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EXECUTIVE SUMMARY 

 

E-1 Overview 

 

 We present in this report the performance evaluation of four air quality models 

that were applied to simulate particulate matter (PM) for an entire year (1996) over the 

western United States.  The air quality models considered here are the following: 

 

• The Comprehensive Air Quality Model with Extensions with Mechanism 4 

and the default two particle size section option (CAMx M4) (version 4+, 

similar to version 4.1 to be released by ENVIRON in June 2004) 

• The Comprehensive Air Quality Model with Extensions with Mechanism 4 

and the four particle size section option (CAMx 4Sec) (version 4+) 

• The Community Multiscale Air Quality model (CMAQ) (version 4.3 released 

by EPA in September 2003) 

• The Regional Modeling System for Aerosols and Deposition (REMSAD) 

(version 7.06 released by ICF Consulting in July 2002) 

 

CAMx M4 and REMSAD represent PM in two size fractions, fine and coarse, 

with a cut-off Stokes diameter of 2.5 µm.  CAMx 4Sec uses four size sections with three 

in the fine mode (from 0.039 to 2.5 µm in Stokes diameter) and one in the coarse mode 

(from 2.5 to 10 µm in Stokes diameter).  CMAQ uses three modes; two modes (nuclei 

and accumulation) are assumed to represent fine PM and the third mode is assumed to 

represent coarse PM.  All models use a single droplet size for aqueous-phase chemistry. 

We evaluated the performance of these models by comparing the model 

simulation results with measurements of ozone concentrations, PM concentrations 

(including several PM species and two PM size fractions) and wet deposition of sulfate, 

nitrate and ammonium.  The performance evaluation was conducted using the Model 

Performance Evaluation (MPE) package developed by AER for the Central Regional Air 

Planning Association (CENRAP).  This MPE package includes a database of atmospheric 
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data (ambient concentrations and wet deposition fluxes) and a software that calculates 

several performance metrics. 

 

E-2 Measurement Databases 

 

The performance of the models was evaluated using non-urban ozone 

concentrations from the Air Quality System (AQS), PM concentrations from the 

Interagency Monitoring of Protected Visual Environments (IMPROVE), sulfate and total 

nitrate concentrations  from the Clean Air Status & Trends Network (CASTNet) and wet 

deposition of sulfate, nitrate and ammonium from the National Atmospheric Deposition 

Program (NADP).  We reviewed the uncertainties that are associated with those 

measurements because they affect the model performance evaluation. 

Measurements of sulfate and nitrate (or total nitrate in the case of CASTNet) 

concentrations are likely to be reliable.  Black carbon (BC) measurements have some 

uncertainty associated with the analytical technique (on the order of 30% on average).  

Organic matter (OM) concentrations are estimated from organic carbon (OC) 

measurements and are likely to be underestimates because of negative artifacts during 

warm months and an underestimation of the 1.4 scaling factor to convert OC to OM.  

Accordingly, alternative OM concentrations were estimated using a more realistic 2.1 

scaling factor.  Coarse mass should be a reliable estimate because coarse material is 

mostly non-volatile and the artifacts associated with the semi-volatile components of the 

fine fraction should be similar in the PM2.5 and the PM10 measurements and should cancel 

out.  The soil component does not exactly correspond to the “other” component of the 

models; the comparison is, therefore, not meaningful and is not presented here. 

The PM2.5 measurement is likely to be an underestimate during warm months 

because of the volatilization of ammonium nitrate and some organic compounds.  An 

IMPROVE methodology can be used to calculate a reconstructed PM2.5 concentration 

from the PM2.5 component concentrations; however, this reconstructed PM2.5 

concentration also has uncertainties associated with the calculation of some of its 

components (ammonium, OM and other primary components).  Therefore, there are 

significant uncertainties associated with both measured and reconstructed PM2.5 
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concentrations and our assessment focuses on PM components rather PM2.5 and PM10 

concentrations. 

 

E.3 Summary of Model Performance 

 

Performance for non-urban ozone concentrations shows acceptable errors but 

significant biases (8 to 10 ppb underprediction on average for concentrations above 40 

ppb).  Such biases suggest possible uncertainties with the oxidants associated with 

secondary PM formation (O3, OH and H2O2) that may affect model performance for PM. 

For PM, the models typically explain only between 15 and 30% of the variance in 

the observed BC and sulfate concentrations, between 20 and 25% of the variance in the 

observed OM concentrations, about 20% of the variance in the nitrate concentrations, and 

about 40% of the variance in the total inorganic nitrate concentrations (i.e., HNO3 + 

particulate nitrate). All normalized errors (i.e., mean normalized error, normalized mean 

error, fractional error and normalized root mean square error) are greater than 50% except 

for CMAQ performance with CASTNet sulfate where the errors are slightly under 50%.  

In the case of nitrate, all normalized errors exceed 100%.  All models show significant 

biases for nitrate (large overpredictions) and OM (large underpredictions). 

Coarse PM concentrations (measured as the difference between PM10 and PM2.5 

concentrations) are significantly underpredicted by all models (by about one order of 

magnitude).  Less than 5% of the variance in the measured coarse PM concentrations is 

explained by the models. 

Wet deposition of sulfate, nitrate and ammonium is significantly underestimated 

by all models. 

 

E.4 Comparison of Performance among CAMx, CMAQ and REMSAD 
 

For sulfate, CAMx 4Sec and CMAQ show comparable performance.  The 

performance of CAMx M4 is slightly poorer than that of CAMx 4Sec (see below). 

REMSAD showed the worst performance (only 7% of the variance in the IMPROVE 

data explained and a mean normalized error nearing 100%).  The large differences 

obtained among the four models (factor of two for average annual concentrations) 
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suggest that improvements in the model inputs (boundary conditions, cloud and 

precipitation fields) and model formulation (sulfate formation in clouds, sulfate removal) 

are warranted. 

For nitrate, CAMx overestimates more than CMAQ and REMSAD but shows 

similar coefficients of correlation.  These results suggest that there is a systematic bias in 

CAMx that should be investigated. Uncertainties in the model inputs (ammonia 

inventory, boundary conditions, ambient temperature and relative humidity) are likely to 

introduce large errors in the modeling results. 

CAMx underestimates OM more than CMAQ and REMSAD.  We anticipate that 

OM formulations will evolve as our understanding of SOA formation continues to 

improve.  Also, efforts should be directed toward improving the emission inventories of 

primary OM and biogenic SOA precursors. 

Model performance for BC is comparable among the models.  It is strongly 

affected by uncertainties in the emission inventory and the ambient measurements.  It 

also reflects uncertainties associated with the formulation of transport and dispersion in 

all models. 

 

E.5 CAMx M4 versus CAMx 4Sec 

 

CAMx M4 (two size sections for PM, fine and coarse) and CAMx 4Sec (four size 

sections for PM) show similar results except for sulfate, with CAMx 4Sec showing better 

performance than CAMx M4.  The difference is due to the presence of some sulfate in 

the coarse mode in CAMx 4Sec and a likely faster removal of sulfate by dry deposition in 

CAMx 4Sec than in CAMx M4.  However, it is not clear whether four sections are 

sufficient to correctly simulate the evolution of the particle size distribution and 

additional testing of CAMx 4Sec is recommended.  First, simulations should be 

conducted with various size resolutions (e.g., 4 vs. 8 sections) to determine an optimal 

number of size sections that provides both numerical accuracy and computational 

efficiency.  Next, this optimal model configuration should be evaluated with size 

distributed field data. 
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E.6 Recommendations 

 

The results of this model performance evaluation point out the need to use the 

output of a global model for the boundary conditions and to improve various aspects of 

the emission inventory (ammonia, SOA biogenic precursors, primary PM including BC 

and coarse PM).  Data assimilation of clouds and precipitation is also recommended for 

meteorological modeling as clouds affect sulfate and nitrate formation (and possibly SOA 

formation) and precipitation is a major removal mechanism for PM that is significantly 

underestimated by the models in this 1996 application. 

Because of significant uncertainties in the model inputs and the limited amount of 

data available for diagnostic evaluation, it is not feasible to provide definitive conclusions 

regarding the adequacy of the model formulations.  Nevertheless, areas that deserve 

further investigation include sulfate formation (e.g., use of multiple droplet sizes), nitrate 

formation (e.g., heterogeneous reactions), SOA formation, the size distribution of 

secondary PM, and PM removal rates (mainly wet deposition rates but also dry 

deposition rates). 
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1. INTRODUCTION 
 

We present in this report the performance evaluation of four air quality models 

that were applied to simulate particulate matter (PM) for an entire year (1996) over the 

western United States.  The air quality models considered are the following: 

 

• The Comprehensive Air Quality Model with Extensions with Mechanism 4 

and the default two particle size section option (CAMx M4) (version 4+, 

similar to version 4.1 to be released by ENVIRON in June 2004) 

• The Comprehensive Air Quality Model with Extensions with Mechanism 4 

and the four particle size section option (CAMx 4Sec) (version 4+) 

• The Community Multiscale Air Quality model (CMAQ) (version 4.3 released 

by EPA in September 2003) 

• The Regional Modeling System for Aerosols and Deposition (REMSAD) 

(version 7.06 released by ICF Consulting in July 2002) 

 

CAMx M4 and REMSAD represent PM in two size fractions, fine and coarse, 

with a cut-off Stokes diameter of 2.5 µm.  CAMx 4Sec uses four size sections with three 

in the fine mode (from 0.039 to 2.5 µm in Stokes diameter) and one in the coarse mode 

(from 2.5 to 10 µm in Stokes diameter).  CMAQ uses three modes; two modes (nuclei 

and accumulation) are assumed to represent fine PM and the third mode is assumed to 

represent coarse PM.  All models use a single droplet size for aqueous-phase chemistry. 

The two versions of CAMx (with two and four particle size sections, respectively) 

were applied by ENVIRON under CRC Project A-44.  CMAQ and REMSAD were 

applied by the University of California at Riverside (UCR) and ENVIRON, respectively, 

under the Western Regional Air Partnership (WRAP) program to address regional haze.  

The output files of the CAMx, CMAQ and REMSAD simulations were obtained from 

ENVIRON except for the wet deposition outputs files of the CMAQ simulation which 

were obtained from UCR.  These files were 1-hour average values except for the CMAQ 

concentration file that provided instantaneous (end of the hour) concentrations (1-hour 

average values were not available).  The effect of using 1-hour average values versus 



 

Performance Evaluation of Four Air Quality Models 
 

1-2

instantaneous values on performance measures is small (less than 1%; G. Tonnesen, 

communication to WRAP, May 2004) and, therefore, does not affect the performance 

evaluation presented here noticeably.  

The performance evaluation was conducted using the Model Performance 

Evaluation (MPE) package developed by AER for the Central Regional Air Planning 

Association (CENRAP).  This MPE package includes a database of atmospheric data 

(ambient concentrations and wet deposition fluxes) and a software that calculates several 

performance metrics (Pun et al., 2004a). 

We present in Section 2 an overview of the databases that were used to evaluate 

the models.  The uncertainties associated with the measurements are discussed because 

they can affect model performance.  We discuss the statistical metrics that are used to 

assess model performance in Section 3.  The results of the model performance evaluation 

are presented in Section 4 (the complete set of performance statistics is available as an 

electronic file).  An assessment of model performance and some recommendations are 

provided in Section 5.  Concluding remarks are presented in Section 6. 
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2. OVERVIEW OF THE MEASUREMENT DATABASES 

 

 

Four measurement databases were used in this performance evaluation.  Those 

include the Air Quality System (AQS) for ozone concentrations, the Interagency 

Monitoring of Protected Visual Environments (IMPROVE) for PM concentrations, the 

Clean Air Status & Trends Network (CASTNet) for sulfate and total nitrate 

concentrations and the National Atmospheric Deposition Program (NADP) for wet 

deposition of sulfate, nitrate and ammonium.  We discuss the measurements from these 

networks and how they are used in this model performance evaluation.  We conclude 

with a summary of the uncertainties associated with those measurements and how they 

may affect model performance evaluation. 

 

2.1 AQS 

 

To the extent possible, PM air quality models should be evaluated for gaseous 

precursors and oxidants in addition of PM species (e.g., Seigneur et al., 2000; EPA, 

2001).  For the year 1996, few data are available for gases.  The AQS provides ozone 

(O3), nitrogen oxides (NOX), sulfur dioxide (SO2), carbon monoxide (CO) and some 

volatile organic compounds (VOC) measurements.  Because the air quality models were 

applied with a coarse spatial resolution (about 36 km), only non-urban ambient 

concentrations should be used for model performance evaluation.  Non-urban 

concentrations of NOX, SO2, and CO are low in the western United States and, 

consequently, they are not very suitable for a performance evaluation.  Because there are 

few VOC concentrations available in non-urban locations, those were not used for model 

performance evaluation.  Therefore, only the O3 1-hour average concentrations at non-

urban locations were used here. 
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2.2 IMPROVE 

 

IMPROVE provides PM concentrations in Class I areas (such as National Parks 

and National Wilderness Areas) twice a week (on Wednesdays and Saturdays). (This 

monitoring schedule was changed to every third day in 2000.)  The measurements include 

PM10, PM2.5, PM2.5 components (sulfate, nitrate, metals, organic carbon and black 

carbon), light scattering and, in some locations, light absorption.  It should be noted that 

there are some significant uncertainties with some of those measurements. 

The PM10 and PM2.5 measurements are obtained by selectively sampling particles 

that have aerodynamic diameters less than 10 and 2.5 µm, respectively.  It must be noted 

that those cut-off diameters are approximate because some particles with larger diameters 

will be sampled and some particles with smaller diameters will not be sampled (see 

Figure 2-1).  Moreover, the models use Stokes diameters to simulate the dynamics of 

atmospheric PM.  The Stokes and aerodynamic diameters are related by the square root 

of the particle density.  Therefore, if the particle density differs from 1 g/cm3, a Stokes 

diameter of 2.5 µm will not correspond to an aerodynamic diameter of 2.5 µm.  Also, 

models that use a modal representation (here, CMAQ) may not match the fine and coarse 

PM measurements exactly because the tails of the modes may overlap with the next size 

section (for example, the upper tail of the accumulation mode may extend into the coarse 

mode).  These points have been discussed in detail by Bhave (2004) and Seigneur (2004).  

The uncertainties associated with the size fractions are likely to be small compared to 

those associated with the chemical mass measurements, as discussed below. 

PM10 and PM2.5 mass measurements are made from a gravimetric analysis of PM 

collected on a Teflon filter.  Although such measurements are likely to be accurate for 

non-volatile PM components, there are possible artifacts for semi-volatile PM 

components.  Some negative artifacts may occur as semi-volatile compounds such as 

ammonium nitrate and some organic compounds volatilize due to a change in 

temperature, pressure or gas-phase composition.  Such negative artifacts have been 

documented for ammonium nitrate (e.g., Hering and Cass, 1999; Ashbaugh and Eldred, 

2004) and organic compounds (e.g., Pang et al., 2002).  Positive artifacts may occur as 

some gases adsorb to the filter.  Such positive artifacts are more likely to occur for 
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Figure 2-1.  Typical sampling efficiency for a PM2.5 sampler with size segregation 

based on inertial impaction. 
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organic compounds (e.g., Turpin et al., 2000).  The PM10 and PM2.5 mass measurements 

are more likely to be inaccurate when the ambient temperature is high (i.e., during spring 

and summer) because the volatilization of some semi-volatile compounds leads to 

underestimation of PM mass.  In addition to the problems associated with positive and 

negative artifacts, another source of discrepancy between measured and simulated PM 

concentrations results from the amount of water associated with PM.  The ravimetric 

measurements are conducted in the laboratory at a temperature and a relative humidity 

that are within specified ranges.  Some amount of water is typically retained with PM due 

to the hysteresis of hygroscopic particles.  On the other hand, the simulated PM 

concentrations are typically reported without any water. 

Sulfate concentrations can be obtained in two ways from the IMPROVE 

measurements.  Because SO2 is in the gas phase, the sulfur measured on the filter 

corresponds solely to sulfate and the sulfur measurement multiplied by three (to account 

for the four associated oxygen atoms) provides a sulfate measurement.  On the other 

hand, sulfate is also measured from a Nylon filter sample.  The two values typically agree 

well with each other.  Here, we used the sulfur measurement multiplied by three as the 

sulfate concentration. 

Nitrate measurements are made from PM collected on a Nylon filter.  A denuder 

is placed in front of the filter to collect HNO3 and positive artifacts due to HNO3 

adsorption are, therefore, minimized.  The Nylon filter is slightly alkaline so that 

volatilization of nitrate is also minimized.  Therefore, nitrate measurements should be 

reasonably accurate since both positive and negative artifacts are minimized. 

Ammonium measurements are not made routinely in the IMPROVE network and 

model performance was, therefore, not evaluated for ammonium. 

Carbon is sampled on Quartz filters and a thermal analysis is conducted in the 

laboratory to differentiate between organic and black (also referred to as elemental or 

light-absorbing) carbon.  The differentiation between organic carbon (OC) and black 

carbon (BC) is, therefore, operational because it depends on the laboratory analytical 

protocol.  Chow et al. (2001) estimated that uncertainties due to different protocols may 

be on the order of a factor of two for BC.  A recent comparison conducted by EPA 

(Solomon et al., 2004) suggests that differences may be less (on the order of 30% for 
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BC).  Because OC concentrations are typically greater than BC concentrations in remote 

areas, the relative uncertainty due to the analytical protocol is typically less for OC. 

In addition, there are two other sources of uncertainties for organic PM.  First, 

there may be positive and negative artifacts (e.g., Turpin et al., 2000; Eatough et al., 

2003).  In the IMPROVE sampling, there is no denuder to remove organic vapors prior to 

the Quartz filter, therefore, some semi-volatile organic compounds could adsorb to the 

Quartz filter.  The IMPROVE protocol attempts to compensate for this positive artifact 

by subtracting the organic PM collected on a back-up filter.  However, these back-up 

filters are not specific to the sampling site and period. Instead, an average value obtained 

from a limited number of back-up filters (i.e., field blanks) is subtracted from the value 

obtained from the Quartz filter.  This approach leads to two problems: (1) using an 

average value may not be representative of a given site and period and (2) there may also 

be negative artifacts (volatilization of organic PM from the Quartz filter) that are not 

accounted for by this method.  As a result, it is possible that OC measurements are 

underestimates of actual OC values.  

The second source of uncertainty arises from the conversion of the OC 

concentration to an organic mass (OM) concentration that includes oxygen, nitrogen and 

hydrogen associated with the measured carbon.  Since the non-carbon atoms are not 

measured, the IMPROVE protocol recommends using a factor of 1.4 to convert OC to 

OM.  Turpin and Lim (2001) have argued that a factor of 1.4 is too low for remote sites 

(such as the IMPROVE sites) and that a factor of 2.1 would be more representative of the 

chemical composition of OM in remote areas.  Here, we used a factor of 1.4 in the base 

performance evaluation and a factor of 2.1 in an alternative assessment to investigate the 

effect of this major source of uncertainty. 

Other components of PM include crustal material, sea salt and primary 

anthropogenic emissions.  The IMPROVE protocol estimates a PM2.5 component 

classified as “soil” by summing several metal oxides (the metal concentrations are 

measured and an oxidation state is assumed for each metal).  Air quality models typically 

have a PM component called “other PM”.  CAMx differentiates “other” PM among 

crustal material, primary anthropogenic emissions and sodium chloride.  However, the 

attribution of PM primary emissions to the crustal and anthropogenic categories is 
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arbitrary because the emission model, SMOKE, does not provide sufficient information 

to distribute primary PM properly.  Here, we compared the IMPROVE “soil” 

concentration with the “other” PM calculated by the models.  Clearly, there are large 

uncertainties associated with this comparison and, consequently, we do not attempt to 

interpret the discrepancies between estimates derived from the measurements and the 

modeling results. 

As mentioned above, PM2.5 measurements may have large uncertainties due to 

positive and negative artifacts, as well as the presence of some water.  Another PM2.5 

concentration is calculated according to the IMPROVE methodology from the 

concentrations of sulfate, nitrate, OC, BC and “soil”. This calculated concentration is 

referred to as “reconstructed” PM2.5.  There are, however, uncertainties associated with 

this methodology.  First, ammonium is not measured and it is assumed to be present to 

completely neutralize sulfate and nitrate.  Although this may be a plausible assumption 

when nitrate is present (sulfate is generally neutralized before nitrate), it does not hold in 

ammonia-poor environments where ammonium bisulfate or letovicite may be present.  

Second, a factor of 1.4 is used to convert OC to OM (as discussed above, a factor of 2.1 

may be more appropriate).  Third, the “other” components are estimated from 

measurements of elements and assumptions on their oxidation states.   A scatter diagram 

of the measured and reconstructed PM2.5 concentrations in the western IMPROVE 

network during 1996 is presented in Figure 2-2a.  The reconstructed PM2.5 concentrations 

tend to be lower than the measured PM2.5 concentrations.  Although there are several 

sources of discrepancies between the two PM2.5 concentrations, the major source of 

discrepancy is likely due to the use of a 1.4 OM/OC scaling factor for the reconstructed 

PM2.5 concentrations.  Using a more realistic scaling factor (e.g., 2.1) reduces the 

differences to some extent, as depicted in Figure 2-2b.  We used both the measured and 

the reconstructed (with a 1.4 OM/OC scaling factor) PM2.5 concentrations for this model 

performance evaluation.  However, one must keep in mind that both PM2.5 concentrations 

have associated uncertainties. 

Coarse mass is estimated as the difference between the PM10 and PM2.5 

concentrations.  One would expect that the same artifacts apply to the fine fraction of  
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Figure 2.2.  Scatter diagram of measured and reconstructed PM2.5 concentrations 

from IMPROVE (55 sites in the western United States during 1996), using OM/OC = 1.4 

(top) and OM/OC = 2.1 (bottom). 



 

Performance Evaluation of Four Air Quality Models 
 

2-8

PM10 and to PM2.5.  Therefore, the coarse mass estimate (which should contain little 

semi-volatile material) should be reasonably accurate. 

 

2.3 CASTNet 

 

CASTNet provides 1-week averaged measurements of PM species (sulfate, nitrate 

and ammonium) and of some gases (nitric acid, HNO3, and SO2).  In addition, estimates 

of dry deposition are also provided for the species measured by combining the measured 

concentrations with estimates of dry deposition velocities. 

The fact that the measurements are obtained from 1-week averaged filter samples 

casts some doubt on the accuracy of those measurements for the semi-volatile species; 88 

 namely, nitrate, ammonium and HNO3 (see discussion of uncertainties associated 

with ammonium nitrate above).  Therefore, we did not use those measurements in this 

model performance evaluation.  However, the sum of nitrate and HNO3 should be 

representative of the actual ambient concentration of total inorganic nitrate (i.e., 

particulate + gas), because only the partitioning between the gas and particulate phases 

should be affected by the 1-week duration.  Therefore, we used the sulfate and total 

inorganic nitrate measurements in the model performance evaluation.  Note that the PM 

measurements are made with open-face filters and do not include any size segregation.  

Therefore, we compare total (i.e., fine and coarse) sulfate PM concentrations to the 

CASTNet measurements. 

CASTNet measurements are reported at standard temperature and pressure (STN).  

The model outputs are converted to standard temperature and pressure by the MPE 

software using the modeled temperature and pressure. 

Because dry deposition is not measured but estimated using a model to estimate 

the deposition velocities, it was not used in the model performance evaluation.  Figure 2-

3 depicts this rationale by deconstructing the CASTNet deposition estimates into its 

components. 
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Figure 2-3.  Schematic representation of CASTNet data and their use in model 

performance evaluation. 

 
Measured 
ambient 

concentration 

 
Simulated 
ambient 

concentration

Model 
performance 
evaluation 

 
Estimated dry 

deposition 

 
Simulated dry 

deposition 

Dry 
deposition 

model 

Dry 
deposition 

module 

Not used in 
model 

evaluation



 

Performance Evaluation of Four Air Quality Models 
 

2-10

2.4 NADP 

 

NADP provides wet deposition fluxes for sulfate, nitrate, ammonium, hydrogen 

and several other cations.  These data were used here to evaluate the wet deposition 

components of the PM models.  Although wet deposition is not necessarily an output of a 

PM air quality model, it affects PM concentrations by removing PM from the 

atmosphere.  Therefore, this evaluation adds a diagnostic component to the overall 

evaluation process by providing a direct evaluation of an important removal pathway for 

PM. 

We evaluated the models for sulfate, nitrate and ammonium wet deposition 

(hydrogen ions were not available from the models). 

 

2.5 Summary of Measurement Uncertainties 

 

Table 2-1 summarizes the uncertainties associated with the ambient concentration 

measurements used for the model performance evaluation.  This summary shows that the 

sulfate and nitrate (or total sulfate and nitrate in the case of CASTNet) components of 

PM2.5 are likely to be reliable measurements.  BC measurements have some uncertainty 

associated with the analytical technique (on the order of 30% on average according to 

Solomon et al., 2004).  OM estimates are likely to be underestimates because of negative 

artifacts during warm months and an underestimation of the scaling factor to convert OC 

to OM.  Coarse mass should be a reliable estimate because coarse material is mostly non-

volatile and the artifacts associated with the semi-volatile components of the fine fraction 

should be similar in the PM2.5 and the PM10 measurements and should cancel out.  The 

soil component does not exactly correspond to the “other” component of the models and 

the comparison is, therefore, not meaningful. 

The PM2.5 measurement is likely to be an underestimate during warm months 

because of the volatilization of ammonium nitrate and some organic compounds.  The 

reconstructed PM2.5 has also uncertainties associated with the calculation of some of its 

components (ammonium, OM and other primary components).  Therefore, there are  
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Table 2-1.  Uncertainties associated with ambient concentration measurements. 

 

Monitoring 
network 

Measurement Major uncertainty Consequence for 
performance 

evaluation 

AQS O3 Some interferences Negligible 

Sulfate (as sulfur) None Negligible 

Nitrate Negligible volatilization Negligible 

OM (as OC) Positive and negative 
artifacts; scaling factor 

Likely to underestimate 
actual OM 

BC Operational uncertainty 
of analytical method 

30% to factor of 2 
uncertainty 

PM2.5 (measured) Negative artifacts for 
ammonium nitrate; 
positive and negative 
artifacts for OM; 
presence of some water 

More likely to 
underestimate during 
warm periods due to 
negative artifacts 
(volatilization) 

PM2.5 
(reconstructed) 

Ammonium assumed to 
neutralize sulfate and 
nitrate; 1.4 scaling 
factor OM/OC; soil 
oxides assumptions 

Ammonium may be 
overestimated 
(particularly if no 
nitrate); OM likely to be 
underestimated, “other” 
components uncertain 

PM10 (measured) Same as PM2.5 Same as PM2.5 

IMPROVE 

Coarse mass PM2.5 and fine PM10 
uncertainties are likely 
to cancel out; negligible 
uncertainties for the 
coarse fraction 

Negligible 

Sulfate  None Negligible CASTNet 

Total nitrate Negligible (major 
uncertainties apply to 
the gas/particle 
partitioning) 

Negligible 
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significant uncertainties associated with measured (or reconstructed) PM2.5 

concentrations and the results of the model performance evaluation should be interpreted 

with caution. 

A similar conclusion applies to the PM10 measurement, although the artifacts are 

likely to be less for the coarse fraction than for the fine fraction and the PM10 

measurement should, therefore, be more accurate than the PM2.5 measurement. 

There are no particular artifacts associated with the wet deposition measurements.
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3. PERFORMANCE MEASURES 

 

 

Most of the performance measures that are currently available in the MPE 

software (version 1.03) were used.  Table 3-1 presents those measures as well as their 

mathematical expressions.  When calculating the performance measures, a threshold 

value of 40 ppb was used for the ozone concentrations and a threshold value of 0.01 

µg/m3 was used for all PM concentrations (data pairs were included in the statistics only 

if the observed value exceeded the threshold value).  A threshold of 0.01 kg/ha was used 

for the wet deposition data.  We briefly discuss below the meaning of the measures as 

well as their advantages and disadvantages. 

Accuracy of peak: This measure is useful to assess the ability of a model to 

reproduce the peak concentration in an airshed (i.e., the concentration that is relevant for 

the attainment of the National Ambient Air Quality Standards).  It is less relevant for 

regional studies and we do not use it here in our discussion of model performance. 

Correlation coefficient (r): It is calculated here for all sites and all time periods.  

Therefore, it measures the ability of the model to reproduce the spatial and temporal 

variations in the observed variables.  It ranges from –1 (perfect anti-correlation) to +1 

(perfect correlation). 

Coefficient of determination (r2): It represents the fraction of the variance in the 

observations that is reproduced by the model. It ranges from 0 to 1.  A value of 0.5 means 

that the model explains half of the variance in the observations. 

Mean error and bias: The arithmetic means of the error (absolute difference 

between the simulated and observed values) and bias (signed difference between the 

simulated and observed values) provide an absolute measure of the error and bias in the 

model simulations. 

Mean normalized error and bias: These metrics have typically been used to 

evaluate the performance of air quality models for ozone with benchmarks of 35% and 

15%, respectively.  They give more weight to overpredictions than to underpredictions 

because there is no limit on the overpredictions whereas the underpredictions are
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Table 3-1.  Statistical metrics used for model performance. 

Metric Formula 

Accuracy of peak unpaired in space and 
time 
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Table 3-1.  Statistical metrics for model performance (continued). 

 

Metric Formula 
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Notations: 
u
peakP : unpaired peak prediction anywhere in the modeling domain 

Opeak: peak observation anywhere in the domain 
Ppeak : peak prediction at the location of the peak measurement 
N: total number of measurement sites 
M: total number of averaging periods (e.g., M=1 for daily statistics of 24-hour concentrations) 
Pi j: Predicted value at site ‘i’ during averaging period ‘j’ 
Oi j: Observed value at site ‘i’ during averaging period ‘j’ 
Pi,

j
component: Predicted value at site ‘i’ during averaging period ‘j’ of a PM component 

Oi, jcomponent; Observed value at site ‘i’ during averaging period ‘j’ of a PM component 
Pi, jtotal: Predicted value at site ‘i’ during averaging period ‘j’ of total PM 
Oi, jtotal: Observed value at site ‘i’ during averaging period ‘j’ of total P 
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constrained to –100%.  Also, errors and biases associated with small observations are 

given more weight than those associated with large observations. The error may range 

from 0 to infinity and the bias from – 100% to + infinity. 

Normalized mean error and bias: The excessive weight given to errors and biases 

associated with small observations is avoided with those metrics because the 

normalization is performed after summing up all errors (or biases) with respect to the 

mean observed value.  However, overpredictions still carry more weight than 

underpredictions.  The error may range from 0 to infinity and the bias from – 100% to + 

infinity. 

Fractional error and bias: These metrics place the same weight on overpredictions 

and underpredictions because the normalization is done with respect to the arithmetic 

mean of the observed and simulated values.  Also, the error and biases associated with 

small observations are not given any excessive weight because the normalization is not 

done with respect to the observation alone.  Seigneur et al. (2000) recommended these 

metrics for error and bias for these reasons.  One potential disadvantage, however, is that 

the observations are not used as the reference. Instead, these metrics measure the 

discrepancy between observation and simulation without placing any a priori judgment 

on which one is the reference.  It can be seen as an objective measure of the discrepancy 

between two data sets rather than a measure of the discrepancy of a data set with respect 

to a reference data set.  The fractional error and bias range between 0 and 2 and between 

–2 and +2, respectively. 

Root mean square error: It is a standard measure used in statistics to measure the 

average error between two data sets.  It can be normalized (here, with respect to the 

observed value). 

Index of agreement: It has been used to evaluate meteorological models and is provided 

here for completeness.
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4. RESULTS OF THE MODEL PERFORMANCE EVALUATION 

 

 

The results of the performance evaluation of the four models (CAMx M4, CAMx 

4Sec, CMAQ and REMSAD) are presented by species.  We first present the results for 

ozone using the AQS non-urban data.  Next, we present the performance evaluation for 

the following components of PM2.5: sulfate, nitrate, organic matter (OM) and black 

carbon (BC).  For sulfate, results are presented first for the IMPROVE data and next for 

the CASTNet data.  For nitrate, results are presented for PM2.5 nitrate for the IMPROVE 

data and for total nitrate for the CASTNet data.  No results are presented for ammonium 

since data are not available for the period of interest.  No results are presented for the 

“other” category because no direct measurements are available and the “soil” category of 

the IMPROVE network does not correspond exactly to the “other” category that may also 

include primary anthropogenic PM and sea salt.  Then, we present the results for PM2.5, 

the PM coarse fraction and PM10.  The results are presented for both the measured and 

reconstructed values of PM2.5 concentrations.  Finally, the evaluation against the wet 

deposition data of NADP is presented for sulfate, nitrate and ammonium. 

For each species or PM size fraction, we present first the results of the 

performance evaluation for the annual simulation results.  Next, we present seasonal 

performance statistics (correlation coefficient, normalized errors and normalized biases).   

 

4.1 Ozone 

 

Table 4-1 presents the annual performance statistics and Figure 4-1 presents 

scatter plots for the non-urban ozone concentrations.  A threshold value of 40 ppb was 

used.  The models underpredicted the ozone concentrations by 8 to 10 ppb on average.  

CAMx shows slightly less bias then CMAQ.  However, CAMx predicts zero ozone 

concentration values at times when the observations and the other two models show non-

zero concentrations.  This result may be due to a shallower mixing height at times in 

CAMx that leads to ozone titration by NO.  The mean normalized errors would be 
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considered satisfactory for an ozone modeling study but the mean normalized biases 

would be considered slightly too large (underpredictions by more than 15%). 

Figure 4-2 presents seasonal statistics for ozone.  Because a 40 ppb threshold was 

used, few data pairs (27) are available in winter.  Better correlations between simulated 

and measured values are obtained in spring and winter.  The errors tend to be larger in 

spring and summer.  Overall, the underpredictions displayed by the models suggest that 

the concentrations of oxidants involved in secondary PM formation (O3, OH, and H2O2) 

may have significant biases that may affect model performance for PM. 
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Table 4-1.  Annual performance statistics for ozone concentrations (AQS). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (ppm) 46.8 

Mean simulated value (ppm) 38.6 38.6 36.9 39.0 

Mean error (ppm) 11.0 11.0 11.6 12.3 

Mean bias (ppm) -8.1 -8.1 -9.8 -7.7 

Mean normalized error 0.233 0.233 0.243 0.261 

Mean normalized bias -0.166 -0.166 -0.202 -0.156 

Normalized mean error 0.236 0.236 0.249 0.264 

Normalized mean bias -0.174 -0.174 -0.211 -0.165 

Fractional error 0.289 0.289 0.292 0.305 

Fractional bias -0.229 -0.229 -0.255 -0.215 

Correlation coefficient 0.158 0.159 0.144 0.115 
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Figure 4-1. Scatter diagrams of observed and simulated ozone concentrations (AQS) 
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Figure 4-2. Seasonal performance statistics for ozone concentrations (AQS). 
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Figure 4-2 (continued).  Seasonal performance statistics for ozone concentrations 

(AQS).
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4.2 Sulfate 

 

Table 4-2 presents the annual performance statistics for sulfate and Figure 4-3 a 

scatter plot for the IMPROVE data set.  On average, sulfate is the second most important 

PM2.5 component after OM in the western United States with an annual average 

concentration of about 0.8 µg/m3.  All models underestimate this average concentration 

with a range of biases from REMSAD’s significant underprediction of -0.4 µg/m3 to 

CAMx M4’s negligible underprediction of –0.01 µg/m3.  The mean error ranges from 0.4 

µg/m3 (CMAQ and CAMx 4Sec) to 0.6 µg/m3 (REMSAD).  The mean normalized biases 

are positive because their formulation gives more weight to overpredictions and those 

tend to dominate (see Figure 4-2).  On the other hand, the fractional biases that provide a 

balanced treatment for over- and underpredictions show negative values ranging from 

-0.59 (REMSAD) to –0.004 (CAMx M4).  REMSAD tends to show the largest 

normalized and fractional errors.  CAMx M4 also shows a large normalized mean error 

but its fractional error is similar to those obtained for CAMx 4Sec and CMAQ.  The 

correlation coefficients are positive.  CAMx M4 and CAMx 4Sec show the largest 

correlation coefficients and REMSAD the smallest; however, less than 30% of the 

variance in the observations is explained by the models. 

Figure 4-4 presents a spatial display of the mean normalized errors for the four 

model simulations.  The largest errors occur along the Pacific coast (possibly due to 

uncertainty in the western boundary condition) and in the Wyoming/Colorado area. 

For current PM models, one may expect the normalized error to be 50% or less 

for sulfate, a well-studied chemical species.  Here, all models show large mean 

normalized errors that exceed 60%, normalized mean errors that exceed 50% and 

fractional errors that exceed 50%.  The relatively low sulfate concentrations that are 

observed in the western United States (compared to the eastern United States) may 

explain in part the poor performance obtained here.  However, there may be other causes 

that should be investigated further.  For example, fixed boundary conditions were used 

for all the simulations.  Irwin et al. (2004) have shown that there is some indirect 

evidence that there is a strong seasonal variation for sulfate concentrations at the upwind 

boundary over the Pacific Ocean 
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Figure 4-5 presents seasonal statistics for sulfate from IMPROVE.  The smallest 

normalized errors and biases tend to occur in summer and the largest ones in winter.  

These seasonal variations reflect to some extent the fact that the sulfate concentrations 

are lower in winter compared to summer; lower observed concentrations lead to larger 

normalized errors for a given absolute error.  On the other hand, the correlation 

coefficients are lower in summer and larger in winter. 

Performance statistics for CASTNet sulfate concentrations are summarized in 

Table 4-3.  Figure 4-6 presents a scatter diagram of those observed and simulated 

concentrations.  The mean observed sulfate concentration is underpredicted by all 

models, with REMSAD showing the largest underprediction (factor of 2.7).  CMAQ 

tends to show the best performance, explaining slightly more than 30% of the variance in 

the observations and having normalized errors slightly below 50%.  REMSAD shows the 

worst performance with a low coefficient of determination (6%) and normalized errors 

exceeding 60%.  CAMx 4Sec shows typically lower concentrations than CAMx M4, 

probably because of a greater rate of removal of sulfate via dry deposition. 

Seasonal statistics are presented in Figure 4-7.  The correlation coefficient 

increases from spring to winter.  There is no clear seasonal variation of error with season. 

The CASTNet results are qualitatively similar to those obtained with the 

IMPROVE data.  The models tend to underestimate sulfate concentrations significantly 

over both monitoring networks. 
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Table 4-2.  Annual performance statistics for fine sulfate concentrations (IMPROVE). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (µg/m3) 0.819 

Mean simulated value (µg/m3) 0.809 0.622 0.682 0.420 

Mean error (µg/m3) 0.504 0.429 0.424 0.607 

Mean bias (µg/m3) -0.010 -0.196 -0.136 -0.399 

Mean normalized error 0.947 0.656 0.645 0.992 

Mean normalized bias 0.532 0.102 0.174 0.044 

Normalized mean error 0.616 0.524 0519 0.742 

Normalized mean bias -0.012 -0.240 -0.167 -0.487 

Fractional error 0.575 0.567 0.547 0.964 

Fractional bias -0.004 -0.218 -0.115 -0.588 

Correlation coefficient 0.440 0.518 0.531 0.273 
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Figure 4-3. Scatter diagrams of observed and simulated fine sulfate concentrations 

(IMPROVE).
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Figure 4-4. Spatial display of the mean normalized error for sulfate (IMPROVE). 
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Figure 4-5. Seasonal performance statistics for fine sulfate concentrations 

 (IMPROVE). 
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Figure 4-5 (continued).  Seasonal performance statistics for fine sulfate concentrations 

 (IMPROVE).
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Table 4-3.  Annual performance statistics for sulfate concentrations (CASTNet). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (µg/m3) 1.603 

Mean simulated value (µg/m3) 1.289 1.116 1.120 0.591 

Mean error (µg/m3) 0.912 0.863 0.794 1.139 

Mean bias (µg/m3) -0.314 -0.487 -0.483 -1.013 

Mean normalized error 0.646 0.539 0.498 0.651 

Mean normalized bias 0.238 0.045 0.052 -0.329 

Normalized mean error 0.569 0.538 0.495 0.711 

Normalized mean bias -0.196 -0.304 -0.301 -0.632 

Fractional error 0.540 0.529 0.479 0.869 

Fractional bias -0.058 -0.188 -0.138 -0.685 

Correlation coefficient 0.385 0.429 0.559 0.241 
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Figure 4-6. Scatter diagrams of observed and simulated sulfate concentrations 

 (CASTNet). 
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Figure 4-7.  Seasonal performance statistics for sulfate concentrations (CASTNet). 
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Figure 4-7 (continued).  Seasonal performance statistics for sulfate concentrations 

(CASTNet).

SO4= CMAQ
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4.3 Nitrate 

 

Table 4-4 presents the annual performance statistics and Figure 4-8 a scatter plot 

for the IMPROVE data set.  On average, nitrate is significantly less important than OM 

and sulfate as a PM2.5 component in the western United States with an annual average 

concentration of only 0.34 µg/m3.  However, there are some areas of the domain where 

nitrate is an important component (e.g., California).  All models overestimate this average 

concentration; overpredictions range from CMAQ and REMSAD’s 0.2 µg/m3 to CAMx 

4Sec’s 0.4 µg/m3.  The mean error ranges from 0.5 µg/m3 (CMAQ) to 0.7 µg/m3 (CAMx 

4Sec).  All normalized errors exceed 100%.  The mean normalized biases are positive and 

exceed 200%.  On the other hand, the fractional biases are negative for three of the 

models and a small positive value for the fourth model.  These results are due to the fact 

that the overpredictions of nitrate occur for small observed values (see Figure 4-8).  

CAMx M4 (with both two and four sections) tends to show the largest normalized and 

fractional errors.  The correlation coefficients are commensurate with those obtained for 

sulfate (slightly lower than for sulfate for CAMx M4 and CMAx 4Sec, comparable for 

CMAQ and better than for sulfate for REMSAD).  However, less than 20% of the 

variance in the nitrate observations is explained by the models. 

Figure 4-9 presents a spatial display of the mean normalized errors for the four 

model simulations.  The largest errors occur at the Bridger Wilderness Area, WY and the 

Jarbidge Wilderness Area, NV.  No other particular spatial pattern is apparent.  Errors are 

not greater near the domain boundaries suggesting that boundary conditions are not a 

dominating source of error. 

One may not currently expect the normalized error for nitrate to be less than 50%.  

However, all models here show large normalized errors that exceed 300% and fractional 

errors that exceed 100%.  The relatively low nitrate concentrations that are observed 

during the warm months may explain in part the poor performance obtained here.  

However, there may be other causes that should be investigated further. 

Figure 4-10 presents some seasonal statistics for nitrate measurements from 

IMPROVE.  Except for the fractional error, the normalized errors and biases tend to be 
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the smallest in summer and the largest in fall or winter. The correlation coefficients are 

larger in spring and smaller in fall.   

Table 4-5 presents the performance statistics for the evaluation of total nitrate 

(i.e., particulate nitrate and gaseous HNO3).  Figure 4-11 presents scatter diagrams of the 

measured and simulated values.  The results show that all models overpredict total 

nitrate.  The largest overpredictions are obtained with CAMx and the smallest 

underpredictions are obtained with REMSAD.  The coefficients of determination (r2, i.e., 

the fraction of the variance in the measurements explained by the models) are in the 

range of 37 to 40%.  Figure 4-12 presents seasonal statistics for CASTNet total nitrate.  

The models tend to show better performance in summer when the concentrations are 

higher. 

These results are consistent with the overprediction of particulate nitrate measured 

in IMPROVE.  The better r2 values suggest that the models predict total nitrate better 

than particulate nitrate because of uncertainties in the partitioning of total nitrate between 

the gas phase (HNO3) and the particulate phase (nitrate).  Also, the longer averaging time 

used in CASTNet compared to IMPROVE may help in improving model performance.
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Table 4-4.  Annual performance statistics for fine nitrate concentrations (IMPROVE). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (µg/m3) 0.345 

Mean simulated value (µg/m3) 0.759 0.797 0.549 0.544 

Mean error (µg/m3) 0.681 0.699 0.480 0.505 

Mean bias (µg/m3) 0.414 0.452 0.204 0.199 

Mean normalized error 4.542 4.984 3.108 3.365 

Mean normalized bias 3.686 4.281 2.387 2.514 

Normalized mean error 1.976 2.030 1.393 1.465 

Normalized mean bias 1.202 1.313 0.594 0.579 

Fractional error 1.388 1.319 1.126 1.241 

Fractional bias -0.234 0.014 -0.136 -0.293 

Correlation coefficient 0.434 0.431 0.437 0.433 
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Figure 4-8. Scatter diagrams of observed and simulated fine nitrate concentrations 

(IMPROVE).
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Figure 4-9. Spatial display of the mean normalized error for nitrate (IMPROVE). 
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Figure 4-10.  Seasonal performance statistics for fine nitrate concentrations (IMPROVE). 

NO3- CAMx M4

-2.0
-1.0
0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0

Correlation
Coeff icient (r) 

Mean
Normalized

Error 

Mean
Normalized

Bias 

Normalized
Mean Error 

Normalized
Mean Bias 

Fractional
Error 

Fractional
Bias 

Spring Summer Fall Winter

NO3- CAMx 4Sec

-2.0

0.0

2.0

4.0

6.0

8.0

Correlation
Coeff icient (r) 

Mean
Normalized

Error 

Mean
Normalized

Bias 

Normalized
Mean Error 

Normalized
Mean Bias 

Fractional
Error 

Fractional
Bias 

Spring Summer Fall Winter



 

Performance Evaluation of Four Air Quality Models 
 

4-24

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-10 (continued).   Seasonal performance statistics for fine nitrate 

concentrations (IMPROVE). 
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Table 4-5.  Annual performance statistics for total (gas + particulate) nitrate concentrations (CASTNet). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (µg/m3) 1.630 

Mean simulated value (µg/m3) 2.875 2.893 2.263 1.870 

Mean error (µg/m3) 1.645 1.665 1.139 1.037 

Mean bias (µg/m3) 1.245 1.264 0.633 0.240 

Mean normalized error 1.943 1.988 1.260 1.014 

Mean normalized bias 1.784 1.830 1.074 0.682 

Normalized mean error 1.009 1.022 0.699 0.636 

Normalized mean bias 0.764 0.775 0.388 0.148 

Fractional error 0.788 0.799 0.625 0.632 

Fractional bias 0.536 0.546 0.372 0.150 

Correlation coefficient 0.615 0.610 0.629 0.615 
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Figure 4-11.Scatter diagrams of observed and simulated total nitrate concentrations (CASTNet). 
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Figure 4-12.  Seasonal performance statistics for total nitrate concentrations  

 (CASTNet). 
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Figure 4-12 (continued).  Seasonal performance statistics for total nitrate concentrations  

 (CASTNet).
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4.4 Organic Matter 

 

Table 4-6 presents the annual performance statistics and Figure 4-13 presents a 

scatter plot for the IMPROVE data set with an OM/OC scaling factor of 1.4.  Similar 

results are presented in Table 4-7 and Figure 4-14 for an OM/OC scaling factor of 2.1.  

On average, organic matter (OM) is the most important PM2.5 component in the western 

United States with an annual average concentration of 1.5 µg/m3 using an OM/OC 

scaling factor of 1.4 and an annual average concentration of 2.3 µg/m3 using a scaling 

factor of 2.1.  However, there are some time periods and some areas of the domain where 

OM is not the most important component (e.g., California where nitrate dominates). 

All models underestimate these average concentrations.  CAMx M4 shows the 

largest underestimations with an average OM concentration of about 0.7 µg/m3.  CMAQ 

and REMSAD show average OM concentrations of 1.1 and 1.2 µg/m3, respectively.  

These average underpredictions are significant, particularly when the OM/OC factor of 

2.1 is used (factors of about 3.1, 2.1 and 1.9 for CAMx M4, CMAQ and REMSAD, 

respectively).  These underpredictions are reflected in all the different bias metrics.  

CAMx M4 shows the largest biases; REMSAD shows the smallest (yet, significant) 

biases.   

The mean error is in the range of 0.9 to 1.0 µg/m3 when using the 1.4 scaling 

factor and in the range of 1.4 to 1.7 µg/m3 when using the 2.1 scaling factor.  The mean 

normalized errors exceed 60% and the fractional errors exceed 70% with the 1.4 scaling 

factor.  Typically, one does not currently expect the normalized error for OM to be less 

than 50%.  However, there is a clear bias here toward underprediction of OM by all four 

models.  This bias would likely be even larger if we took into account the sampling 

artifacts (which are more likely to be negative artifacts than positive artifacts).  This 

suggests that primary OM emissions (and, possibly, boundary conditions) are 

underestimated and/or that secondary organic aerosol (SOA) formation is underestimated.  

Primary OM emissions originating, for example, from forest fires are difficult to estimate 

and improvements are needed for such emission inventories.  As demonstrated by Pun et 

al. (2003a), there are still large uncertainties associated with SOA formation.  Those 

uncertainties are present in the emissions of VOC precursors (particularly biogenic 
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precursors), the yields of formation of semi-volatile compounds, and the partitioning of 

SOA between the gas and particulate phases. 

The correlation coefficients are in the range of 0.4 to 0.5, i.e., the models can 

explain between 20 and 25% of the variance in the measured OM concentrations. 

Figure 4-15 presents a spatial display of the mean normalized errors for the four 

model simulations (using a 2.1 OM/OC scaling factor).  No particular spatial pattern 

appears.  The San Francisco Bay Area shows the largest error in the domain. 

Figures 4-16 and 4-17 present seasonal statistics for OM concentrations derived 

from IMPROVE using the default 1.4 OM/OC scaling factor and a 2.1 scaling factor, 

respectively.  The normalized biases tend to be larger in winter than in spring or summer.  

Seasonal trends are not as apparent for the normalized errors.  On the other hand, better 

correlations are obtained in winter than in spring.   
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Table 4-6.  Annual performance statistics for fine organic matter concentrations (IMPROVE, scaling factor of 1.4). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (µg/m3) 1.528 

Mean simulated value (µg/m3) 0.740 0.733 1.089 1.228 

Mean error (µg/m3) 0.963 0.968 0.900 0.974 

Mean bias (µg/m3) -0.788 -0.795 -0.439 -0.300 

Mean normalized error 0.600 0.602 0.651 0.687 

Mean normalized bias -0.378 -0.384 -0.098 -0.078 

Normalized mean error 0.631 0.634 0.589 0.638 

Normalized mean bias -0.516 -0.521 -0.287 -0.196 

Fractional error 0.809 0.815 0.709 0.742 

Fractional bias -0.689 -0.697 -0.429 -0.434 

Correlation coefficient 0.444 0.443 0.481 0.488 
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Table 4-7.  Annual performance statistics for fine organic matter concentrations (IMPROVE, scaling factor of 2.1). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (µg/m3) 2.291 

Mean simulated value (µg/m3) 0.740 0.733 1.089 1.228 

Mean error (µg/m3) 1.652 1.658 1.457 1.459 

Mean bias (µg/m3) -1.551 -1.558 -1.202 -1.062 

Mean normalized error 0.691 0.693 0.652 0.696 

Mean normalized bias -0.565 -0.570 -0.376 -0,336 

Normalized mean error 0.721 0.724 0.636 0.637 

Normalized mean bias -0.677 -0.680 -0.525 -0.464 

Fractional error 1.034 1.041 0.872 0.893 

Fractional bias -0.964 -0.991 -0.744 -0.745 

Correlation coefficient 0.444 0.443 0.481 0.488 
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Figure 4-13. Scatter diagrams of observed and simulated fine organic matter 

concentrations (IMPROVE, scaling factor of 1.4). 
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Figure 4-14. Scatter diagrams of observed and simulated fine organic matter 

concentrations (IMPROVE, scaling factor of 2.1). 
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Figure 4-15. Spatial display of the mean normalized error for organic matter (IMPROVE, 2.1xOC). 
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Figure 4-16.  Seasonal performance statistics for fine organic matter concentrations  

(IMPROVE, scaling factor of 1.4). 

OM CAMx M4

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

Correlation
Coeff icient (r) 

Mean
Normalized

Error 

Mean
Normalized

Bias 

Normalized
Mean Error 

Normalized
Mean Bias 

Fractional
Error 

Fractional
Bias 

Spring Summer Fall Winter

OM CAMx 4Sec

-1.0
-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0

Correlation
Coeff icient (r) 

Mean
Normalized

Error 

Mean
Normalized

Bias 

Normalized
Mean Error 

Normalized
Mean Bias 

Fractional
Error 

Fractional
Bias 

Spring Summer Fall Winter



 

Performance Evaluation of Four Air Quality Models 
 

4-37

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-16 (continued).  Seasonal performance statistics for fine organic matter 

concentrations (IMPROVE, scaling factor of 1.4). 
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Figure 4-17. Seasonal performance statistics for fine organic matter concentrations 

(IMPROVE, scaling factor of 2.1). 
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Figure 4-17 (continued). Seasonal performance statistics for fine organic matter 

concentrations (IMPROVE, scaling factor of 2.1). 
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4.5 Black Carbon 

 

Table 4-8 presents the annual performance statistics for black carbon and Figure 

4-18 presents a scatter plot for the IMPROVE data set.  On average, black carbon (BC) is 

the least important PM2.5 component (among those explicitly measured in IMPROVE) in 

the western United States with an annual average concentration of only 0.27 µg/m3.  

Three models (CAMx M4 with two and four sections, and CMAQ) underestimate 

and one model (REMSAD) overestimates this average concentration.  The 

underestimation is about 20% and the overestimation about 10%.  BC is a primary 

component of PM2.5; i.e., it is directly emitted into the atmosphere.  Therefore, the errors 

and biases reflect uncertainties in emissions, transport and deposition processes.  Because 

emissions are the same for all four models, the difference that appears between REMSAD 

and the other three models reflects a difference in the formulation of the transport and 

deposition processes.  Also, the REMSAD overestimation of BC explains in part the fact 

that REMSAD simulates greater OM than the other three models (see above) because 

some primary OM is associated with BC. 

The mean normalized errors are in the range of 60 to 70% and the fractional 

errors are in the range of 70 to 80%.  Such errors are not unexpected if one considers that 

there are uncertainties in the BC emissions (e.g., from forest fires) as well as in the 

measurements (on the order of 30%, see above). 

The correlation coefficients are about 0.5.  They are among the best for all PM 

components which suggests that the variance in the observations is best reproduced for 

primary PM components. 

Figure 4-19 presents a spatial display of the mean normalized errors for the four 

model simulations.  No synoptic spatial patterns appear.  However, the Class I areas that 

exhibit the largest errors are located near large urban areas: San Gorgonio Wilderness 

Area near Los Angeles, CA, Tonto National Monument near Phoenix, AZ, Lone Peak 

Wilderness Area near Salt Lake City, UT, and Point Reyes National Seashore near San 

Francisco, CA.  These large errors correspond to overestimations and suggest that BC 

emissions in urban areas are overestimated.  
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Figure 4-20 depicts seasonal statistics for BC from IMPROVE.  CMAQ and 

CAMx show larger normalized biases in summer than winter but REMSAD shows larger 

biases in summer than winter.  The correlation coefficients are larger in fall and smaller 

in spring.  
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Table 4-8.  Annual performance statistics for fine black carbon concentrations (IMPROVE). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (µg/m3) 0.268 

Mean simulated value (µg/m3) 0.216 0.216 0.217 0.293 

Mean error (µg/m3) 0.170 0.170 0.191 0.216 

Mean bias (µg/m3) -0.051 -0.052 -0.051 -0.025 

Mean normalized error 0.681 0.682 0.715 0.899 

Mean normalized bias 0.016 0.017 -0.095 0.343 

Normalized mean error 0.635 0.635 0.713 0.805 

Normalized mean bias -0.192 -0.193 -0.189 0.095 

Fractional error 0.669 0.669 0.772 0.667 

Fractional bias -0.317 -0.317 -0.474 -0.152 

Correlation coefficient 0.534 0.534 0.529 0.494 
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Figure 4-18. Scatter diagrams of observed and simulated fine black carbon concentrations 

(IMPROVE).
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Figure 4-19. Spatial display of the mean normalized error for black carbon (IMPROVE). 
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Figure 4-20.  Seasonal performance statistics for fine black carbon concentrations 

(IMPROVE).  
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Figure 4-20 (continued).  Seasonal performance statistics for fine black carbon 

concentrations (IMPROVE). 
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4.6 PM2.5 

 

Table 4-9 presents the annual performance statistics and Figure 4-21 presents a 

scatter plot for the PM2.5 concentrations measured by IMPROVE.  Seasonal statistics are 

presented in Figure 4-22.  Table 4-10 presents the annual performance statistics and 

Figure 4-23 presents a scatter plot for the PM2.5 concentrations reconstructed according to 

the IMPROVE methodology from measurements of individual PM2.5 components.  

Seasonal statistics are presented in Figure 4-24. 

All models underestimate the PM2.5 average concentrations.  The average 

underestimation ranges from about 0.6 µg/m3 (CAMx M4) to about 1 µg/m3 (CMAQ).  

However, the measured PM2.5 concentrations are likely to underestimate actual 

concentrations during the warm months (due to volatilization of ammonium nitrate and 

some organics) and could overestimate actual concentrations during cold months because 

of the presence of water.  The reconstructed PM2.5 concentrations may overestimate 

(because of the assumption that sulfate and nitrate are fully neutralized by ammonia) or 

underestimate (because of the 1.4 scaling factor to convert OC to OM) the actual 

concentrations.  Therefore, it is not feasible to reach definitive conclusions on the 

performance of the models based on the IMPROVE PM2.5 estimates.  Nevertheless, it is 

likely that the models underestimate the actual PM2.5 concentrations for the following 

resasons.  First, the measured and reconstructed PM2.5 concentrations are more likely to 

be underestimated than overestimated so that the biases reported in the performance 

assessment would be lower limits.  Second, the two major components of PM2.5 (sulfate 

and OM) were underestimated by the models. 

Normalized errors and biases are larger in winter (except for the fractional errors 

that are larger in spring) and smaller in summer (except for the fractional errors that tend 

to be smaller in fall).  The correlation coefficients increase significantly from spring to 

summer, fall and winter.  
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Table 4-9.  Annual performance statistics for measured PM2.5 concentrations (IMPROVE). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (µg/m3) 4.641 

Mean simulated value (µg/m3) 4.072 3.932 3.666 3.838 

Mean error (µg/m3) 2.949 2.900 2.746 3.000 

Mean bias (µg/m3) -0.569 -0.709 -0.983 -0.804 

Mean normalized error 0.754 0.729 0.644 0.725 

Mean normalized bias 0.203 0.162 0.020 0.101 

Normalized mean error 0.635 0.625 0.592 0.646 

Normalized mean bias -0.123 -0.153 -0.212 -0.173 

Fractional error 0.638 0.641 0.634 0.675 

Fractional bias -0.163 -0.189 -0.280 -0.257 

Correlation coefficient 0.391 0.394 0.433 0.400 
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Table 4-10.  Annual performance statistics for reconstructed PM2.5 concentrations (IMPROVE). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (µg/m3) 4.031 

Mean simulated value (µg/m3) 4.218 4.065 3.776 3.942 

Mean error (µg/m3) 2.640 2.563 2.380 2.642 

Mean bias (µg/m3) 0.188 0.035 -0.255 -0.088 

Mean normalized error 0.790 0.752 0.654 0.759 

Mean normalized bias 0.340 0.285 0.136 0.234 

Normalized mean error 0.655 0.636 0.590 0.655 

Normalized mean bias 0.047 0.009 -0.063 -0.022 

Fractional error 0.593 0.594 0.581 0.629 

Fractional bias -0.044 -0.072 -0.161 -0.139 

Correlation coefficient 0.398 0.405 0.454 0.419 
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Figure 4-21.  Scatter diagrams of observed and simulated PM2.5 concentrations  

 (IMPROVE). 
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Figure 4-22.  Seasonal performance statistics for PM2.5 concentrations (IMPROVE, 

measured). 
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Figure 4-22 (continued).  Seasonal performance statistics for PM2.5 concentrations 

(IMPROVE, measured). 
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Figure 4-23.  Scatter diagrams of reconstructed and simulated PM2.5 concentrations 

(IMPROVE). 
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Figure 4-24.  Seasonal performance statistics for PM2.5 concentrations (IMPROVE, 

reconstructed). 

RCFM CAMx M4

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Correlation
Coeff icient (r) 

Mean
Normalized

Error 

Mean
Normalized

Bias 

Normalized
Mean Error 

Normalized
Mean Bias 

Fractional
Error 

Fractional
Bias 

Spring Summer Fall Winter

RCFM CAMx 4Sec

-0.6
-0.4
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2

Correlation
Coeff icient (r) 

Mean
Normalized

Error 

Mean
Normalized

Bias 

Normalized
Mean Error 

Normalized
Mean Bias 

Fractional
Error 

Fractional
Bias 

Spring Summer Fall Winter



 

Performance Evaluation of Four Air Quality Models 
 

4-55

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-24 (continued).  Seasonal performance statistics for PM2.5 concentrations 

(IMPROVE, reconstructed). 
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4.7 Coarse Mass 

 

Table 4-11 presents the annual performance statistics and Figure 4-25 presents 

scatter plots for the PM coarse concentrations measured by IMPROVE as the difference 

between PM10 and PM2.5 concentrations.  The average coarse PM concentration is 

commensurate with that of PM2.5; i.e., about 5 µg/m3. 

All models significantly underestimate the average coarse PM concentrations by 

factors of 6 (REMSAD) to 18 (CMAQ).  The average underestimations are on the order 

of 5 µg/m3.  The normalized errors and biases also reflect the poor performance of the 

models for coarse PM.  The correlation coefficients are lower than those obtained for the 

PM2.5  components discussed above.  Less than 5% of the variance in the coarse PM 

observations can be explained by the models. 

Figure 4-26 presents seasonal statistics for the IMPROVE coarse PM 

concentrations.  Little seasonal variation appears for those statistics that reflect large 

underpredictions by all four models. 
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Table 4-11.  Annual performance statistics for coarse mass concentrations (IMPROVE). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (µg/m3) 5.578 

Mean simulated value (µg/m3) 0.315 0.815 0.772 0.854 

Mean error (µg/m3) 5.269 4.841 4.846 4.819 

Mean bias (µg/m3) -5.264 -4.764 -4.807 -4.725 

Mean normalized error 0.915 0.850 0.842 0.852 

Mean normalized bias -0.870 -0.649 -0.698 -0.649 

Normalized mean error 0.945 0.868 0.869 0.864 

Normalized mean bias -0.944 -0.854 -0.862 -0.847 

Fractional error 1.672 1.350 1.378 1.354 

Fractional bias -1.657 -1.286 -1.334 -1.287 

Correlation coefficient 0.180 0.124 0.205 0.134 
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Figure 4-25.  Scatter diagrams of observed and simulated coarse mass concentrations  

 (IMPROVE). 
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Figure 4-26.  Seasonal performance statistics for coarse mass concentrations 

 (IMPROVE). 
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Figure 4-26 (continued).  Seasonal performance statistics for coarse mass concentrations 

 (IMPROVE). 
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4.8 PM10 

 

Table 4-12 presents the annual performance statistics and Figure 4-27 presents a 

scatter plot for the PM10 concentrations measured by IMPROVE.  The average annual 

PM10 concentration is about 10 µg/m3. 

All models significantly underestimate the average PM10 concentration as a result 

of the underestimations in the coarse PM concentration.  The average underestimations 

are on the order of 5 to 6 µg/m3; i.e., similar to the underpredictions in coarse mass.  The 

normalized errors and biases also reflect the poor performance of the models for PM10.  

The correlation coefficients range between 0.25 and 0.3; i.e., between the values obtained 

for the fine and coarse PM fractions.  Less than 10% of the variance in the coarse PM 

observations can be explained by the models.  

Figure 4-28 presents the seasonal statistics for PM10 from IMPROVE.  The 

normalized biases are larger in winter and smaller in summer.  However, the normalized 

errors tend to be smaller in winter (or fall) and larger in spring.  The correlation 

coefficients follow a similar trend as those for PM2.5, increasing from spring through 

winter. 
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Table 4-12.  Annual performance statistics for measured PM10 concentrations (IMPROVE). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (µg/m3) 10.165 

Mean simulated value (µg/m3) 4.210 4.569 4.249 4.481 

Mean error (µg/m3) 6.893 6.721 6.699 6.856 

Mean bias (µg/m3) -5.955 -5.595 -5.916 -5.684 

Mean normalized error 0.637 0.628 0.615 0.649 

Mean normalized bias -0.400 -0.348 -0.427 -0.367 

Normalized mean error 0.678 0.661 0.659 0.675 

Normalized mean bias -0.586 -0.551 -0.582 -0.559 

Fractional error 0.889 0.847 0.877 0.885 

Fractional bias -0.748 -0.682 -0.762 -0.728 

Correlation coefficient 0.247 0.250 0.303 0.253 
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Figure 4-27.  Scatter diagrams of observed and simulated PM10 concentrations  

 (IMPROVE). 
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Figure 4-28.  Seasonal performance statistics for PM10 concentrations (IMPROVE). 
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Figure 4-28 (continued).  Seasonal performance statistics for PM10 concentrations 

(IMPROVE). 
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4.9 Wet Deposition 

 

Performance statistics for wet deposition of sulfate, nitrate and ammonium are 

presented in Tables 4-13, 4-14 and 4-15, respectively.  (A complete set of simulation 

results from CMAQ were not available.)  Scatter diagrams of the measured and simulated 

values are presented in Figures 4-29, 4-31 and 4-32, respectively.  Seasonal statistics are 

presented in Figures 4-30, 4-32 and 4-34, respectively. 

 The mean simulated values are significantly lower than the measured values for 

all three chemical species and for all models (CAMx M4, CAMx 4Sec and REMSAD).  

Sulfate deposition is underpredicted by a factor of 5 to 7, nitrate by a factor of ~3 and 

ammonium by a factor of 6 to 9.  Normalized errors exceed 80% and normalized biases 

are significant in most cases.  There is little correlation between the simulated and 

measured wet deposition fluxes; less than 5 % of the variance on the measurements is 

explained by the models and, in the case of ammonium, there is a negative correlation 

between the simulated and measured values. 

These results indicate that a major removal of PM from the atmosphere is 

underpredicted by the models.   
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Table 4-13.  Annual performance statistics for sulfate wet deposition (NADP). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (kg/ha) 0.246 

Mean simulated value (kg/ha) 0.050 0.033  0.034 

Mean error (kg/ha) 0.218 0.222  0.219 

Mean bias (kg/ha) -0.196 -0.213  -0.212 

Mean normalized error 0.935 0.887  0.876 

Mean normalized bias -0.555 -0.713  -0.734 

Normalized mean error 0.887 0.901  0.892 

Normalized mean bias -0.795 -0.865  -0.734 

Fractional error 1.479 1.544  1.520 

Fractional bias -1.325 -1.466  -1.460 

Correlation coefficient 0.144 0.149  0.204 
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Table 4-14. Annual performance statistics for nitrate wet deposition (NADP). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (kg/ha) 0.246 

Mean simulated value (kg/ha) 0.083 0.078  0.085 

Mean error (kg/ha) 0.213 0.212  0.205 

Mean bias (kg/ha) -0.163 -0.167  -0.161 

Mean normalized error 1.030 1.013  0.992 

Mean normalized bias -0.231 -0.266  -0.261 

Normalized mean error 0.866 0.864  0.834 

Normalized mean bias -0.664 -0.681  -0.654 

Fractional error 1.295 1.303  1.281 

Fractional bias -1.007 -1.032  -1.008 

Correlation coefficient 0.107 0.109  0.177 
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Table 4-15. Annual performance statistics for ammonium wet deposition (NADP). 

 

Performance metric CAMx M4 CAMx 4Sec CMAQ REMSAD 

Mean observed value (kg/ha) 0.167 

Mean simulated value (kg/ha) 0.026 0.027  0.019 

Mean error (kg/ha) 0.155 0.155  0.154 

Mean bias (kg/ha) -0.141 -0.139  -0.147 

Mean normalized error 0.928 0.941  0.862 

Mean normalized bias -0.491 -0.454  -0.664 

Normalized mean error 0.929 0.928  0.923 

Normalized mean bias -0.847 -0.835  -0.884 

Fractional error 1.416 1.401  1.452 

Fractional bias -1.230 -1.195  -1.359 

Correlation coefficient -0.037 -0.036  -0.017 
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Figure 4-29.  Scatter diagrams of sulfate wet deposition (NADP). 
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Figure 4-30.  Seasonal performance statistics for sulfate wet deposition (NADP). 
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Figure 4-30 (continued).  Seasonal performance statistics for sulfate wet deposition 

(NADP).

SO4= REMSAD
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Figure 4-31.  Scatter diagrams of nitrate wet deposition (NADP). 
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Figure 4-32.  Seasonal performance statistics for nitrate wet deposition (NADP). 
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Figure 4-32 (continued).  Seasonal performance statistics for nitrate wet deposition 

(NADP).
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Figure 4-33.  Scatter diagrams of ammonium wet deposition (NADP). 
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Figure 4-34.  Seasonal performance statistics for ammonium wet deposition (NADP). 
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Figure 4-34 (continued).  Seasonal performance statistics for ammonium wet deposition 

(NADP).
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5. ASSESSMENT OF MODEL PERFORMANCE 
 
 

5.1 Overall Assessment of Model Performance 

 

Performance for ozone non-urban concentrations shows acceptable errors but 

significant biases (8 to 10 ppb underprediction for concentrations above 40 ppb on 

average).  Such biases suggest possible uncertainties with the oxidants associated with 

secondary PM formation (O3, OH and H2O2) that may affect model performance for PM. 

Because of significant uncertainties associated with the measurements of total 

PM2.5 concentrations, our assessment focuses on the available measurements of PM2.5 

components; i.e., sulfate, nitrate, organic matter (OM) and black carbon (BC). 

The models typically explain only between 15 and 30% of the variance in the 

observed BC and sulfate concentrations, between 20 and 25% of the variance in the 

observed OM concentrations, about 20% of the variance in the nitrate concentrations and 

about 40% of the variance in the total inorganic nitrate concentrations (i.e., HNO3 + 

particulate nitrate).  (One exception is the low, 6 to 7%, variance explained for 

IMPROVE and CASTNet sulfate by REMSAD.)  All normalized errors (i.e., mean 

normalized error, normalized mean error, fractional error and normalized root mean 

square error) are greater than 50%, except for CMAQ performance for CASTNet sulfate 

where the normalized errors are slightly less than 50%.  In the case of nitrate, all 

normalized errors exceed 100%.  All models show significant biases for nitrate (large 

overpredictions) and OM (large underpredictions). 

Coarse PM concentrations (measured as the difference between PM10 and PM2.5 

concentrations) are underpredicted by about one order of magnitude by all models.  Less 

than 5% of the variance in the measured coarse PM concentrations is explained by the 

models. 

Wet deposition fluxes of sulfate, nitrate and ammonium are significantly 

underpredicted by all models. 
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5.2 CAMx M4 versus CAMx 4Sec 

 

CAMx M4 uses two PM size sections and sulfate, nitrate, ammonium, OM and 

BC are assumed to be present only in the fine section.  CAMx 4Sec uses four PM 

sections (three for fine PM and one for coarse PM) and sulfate, nitrate, ammonium and 

SOA can be present in any section.  The formation of secondary PM via gas-to-particle 

conversion occurs predominantly in the fine size sections because those sections typically 

have the largest surface area.  A large fraction of sulfate is formed in cloud droplets via 

aqueous-phase chemistry.  As those droplets evaporate, they may lead to the formation of 

some sulfate in the coarse size section.  Thus, all sulfate in CAMx M4 is present in the 

fine section (i.e., PM2.5) whereas in CAMx 4Sec sulfate is distributed between the fine 

and coarse PM fractions. 

There is no significant change in model performance associated with the use of a 

more detailed representation of PM in CAMx (i.e., 4 PM size sections instead of 2) 

except for sulfate.  The change in the coefficient of determination (r2) between the two 

CAMx versions is less than 0.2% for nitrate, OM and BC; however, it improves for 

sulfate from 19% for CAMx M4 to 27% for CAMx 4Sec.  The mean normalized error for 

sulfate decreases from 95% (CAMx M4) to 66% (CAMx 4Sec) and the mean normalized 

bias decreases from 53% (CAMx M4) to 10% (CAMx 4Sec). 

Figure 5-1 presents a comparison of the fine sulfate concentrations simulated by 

CAMx M4 and CAMx 4Sec as well as a comparison of the total (i.e., fine and coarse) 

sulfate concentrations simulated by these two models (all sulfate is in the fine fraction in 

CAMx M4).  These comparisons are for concentrations at the IMPROVE sites.  It 

appears that the lower fine sulfate concentrations simulated by CMAx 4Sec compared to 

CAMx M4 are not only due to the presence of some sulfate in the coarse PM fraction but 

also to lower total sulfate concentrations.  The lower total sulfate concentrations are 

likely due to larger dry deposition rates for coarse sulfate particles than for fine sulfate 

particles (Seinfeld and Pandis, 1998), thereby leading to a more rapid removal of sulfate 

in CAMx 4Sec than in CAMx M4. 
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Figure 5-1.  Comparison of annual sulfate concentrations simulated by CAMx M4 

and CAMx 4Sec at the IMPROVE sites: (a) fine sulfate concentrations, (b) total sulfate 

concentrations. 
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The difference between CAMx M4 and CAMx 4Sec sulfate concentrations are 

significant enough that one should investigate whether a more detailed treatment of the 

sulfate size distribution is warranted. 

First, one should assess whether four size sections, as used in CAMx 4Sec, are 

sufficient to provide an accurate representation of the sulfate size distribution (PM-

CAMx, for example, used twice as many size sections over the same size range).  

Seigneur et al. (1986) showed that the ability of an aerosol dynamics model to simulate 

the PM size distribution deteriorates (in particular for condensational growth) as the size 

resolution decreases.  The ability to correctly simulate the evolution of the particle size 

distribution also depends on the condensational growth algorithm used in the model 

(Zhang et al., 1999).  It is not clear whether any tests were conducted with CAMx 4Sec 

over a wide range of conditions to select an optimal size representation. 

Zhang et al. (2004) investigated the effect of the particle size resolution on PM 

concentrations with a 3-D air quality model.  They found that the use of a finer particle 

size resolution (8 size sections versus 2 size sections) leads to lower sulfate 

concentrations in the PM2.5 size range.  That result is qualitatively similar to that obtained 

with CAMx in this study; however, the differences obtained by Zhang et al. (2004) are 

significantly less than those obtained in this application of CAMx.  Clearly, there are 

differences in the applications (five-day episode in the Los Angeles basin versus annual 

simulation over the western United States) and the models (e.g., different condensational 

growth algorithms).  Nevertheless, a fundamental difference between these two modeling 

studies is the number of size sections (8 versus 4) used to represent the PM size 

distribution.  One would expect that a coarser size resolution may lead to more numerical 

diffusion and, therefore, to more growth of sulfate into the coarse mode (see Seigneur et 

al., 1986).  Also, a coarse size resolution will affect dry and possibly wet deposition rates 

for sulfate.  Using a single size section for the coarse mode results in a representative 

particle diameter of 5 µm.  Using two sections for the coarse mode would result in a 

representative particle diameter of 3.5 µm for the lower size section (where most coarse 

sulfate is likely to be present).  Therefore, the use of a single size section for the coarse 

PM fraction may lead to overestimates of coarse sulfate wet and dry deposition.  Such 
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hypotheses will need to be tested in a systematic manner to determine whether 4 size 

sections are sufficient to provide a detailed representation of the particle size distribution. 

Once an appropriate representation of the PM size distribution has been selected 

for CAMx, CAMx 4Sec (or CAMx Nsec if a different number of size sections is 

warranted) should be evaluated with field data that include sulfate size distribution data 

to evaluate whether the sulfate size distributions simulated by CAMx 4Sec (or CAMx 

Nsec) are realistic. 

If a significant fraction of sulfate is indeed present in the coarse mode, the origin 

of that sulfate should be elucidated and possible parameterizations using a two-size 

representation should be investigated. 

 

5.3 Comparison of Performance among CAMx, CMAQ and REMSAD 

 

No model shows consistently better performance than the other models.  There 

are, however, differences among the models for specific PM species that suggest possible 

areas of improvements. 

For sulfate, CMAQ and CAMx 4Sec show comparable performance.  REMSAD 

shows the worst performance with a low correlation coefficient (0.27) and large mean 

normalized error (nearly 100%).  The fact that CAMx M4 shows a slightly worse 

performance than CMAQ indicates that there are several factors that affect sulfate model 

performance.  Both CAMx M4 and CMAQ assume that all sulfate is present in the fine 

PM fraction whereas CAMx 4Sec allows sulfate to be distributed among the various PM 

size sections including coarse PM.  Therefore, sulfate formation and/or removal must 

differ between CMAQ and CAMx because the version of CAMx that treats the sulfate 

size distribution differently than CMAQ is in better agreement with CMAQ than the 

version of CAMx that treats the sulfate size distribution similarly to CMAQ.  The 

chemistry of sulfate formation is similar in CMAQ and CAMx (CBM-IV for gas-phase 

chemistry and RADM for aqueous-phase chemistry).  Therefore, differences in dry 

deposition may explain this discrepancy between CMAQ and CAMx. 

For nitrate, CAMx (M4 and 4Sec) overestimates observations significantly more 

than CMAQ and REMSAD.  For example, the mean normalized errors exceed 450% for 
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CAMx whereas they are in the 300 to 350% range for CMAQ and REMSAD.  However, 

the correlation coefficients are similar among the four models.  This suggests that there is 

a systematic bias in the nitrate calculation of CAMx that should be investigated. 

For OM, CAMx (M4 and 4Sec) tends to underestimate observations more than 

CMAQ and REMSAD.  Although the errors are commensurate among the models, 

CAMx shows larger negative biases than CMAQ and REMSAD.  On average, CAMx 

underestimates the OM concentration by a factor of 3.8 (using an OM/OC scaling factor 

of 2.1), compared to factors of 2.6 and 2.3 for CMAQ and REMSAD, respectively.  

There are currently many uncertainties associated with model performance for OM 

(including modeling uncertainties arising from emission inventories, chemical kinetics 

and gas/particle partitioning, measurement uncertainties).  Nevertheless, these results 

suggest that, if the large uncertainties that appear in this particular performance 

evaluation are confirmed in other performance evaluations, the formation of SOA in 

CAMx may need to be improved. 

For BC, REMSAD tends to overestimate whereas CAMx (M4 and 4Sec) and 

CMAQ tend to underestimate.  Model performance for BC reflects uncertainties in the 

BC emission inventory, the model formulation for transport and dispersion (including 

meteorological inputs), as well as measurement uncertainties.  It is, therefore, not feasible 

to draw any conclusions regarding the adequacy of model formulation based on the BC 

performance evaluation results.  An evaluation of the transport and dispersion modules of 

3-D air quality models should be conducted using tracer data (e.g., Moran and Pielke, 

1996; Pun et al., 2003b). 

 

5.4 Recommendations 

 

The limited amount of data that is available to conduct diagnostic performance 

evaluations prevents us to develop specific recommendations to address model 

performance problems.  Nevertheless, some general areas of investigation can be 

proposed to improve the model performance of future applications. 
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5.4.1 Sulfate 

 

Sulfate concentrations vary significantly among the models (difference in average 

concentrations of a factor of nearly 2 between CAMx M4 and REMSAD and a factor of  

1.3 between CAMx M4 and CAMx 4Sec).  Sulfate is considered to be the PM component 

that is the best understood and should be modeled with the best accuracy (e.g., Seigneur 

and Moran, 2004).  Therefore, these results suggest that our current state of knowledge 

for sulfate needs to be reviewed.  Sources of uncertainties include model inputs and 

model formulation (sulfate measurements are considered to be reliable). 

Among the model inputs, emissions of SO2 and sulfate are reasonably well 

characterized and most of the uncertainties are likely to result from the boundary 

conditions and the meteorological inputs.  Therefore, we recommend that boundary 

conditions be obtained from a global model as was done in the BRAVO study (Pun et al., 

2004b) and that meteorological inputs for clouds and precipitation (that affect sulfate 

formation and removal) be improved.  To that end, data assimilation of cloud and 

precipitation data during meteorological modeling is a possible approach. 

The sensitivity of sulfate simulation results to the model formulation appears 

clearly in the four model simulations analyzed here.  The difference between CAMx M4 

and CAMx 4Sec is due to different size representations of sulfate (in the fine mode in 

CAMx M4 and in both the fine and coarse modes in CAMx 4Sec) that are likely to affect 

atmospheric removal rates.  In addition, although all models applied here used a single 

cloud droplet size, there is some evidence that a size representation of cloud droplets will 

affect the sulfate formation rate, typically leading to more sulfate formation (10 to 50% 

more in a recent Los Angeles simulation, Fahey and Pandis, 2003).  

One must note that a better model formulation may not necessarily lead to better 

model performance in cases where model performance is mostly governed by 

uncertainties in the model inputs.  Also, a database such as the one available here for the 

western United States in 1996 is inadequate to evaluate detailed model formulations.  For 

example, sulfate size distribution data are not available to evaluate the multi-size 

representation of CAMx 4Sec for sulfate. 
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5.4.2 Nitrate 

 

Nitrate was significantly overestimated by all models, with CAMx showing the 

largest overpredictions.  Total inorganic nitrate (i.e., HNO3 + particulate nitrate) was also 

significantly overpredicted by all models.  Therefore, the gas/particle partitioning of 

inorganic nitrate is not the main cause for the overprediction of particulate nitrate. 

Sources of uncertainties include model inputs and model formulation (nitrate 

measurements on Nylon filters are considered to be reliable). 

Among the model inputs, emissions of NOx are reasonably well characterized 

(although NOx emissions from fires are uncertain) and most of the uncertainties are likely 

to result from the emissions of ammonia (NH3), the boundary conditions and the 

meteorological inputs.  There are various ongoing efforts to improve NH3 emission 

inventories.  However, we will not be able to evaluate such inventories until routine 

measurements of total ammonium (i.e., particulate ammonium and gas-phase NH3) 

become available.  At the moment, IMPROVE does not measure ammonium and the 

Speciation Trends Network (STN) only measures particulate ammonium.  There is a dire 

need for routine measurements of gas-phase NH3 

Although boundary conditions do not appear to be as critical for nitrate as they are 

for sulfate, they should be obtained from a global model along with those for sulfate for 

consistency.  Meteorological inputs for clouds and precipitation affect nitrate formation 

and removal.  However, their effect will be less than they are for sulfate because most 

sulfate is formed in the aqueous phase whereas a significant amount of nitrate is formed 

in the gas phase, and sulfate dry deposition is low whereas a significant nitrate fraction is 

removed as HNO3 dry deposition.  Nevertheless, the data assimilation of cloud and 

precipitation data during meteorological modeling that was recommended for improving 

sulfate simulations will also benefit nitrate simulations. 

The ammonium nitrate gas-particulate equilibrium is very sensitive to temperature 

and relative humidity.  The models use the temperature and relative humidity provided by 

the meteorological models.  There are uncertainties associated with those variables that 

are not negligible (e.g., a few degrees for temperature).  Using actual ambient 
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temperature and relative humidity to calculate the gas/particle partitioning will provide a 

more representative evaluation of the air quality model formulation (e.g., Bhave, 2004). 

Considering the current uncertainties with the model inputs, the CAMx 

formulation may not need any improvements.  Nevertheless, a review of that formulation 

is recommended in light of the large overpredictions of nitrate concentrations obtained 

here. 

 

5.4.3 Organic Matter 

 

The significant underestimation of OM concentrations by CAMx and the other 

two models raises some doubts about the inputs relevant to OM and the formulation of 

the secondary organic areosol (SOA) module.  The major sources of input uncertainties 

include emissions of primary OM, boundary conditions for OM concentrations and 

emissions of VOC that are precursors of SOA.  Primary OM emissions are uncertain, 

particularly for non-routine emissions such as forest fires and biogenic emissions such as 

plant wax.  Boundary conditions should be obtained from a global PM model.  Emissions 

of anthropogenic VOC precursors are likely to be better known than those of biogenic 

VOC precursors (monoterpenes and sesquiterpenes), because the latter have uncertainties 

of about one order of magnitude. 

Our current understanding of the formation of SOA is limited and large 

uncertainties are, therefore, associated with any SOA formulation (Pun et al., 2003a).  

Some processes that have been identified as important for SOA formation (e.g., 

dissolution of hydrophilic organic compounds in aqueous particles, polymerization of 

condensed organic compounds, SOA formation via acid-catalyzed oxidation of VOC) are 

not simulated in the models applied here.  The treatment of OM in CAMx, CMAQ and 

REMSAD should be reviewed and, if warranted, revised based on current knowledge.  

However, one must keep in mind that uncertainties in model inputs may limit our ability 

to correctly simulate OM concentrations.  Therefore, we recommend that SOA modules 

be evaluated against smog chamber data prior to their evaluation with 3-D models against 

ambient data. 
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5.4.4 Black Carbon 

 

The major issue with BC is the consistency between ambient and source 

measurements of BC.  Also, emissions of BC from non-routine sources such as forest 

fires contribute to the large uncertainties that are likely associated with BC emissions. 

 

5.4.5 Other Fine PM 

 

Concentrations of other fine PM components were not evaluated here because of 

uncertainties associated with their measurements (by difference between PM2.5 and the 

measured PM2.5 components) or their definition (i.e., the “soil” component of 

IMPROVE).  Nevertheless, it is worthwhile to point out that current emission inventories 

do not differentiate between crustal PM emissions (natural and anthropogenic) and 

industrial, residential and commercial primary PM.  Also, emission models typically do 

not provide sea salt emissions (for example, in the BRAVO study, they were calculated 

separately).  A better resolution of those primary PM emissions in terms of sources and 

chemical composition will be required to evaluate the performance of models for this PM 

category. 

 

5.4.6 Coarse PM 

 

Emissions of coarse PM appear to be significantly underestimated and there is a 

dire need for better emission inventories of coarse PM. 

 

5.4.7 Wet deposition 

 

  Wet deposition is significantly underestimated by all models for all species (i.e., 

sulfate, nitrate and ammonium).  Because wet deposition is a major removal mechanism 

for PM species, this result indicates that improvements in the modeling of wet deposition 

are required.  Cloud and precipitation fields predicted by the meteorological model MM5 

should be evaluated.  Consideration should be given to assimilating cloud and 
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precipitation data in meteorological modeling because the times and locations of 

precipitation events are typically predicted with significant uncertainties. 
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6. CONCLUSION 

 

 

Four air quality models (CAMx M4, CAMx 4Sec, CMAQ and REMSAD) were 

applied by ENVIRON and the University of California at Riverside to simulate PM 

concentrations over the western United States for the year 1996.  We evaluated the 

performance of these models by comparing the model simulation results with 

measurements of ozone concentrations, PM concentrations (including several PM species 

and two PM size fractions) and wet deposition of sulfate, nitrate and ammonium. 

The models explain less than 30% of the variance in all PM components.  All 

normalized errors exceed 50% except CMAQ for CASTNet sulfate where the errors are 

slightly less than 50%.  All models show significant overpredictions of nitrate 

concentrations and significant underpredictions of organic matter (OM).  No model 

shows consistently better performance than the other models.  There are, however, 

differences among the models that suggest possible areas for further investigation. 

CAMx M4 (two size sections for PM, fine and coarse) and CAMx 4Sec (four size 

sections for PM) show similar results except for sulfate, with CAMx 4Sec showing better 

performance than CAMx M4.  The difference is due to the presence of some sulfate in 

the coarse mode in CAMx 4Sec and a likely faster removal of sulfate by dry deposition in 

CAMx 4Sec than in CAMx M4.  However, it is not clear whether four sections are 

sufficient to correctly simulate the evolution of the particle size distribution and 

additional testing of CAMx 4Sec is recommended (e.g., comparison of simulations with 

various size resolutions – 4 vs. 8 sections, comparison with size distributed field data). 

For sulfate, CAMx 4Sec and CMAQ showed comparable performance.  

REMSAD showed the worst performance.  The large differences obtained among the 

models (factor of two difference for average annual concentrations) suggest that 

improvements in the model inputs (boundary conditions, cloud and precipitation fields) 

and model formulation (sulfate formation in clouds, sulfate removal) are warranted. 

For both particulate nitrate and total (i.e., gas + particulate) nitrate, CAMx 

overestimates more than CMAQ and REMSAD but shows similar coefficients of 

correlation.  These results suggest that there is a systematic bias that should be 
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investigated. However, large uncertainties in the model inputs (ammonia inventory, 

boundary conditions, ambient temperature and relative humidity) are likely to have large 

associated uncertainties. 

CAMx underestimates OM more than CMAQ and REMSAD.  We anticipate that 

formulation of OM in air quality models will evolve as our understanding of SOA 

formation continues to improve.  Also, efforts should be directed toward improving the 

emission inventories of primary OM and biogenic SOA precursors. 

Model performance for BC reflects uncertainties in the emission inventory, 

ambient measurements and the formulation of transport and dispersion in the models. 

Emissions of coarse PM appear to be significantly underestimated. 

All models significantly underestimate wet deposition of sulfate, nitrate and 

ammonium, which suggests the presence of large uncertainties in the cloud and 

precipitation fields. 

The results of this model performance evaluation point out the need to use the 

output of a global model for the boundary conditions and to improve various aspects of 

the emission inventory (ammonia, biogenic SOA precursors, primary PM, including BC 

and coarse PM).  Data assimilation of clouds and precipitation is also recommended for 

meteorological modeling because clouds affect sulfate and nitrate formation (and 

possibly SOA formation) and precipitation is a major removal mechanism for PM. 

Because of significant uncertainties in the model inputs and the limited amount of 

data available for diagnostic evaluation, it is not feasible to provide definitive conclusions 

regarding the adequacy of the model formulations.  Nevertheless, areas that deserve 

further investigation include sulfate formation (e.g., use of multiple droplet sizes), nitrate 

formation, SOA formation, the size distribution of secondary PM, and PM removal rates 

(mainly wet deposition rates but also dry deposition rates).  
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