3 1187.8 1204.2 1183.3 1428.2 CTOR (Dry) (Z Factor) ICTOR (Wet) (Z Factor) UCTOR (Wet) (Z Factor)	BTU CALCULATION <u>NET BTU</u> 1095.2 1076.5 1091.4 1072.4 1294.4 0.99651 0.99621 psia and 60°F in accordance	Relative Density 0.7159 0.7145 0.7137 0.7121	172.09 - "Calculation of
Gross Heat Value, Rei	ative Density and Compressi	bility Factor for Natural G	as Pictures from comp	Showing Sectory as
SPECIAL INSTRUCT	IONS	SGS AUTOMOTIVE FUEL	8	
Approved By :	\$ September	h	Date :	8/18/2014

CH	ERTIFICATE OF	ANALYSIS	616 Miller Cut Off Road Laporte, TX 77571 (281) 842-6900 Fax: (261) 471-2518 www.airgas.com
Grade of P art Number: X031 Vinder Number: US-(aboratory: ASG halysis Date: Aug at Number: 126-	Product: CERTIFI ME96C300C027 09545 - LaPorte Mix (SAP) - TX 25, 2014 400416507-1	ED HYDROCARBO Reference Number: Cylinder Volume: Cylinder Pressure: Valve Outlet: Expiration Date:	26-400416507-1 275.0 CF 1800 PSIG 350 Aug 25, 2017
Traceability Statemer	ht: Hydrocarbon Process standa Airgas laboratory standards	ards are NIST traceable either d s that are directly NIST traceabl	firectly by weight or by comparison to le by weight.
	CERTIFI	ED CONCENTRATIONS	8
omponent	Concentration	Keported Mole %	Accuracy
ARBON DIOXIDE THANE ETHANE	1.100 % 2.200 % 96.70 %	1.103 % 2.218 % 96.68 %	+/- 2% +/- 2% +/- 2%
088E INDEX : 1343.9 U REPORT ADDENDI	UM ATTACHED		

Approved for Release

7

Page 1 of 126-400416507-1

_					
AIFGAS® You'll find it with us		Hydrocarbon Center of Excellence 616 Miller Cut-Off Rd La Porte, TX 77571 Phone: 281-842-6900 Fax: 281-471-2518 www.airgas.com		Excellence Rd 71 281-471-2518 n	
		Customer Information			
Customer Name Customer Rep Address City, State, Zip Phone Customer PO#	SGS NORTH AMERICA HENDERSON , CO 335223		Cylinder Number Cylinder Size Cylinder Pressure CGA Traceability (NIST) Certification Date	US-09545 300 1800 PSIG 350 741720-1 8/25/2014	
Work Order Part Number	126-400416507-1 X03ME96C300C027		Expiration Date Ticket Number	8/25/2017	
	Com	ponents and Concentrat	tions		
	Pressure Base CAS #	14.73 Component	100.0000% Concentration		
	74-84-0 124-38-9 74-82-8	ETHANE CARBON DIOXIDE METHANE	2.2180% 1.1030% 96.6790%		
REAL, DRY REAL, SATURATED IDEAL, DRY IDEAL, SATURATED WOBBE INDEX COMPRESSIBILITY FA	<u>GROSS BTU</u> 1020.2 1002.8 1018.1 1000.3 1343.9 ACTOR (Dry) (Z Factor) ACTOR (Wet) (Z Factor)	BTU CALCULATION 919.2 903.5 917.2 901.3 1210.8 0.99789 0.99756	Relative Density 0.5763 0.5773 0.5753 0.5753 0.5761		
Note: All reported va Gross Heat Value, Rel	Note: All reported values are calculated at 14.73 psia and 60°F in accordance with GPA Standard 2172.09 - "Calculation of Gross Heat Value, Relative Density and Compressibility Factor for Natural Gas Mixtures from Compositional Analysis"				
SPECIAL INSTRUCT	IONS	SGS AUTOMOTIVE FUEL 7			
Approved By : _		edu	Date :	8/18/2014	
	11				