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EXECUTIVE SUMMARY 

Renewable fuels are beginning to take on a more significant role in transportation with the 

implementation of legislation such as the 2007 Energy Independence and Security Act (EISA), 

which requires 36 billion gallons of renewable fuels to be used annually in the U.S. by 2022.  

These fuels must meet greenhouse gas (GHG) reduction targets, set by the EPA Renewable Fuel 

Standard (RFS2), which are measured relative to conventional petroleum fuels through life cycle 

assessments (LCA).  Other state regulations, such as California Air Resources Board‘s (CARB) 

Low Carbon Fuel Standard (LCFS) also set local GHG reduction targets. 

Established fuel LCA models such as GREET (Greenhouse Gas, Regulated Emissions, and 

Energy use in Transportation) have long been used to estimate the well-to-wheels GHG 

emissions and energy use of transportation fuels.  However, there are still many uncertainties 

associated with LCAs related to biofuels.  For example, the contribution of N2O emissions from 

agricultural operations to the overall carbon intensity (CI) of a biofuel is significant given its 

high global warming potential (GWP).  In addition, the effects of land use change (LUC) and 

how it is included and modeled in LCA has been the area of much debate. LUC is initiated as 

more crops such as corn and soy are required to meet the feedstock needs of a growing biofuel 

sector.  The increased demand for crops ultimately results in conversion of new lands for 

agriculture.  Traditional LCA models do not typically have the capability to model the global 

supply and demand changes that result, requiring inputs from additional models to determine 

how much land is necessary, which type of land is converted and how much GHG emissions 

result from the conversion. 

As shown in Figure ES-1, LUC emissions (white hashed bar) and agricultural emissions (green 

bar) contribute substantially to the overall CI of a fuel.  However, both are primary areas of 

uncertainty for the determination of the GHG benefits of alternative fuels with respect to 

conventional fuels for policy. In this work, we examined the assumptions and methodologies 

surrounding these two highly controversial areas.  We also investigated different approaches to 

time accounting for LUC.   

INDIRECT LAND USE CHANGE MODELING 

Searchinger was one of the first to call attention to the potentially significant impacts of indirect 

land use change (ILUC) to GHG of biofuels. [1] Subsequently, government agencies have tended 

to incorporate the effects of ILUC in alternative- biofuels policies: EPA calculates ILUC in its 

RFS2, as does CARB in its LCFS. [2,3] Because modeling ILUC is outside the scope of many 

LCA models, links are made between agro-economic models, which predict the amount and 

location of ILUC, and land-cover GHG emission factor databases.  The net emissions occur over 

time, the length of which must be considered in determining carbon intensity (CI) for the fuel.   
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Figure ES-1: GHG Emission from Corn and Wheat Ethanol from LCA modeling and reports.  Source CRC-E88 

Final Report [4] .  

In this work, we have investigated the modeling approaches and linkages between databases used 

in the RFS2 and LCFS, along with other key LUC studies such as Searchinger and Tyner. [5]  

We first explored how the agro-economic databases are linked to the emission factor databases to 

estimate the net GHG emissions.  Then we compared the LUC results from each study.  Finally, 

we compared the carbon-stock data in the different emission factor databases used.  

The EPA approach is the most complex, using two different modeling pathways to determine 

domestic LUC and international LUC.  Domestic changes are determined through the FASOM 

economic model.  FASOM is linked to the DAYCENT/ CENTURY and FORCARB databases to 

endogenously determine the net ILUC.  Since the databases and detailed results were not 

available, the methodologies applied could not be compared to other approaches.  International 

ILUC is modeled with the FAPRI model in the RFS2.  The land use results from FAPRI are 

linked to emission factors from the Winrock databases, which are aggregated according to 

historical land conversions measured through MODIS satellite imagery.  

In the LCFS, CARB models LUC with the GTAP model, which is linked to emission factors 

from the Woods Hole database.  A similar approach is used in work by Wally Tyner at Purdue 

University; however, the GTAP model is updated in this more recent work to include a better 

estimation of biofuels commodities. [5] The final CI results attributed to ILUC from these 

studies, along with results from Searchinger and a study for EU policy by the International Food 

Policy Research Institute (IFPRI) are shown in Table ES-1.  Since Searchinger first publically 

highlighted the topic of ILUC emissions in 2008, databases and modeling practices have been 

refined, producing lower ILUC emission estimates.  
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Table ES-1: Comparison of 30-year ILUC results (IFPRI is for 20 years) from different studies. Units are g CO2, 

eq MJ
-1

 fuel.   

 

Searchinger 
[1,6] 

EPA 
International[

2] 

EPA 
Domestic[2

] CARB[7] 
Tyner 

[5] IFPRI[8] 

Corn Ethanol 106 30 -4 30 18 54 

Soy biodiesel 340 40 -8 62 
 

75 

Sugarcane Ethanol 
 

4 (incl. 
domestic)  46 

 
18 

Complete Policy with 
blend of fuel types 

  
 

  
17 

The amount, location and type of ILUC occurring, which are predicted by the agro-economic 

models, are significant factors in the final CI of the fuel.They are then linked to emission factors 

(EF) to determine the total GHGs produced.  The ILUC for each study are shown for corn 

ethanol in Figure ES-2-A, and the resulting GHG emissions (normalized over the time horizon of 

each study) are shown in Figure ES-2-B.  The models predict significantly different amounts and 

locations of land conversion.  For example, both CARB and Tyner use the GTAP model 

(although an updated version is used in the Tyner study).  The LUC results from Tyner are only 

half of those predicted by CARB, and occur throughout the world, while much of the LUC 

predicted by CARB occurs in the U.S.   

 

 

Figure ES-2: ILUC (A) and GHG emissions (B) for corn ethanol from key studies. 
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The amount of GHGs predicted depends on the Emission Factors applied to the land conversion.  

In this work, we attempted to compare the carbon-stock data used in the Woods Hole and 

Winrock emission factor databases.  However, a direct comparison between the two is not 

possible.  The differences in the databases are highlighted in Table ES-2.  The application of the 

databases can also be significantly different.  For example, CARB, Tyner and Searchinger all use 

the Woods Hole database, but arrive at different emission factors due to different assumptions 

applied.  

Table ES-2: Differences in Winrock and Woods Hole EF databases. 

Emission Factor 
Step 

Winrock Woods Hole 

Regions 755 administrative units 10 world regions 

Conversion 
Categories 

47 different conversion/ reversion categories 
between 8 different land classifications. 

Conversion from forests and grasslands 
only. 

Emission Factor 
Weighting 

Historical LUC is predicted through MODIS 
satellite data to weight different conversion 
EFs into EFs that correspond to FAPRI. 

Regions are divided into ecosystems.  CARB 
and Searchinger weight EFs based on 
historical data from the 1990’s by 
Houghton[9]. Tyner uses the total land 
cover of each ecosystem type.  

C-Stock for 
Above- and 
below-ground C in 
vegetation 

C-stock included for each type of land 
classification.  The change in stocks is 
calculated as the difference between the 
original and new land use type. 

Stock Change method also used. 

Loss of C- in 
vegetation 

All C in vegetation is lost, however database 
includes a calculation for harvested wood 
products that could be added at a later date. 

Searchinger assumes 100% is lost. 
CARB assumes 90% is lost. 
Tyner assumes 75% is lost. 

Soil Carbon  
Uses Harmonized World Soil Database for 
top 30 cm of soil.   Loss of soil carbon occurs 
over 20 years, with varying rates (20-80%). 

C-stock in top 1 m of soil; 25 % is lost over 
the time horizon (30 years). 

Wetlands 
Peat land soils are estimated for Indonesia 
and Malaysia, occurring over the 30-year 
time period.  

Referenced to IPCC for SE Asia default for 
peat lands.  

Non-CO2 

emissions 

Fire CH4 and N2O IPCC defaults included as 
combustion factors for conversion and 
reversion. Rice methane combined in direct 
LCA. 

No separate calculation for CH4 and N2O 
emissions from fire.  

Reversion 
Emissions 

Reversion factors are the negative of 
conversion factors, except for forests, which 
are estimated as the lower of the annual 
foregone sequestration over 20 years or the 
initial forest carbon stock. 

75% of lost soil carbon is regained (18.75% 
original soil carbon) in regions where 
cropland is shrinking (EU and Former Soviet 
Union). 

TIME ACCOUNTING 

Time accounting plays a significant role in the overall determination of GHG emissions from 

ILUC.  A large release of GHG emissions occurs in year zero from above and below ground 

biomass as a result of land conversion.  Additionally, soil carbon emissions continue to be 

released for approximately 20 years, and foregone sequestration is accounted for through the 
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duration of biofuel production.  How long these emissions are accounted for, and how they are 

allocated over time will affect the final CI value of the fuel.  

Although both the EPA and CARB have currently settled on a 30-year time horizon with a 0% 

discount rate, there is still on-going debate on how to appropriately allocate indirect emissions 

occuring over a long time period.  The factors that have the most impact are the time horizon and 

the discount rate.   

The time horizon is the length of time during which all emissions are accounted for and 

attributed to the biofuel, allocated over the volume of fuel produced during that time period.  

There are benefits and drawbacks when considering either a shorter (20-30 year) or longer (100- 

year) time frame.  A shorter time frame emphasizes the importance of near-term emissions, and 

is more conservative, since predictions grow more and more uncertain further into the future.  

However, short time frames may truncate potential benefits that occur over time (e.g. if cropland 

reverts to its natural state after the project lifetime has ended).  Longer time frames are more 

uncertain, and may also reduce the signficance of near term emissions changes.    

Applying a 100-year time frame treats ILUC emissions on a similar scale as GHGs, whose global 

warming potentials (GWPs) are expressed as CO2-eq. based on a 100-year time period.  

Additionally, a longer time frame allows for consideration of reversion emissions. Some argue, 

however, that reversion emissions are too uncertain, and should not be included. 

The practice of discounting emissions is also an area that lacks concensus. Discount rates are 

used in economics to determine future value based on today‘s dollar.  They are applied to ILUC 

emissions to emphasize the significance of near term emissions by giving them more weight than 

future emissions, since they are likely to cause an earlier compounding effect if they are emitted 

to the atmoshpere earlier.  However, applying an economic practice to a physical phenomenon 

doesn‘t necessarily have the same meaning since it is difficult to determine if a gram of CO2 

emissions will cause different effects if it is released today or tomorrow. There has been an 

ongoing effort to attribute a dollar value to CO2 emissions, named the social cost of carbon, 

which can then be discounted accordingly.  However, many argue about the appropriate discount 

rate to apply to ILUC emissions. Peer reviewers for the RFS2 suggested discount rates ranging 

from 0% to 7.9%. [10] 

Some argue that 0% is an appropriate discount rate because of the issue of intergenerational 

equity. Others argue that ILUC emissions are already uncertain, and applying a discount rate 

amplifies the uncertainty.  However, applying a 0% discount rate suggests that future emissions 

have the same equity as current emissions, implying that there would be no value in avoiding 

emissions today, since it will be cheaper and easier to do so in the future owing to technology 

advancements.  Additionally, the significance of current emissions is ignored when using a 0% 

discount rate. 

Others have suggested alternative approaches to allocating emissions over time.  O‘Hare 

suggests calculating a fuel warming potential (FWP) using calculations for cumulative radiative 
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forcing (CRF), the same methodology that is applied in assigning a global warming potential 

(GWP) to GHGs. [11] The FWP could then be discounted. Kloverpris argues for a baseline time 

accounting methodology which would measure LUC  relative to a baseline LUC.[12] Although 

there is growing support to use FWP methodologies since they utilize similar metrics to those 

already used to determine GWPs of different GHGs, it is unclear that current policies will adopt 

a different method in the near future.  

AGRICULTURAL N2O EMISSIONS 

Nitrous oxide (N2O) is an important species in the overall biochemical-geochemical cycling of 

nitrogen. It is produced naturally in soils by microbial processes. Due to its potent GHG behavior 

(GWP is 298 times that of CO2) and its influence by human activities, N2O is considered an 

important contributor to anthropogenically-induced radiative forcing of climate change. 

Globally, approximately 7.5% of total GWP is attributed to N2O. Methane‘s contribution to 

global GWP is twice as large, but only a very small fraction of this is attributable to agricultural 

activities related to biofuels. Thus, N2O is the primary GHG of interest in LCAs of biofuels.  

N2O is produced in soils as a by-product of microbial processes involving nitrification and de-

nitrification pathways. Nitrification is an aerobic process, by which nitrogenous species are 

oxidized to nitrate (NO3-); de-nitrification is an anaerobic process, by which nitrate is reduced to 

molecular nitrogen (N2). The balance between aerobic and anaerobic conditions is affected by 

numerous factors -- particularly soil type, tillage practice, and moisture level. Other important 

factors influencing nitrification and denitrification include soil nitrogen inputs, temperature, pH 

level, and soil organic matter (SOM) content.  

Major inputs of nitrogen to the soil include synthetic fertilizers, organic fertilizers, crop residues, 

and animal wastes. Besides direct formation in soils, indirect N2O is produced by two main 

pathways: (1) volatilization of ammonia and NO from soils, followed by deposition onto lands 

and waterways, and (2) runoff and leaching of nitrate from soils, followed by nitrification/ 

denitrification in waterways. A complete accounting of N2O emissions impacts from biofuels 

requires assessments of both direct and indirect sources of N2O.  

A variety of modeling approaches have been developed and applied to estimate N2O emissions 

from agricultural activities. Among the most widely used are approaches developed by IPCC. 

Because of IPCC‘s interest in quantifying and monitoring GHG emissions on a consistent, 

country-wide basis, their methodologies for determining N2O emission inventories are relatively 

simple, and rely upon readily-available data inputs, such as total fertilizer use and crop 

production within a given country.  

IPCC‘s approach has evolved over the years, as understanding of N2O processes has improved 

and more experimental data have been acquired for testing and validating the models. The most 

recent IPCC guidelines, published in 2006, outline a 3-tiered hierarchical approach for estimating 

N2O emissions. The choice of which tier to employ is based upon availability (and reliability) of 
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inventory information at hand. Tier 1 is the simplest approach, requiring the least data inputs. 

This is also the approach which seems to be most widely used in LCA studies of biofuels.  

When using the GREET model to assess life-cycle GHG emissions for biofuels, it appears that 

most modelers apply simple Tier 1 default values for all emission factor terms (EFs), fraction of 

soil nitrogen that is volatilized, and fraction of soil nitrogen that is lost due to runoff and/or 

leaching.  A clear explanation of nitrogen input terms is often not provided, though it seems that 

nitrogen from fertilizer applications is the only term used in some cases. Use of such defaults 

leads to an overall ―Tier 1 N2O emission factor‖ of 0.0133 kg N2O-N/kg soil-N input. The 

derivation of this value is shown in Table ES-3, which also indicates the wide uncertainty range 

that applies to each component of this emission factor.  

Table ES-3. Default N2O Emission Factors used in GREET 

N2O Emissions Component 
Factor, 

kg N2O-N/kg soil-N inputs 

Uncertainty Range, 

kg N2O-N/kg soil-N inputs 

Direct N2O from soil 0.0100 0.0030 – 0.0300 

Indirect N2O from volatilized and re-deposited N 0.0010 0.0001 – 0.0055 

Indirect N2O from nitrate leaching and runoff 0.0023 0.0004 – 0.0088 

Total 0.0133 0.0058 – 0.0348 * 

*Total estimated range is derived assuming the individual IPCC ranges are log normal. Standard propagation 

of error routines are applied to lower and upper standard deviations. 

Tier 3 of IPCC-2006 defines use of process-based modeling approaches to determine N2O 

emissions inventories. Process-based biogeochemical models simulate fluxes of C and N among 

the atmosphere, vegetation, and soil; and determine global budgets for these species. These 

models require extensive parameterization to represent the physical, chemical, and biological 

processes influencing N2O formation. Thus, they require data inputs regarding crop type, soil 

type, nutrient supply, temperature, pH, precipitation, tillage practices, and other parameters.  

The U.S. EPA and USDA have adopted a Tier 3 approach to determining the direct N2O 

emissions component of the total U.S. agricultural GHG inventory for major crop species. 

(Simpler emission factor approaches are still used for minor crops and for indirect N2O 

emissions components.)  For this purpose, a biogeochemical model called DAYCENT is 

employed.  

Application of a Tier 3, process model-based method for determining N2O emissions inventories 

would be expected to provide more reliable results than a simple Tier 1 approach – provided 

sufficient inputs of high quality are available to run the model. However, direct comparisons of 

Tier 1 and Tier 3 approaches are difficult to perform, partly because of inconsistencies in spatial 

and temporal scales. The IPCC Tier 1 methodology is intended to estimate annual average N2O 

emissions on a large spatial scale – typically country-wide. In contrast, process-based models are 

generally applied to smaller regions, but with higher temporal resolution.  
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In their description of the U.S. GHG inventory process, EPA presented a comparison of direct 

N2O emission estimates provided by DAYCENT and the IPCC-2006 Tier 1 approach. Published 

field measurement studies from 12 North American sites were considered, representing several 

combinations of crop type, fertilizer treatment, and cultivation practices. All N2O emission 

values were expressed on a common basis of g N2O-N/ha-day. The results shown in Figure ES-3 

are taken directly from the EPA document. This figure shows that in nearly every case, the 

DAYCENT estimates were closer to measured values than were the IPCC estimates. In general, 

the IPCC Tier 1 methodology over-estimated emissions when the observed values were low, and 

under-estimated emissions when the observed values were high. In comparison, the DAYCENT 

estimates are less biased. The improved performance of DAYCENT is expected, because this 

model accounts for site-specific factors (such as weather, soil type, and crop type) that influence 

N2O emissions, while the IPCC methodology does not. 

 

Figure ES-3. Comparison of direct soil N2O emission estimates from DAYCENT and IPCC Tier 1 (2006)(Taken 

from U.S. EPA [13]). 
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LIST OF ACRONYMS 

AEZ Agro-economic zone 
AFOLU Agriculture, Forestry and Land Use 
ANPV Annual net present value 
ASM Agricultural Sector Model 
AWMS Animal waste management system 
b BTU billion BTU 
BEES Building for Environmental and Economic Sustainability 
BESS Biofuel Energy Systems Simulator 
BG billion gallons 
C Carbon 

CARB California Air Resources Board 
CENTURY Biogeochemical model of plant-soil nutrient cycling 
CEPII Centre d’ Etudes Prospectives et d’ Informations Internationales 
CES Constant Elasticity of Supply 
CET  Constant Elasticity of Transformation 
CGE  Computational General-Equilibrium 
CH4 Methane 
CI Carbon Intensity  
CO2 Carbon Dioxide 
CO2,eq Mass of a specified GHG expressed as a mass of CO2 having equivalent GWP 
CP Cropland Pasture 
CRC Coordinating Research Council 

CRF Cumulative Radiative Forcing 
CRP Conservation Reserve Program 
DAYCENT Daily time-step version of CENTURY biogeochemical model 
DDGS Dried distillers grain with solubles 
DGS Distillers grain with solubles 
DNDC De-Nitrification De-Composition (model for N2O emissions) 
EBAMM ERG Biofuels Analysis Meta-Model 
EC European Commission 
EF Emission Factor 
EIO-LCA Economic Input-Output- Life Cycle Assessment Model 
EISA Energy Independence and Security Act 

EPA Environmental Protection Agency 
EU European Union 
FAO Food and Agricultural Organization 

FAPRI 
The Food and Agricultural Policy Research Institute; FAPRI-CARD is at Center for 
Agricultural and Rural Development 

FASOM The Forest and Agricultural Sector Optimization Model 
FORCARB U.S. Forest Carbon Budget Model 
FQD Fuel Quality Directive 
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FSU Former Soviet Union 

FWI Fuel Warming Intensity 
FWP Fuel Warming Potential 

g CO2,eq MJ-1 grams of CO2, equivalents per MJ of fuel 
Gg Gigagram = 109 grams = one thousand metric tonnes 
GHG Greenhouse Gas  
GREET Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model 
GTAP Global Trade and Analysis Project 
GWP Global Warming Potential 
ha hectare 
HWSD Harmonized World Soil Database 
IEA International Energy Agency 

IFPRI International Food Policy Research Institute 
ILUC Indirect Land Use Changes 
IPCC International Panel on Climate Change 
ISO International Organization for Standardization 
JEC JRC, EUCAR and CONCAWE 
JRC Joint Research Center 
kg kilogram 
LCA Life Cycle Assessment 
LCFS Low Carbon Fuel Standard 
LCI  Life Cycle Inventory 
LEM Life Cycle Emissions Model 

LUC Land use change 
MIRAGE Modeling International Relationships in Applied General Equilibrium 
MODIS Moderate Resolution Imaging Spectroradiometer 
MOVES Motor Vehicle Emission Simulator 
M ton Million tons 
Mg Mega-grams = 106 grams= 1 metric tonne 
MJ Mega joule = 106joule 
mmBTU million BTU 
Mtoe Million tons of oil equivalent 
N Nitrogen 
N2O  Nitrous Oxide 
NO Nitric Oxide 

NOAA National Oceanic and Atmospheric Administration 
NOE Nitrous Oxide Emissions (model for N2O emissions) 
NPV Net present value 
NREL National Renewable Energy Laboratory 
ODS Ozone depleting substance 
OECD Organization of Economic Cooperation and Development 
Pg Petagram (10^15 grams) 
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RED Renewable Energy Directive 

RF Radiative Forcing 
RFS2 Renewable Fuel Standard 
RIA Regulatory Impact Analysis 
RTFO Renewable Transport Fuel Obligation 
SBM Soy Bean Meal 
SCC Social Cost of Carbon 
SOC Soil Organic Carbon 
SOM Soil Organic Matter 
t C ton of Carbon 
TCF Time Correction Factor 
Tg Teragram = 1012 grams= one million metric tons 

TH Time Horizon 
UK United Kingdom 
UNFCCC U.N. Framework Convention on Climate Change 
USDA U.S. Department of Agriculture 
WFPS Water-filled pore space 
WH Woods Hole 
WTT Well-to-Tank 
WTW Well-to-Wheel 
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1 INTRODUCTION AND BACKGROUND 

1.1 LIFE CYCLE ASSESSMENTS IN POLICY 

Interest in measuring greenhouse gas emissions (GHG) from transportation fuels is increasing as 

alternative fuel policies are being implemented to address concerns regarding energy security 

and global climate change.   Policies such as California‘s Low Carbon Fuel Standard (LCFS), the 

EPA‘s Renewable Fuel Standard (RFS2), the EU‘s Renewable Energy Directive (RED), and the 

UK‘s Renewable Transport Fuel Obligation (RTFO), among others, require GHG reduction 

targets be met through the use of alternative fuels, asshown in Table 1-1.[2,3,14,15] The GHG 

emissions are determined through life cycle assessments (LCA), whichare employed as a means 

to estimate the cradle-to-grave GHG emissions (among other environmental impacts) of a fuel. 

The GHG reductions are measured through comparison of LCA results of an alternative fuel to 

its conventional counterpart (such as gasoline or diesel). The net GHG is determined in terms of 

a carbon intensity (CI), which includes all GHG emissions, measured in CO2,eq. 

Table 1-1: Renewable fuel requirements and GHG Reduction targets for U.S. and E.U. policies. 

Policy Volume Requirement  GHG Reduction Target 

EPA - RFS2 (EISA) 
36 billion gallons by 2022 

 

Renewable Fuel- 20% 
Advanced Fuel – 50% 

Biomass-based diesel- 50% 
Cellulosic Biofuel- 60% 

CARB - LCFS 
Weighted blending 

requirement based on 
carbon intensity. 

10 % by 2020 

EU- RED 
10% of renewable energy in 

transport fuels by 2020. 
6% reduction in life-cycle 

GHGs from biofuels by 2020. 

UK- RTFO 
10% of renewable energy in 

transport fuels by 2020. 
35% reduction by 2020 (40% 

recommended) 

A fuel LCA is performed by accounting for all energy and emission flows during the life of the 

fuel, from the cradle to the grave.  This includes all phases of production, processing, 

transportation and use.  This accounting practice requires numerous data inputs and assumptions 

and clear definition of boundaries. The results of LCA can be highly variable and dependent on 

these inputs. Because of their importance in policy, LCA methodologies and data have been 

under critical review, with each assumption, definition, data input, etc., being evaluated by 

stakeholders and experts in an effort to ensure that the life-cycle GHG emissions of 

transportation fuels are justly represented.  The assumptions that generate the greatest 

uncertainties and yet have the largest impacts in LCA of a biofuel are those regarding co-product 

allocation, agricultural emissions (particularly N2O emissions) and indirect land use changes 

(ILUC).  
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1.2 LIFE CYCLE ANALYSIS OF FUELS 

Life cycle analyses are being applied to determine the carbon intensity (CI) of various alternative 

fuels to compare to the CI of conventional fuels.  The CI of a fuel is typically determined as mass 

of CO2,eq emissions per energy content of the fuel (g CO2, eq MJ
-1

), but can also be compared per 

volume of fuel or per distance driven (e.g., g CO2, eqL
-1

org CO2, eqkm
-1

).  

A full-fuel LCA includes all emissions flows (and/ or other environmental impacts such as 

energy use, eutrophication, or acidification) starting with raw material extraction and ending with 

fuel consumption.[16] For a biofuel, this includes all inputs and requirements for feedstock 

growth, harvesting, fuel production, distribution and combustion as well as intermediate 

transportation steps.  Figure 1-1shows a typical pathway for biodiesel production from soybeans, 

which includes all direct emissions typically associated with the production and use of soy 

biodiesel. The production phase of the soybean includes all agricultural inputs necessary to grow 

and harvest the crop, including the energy and emissions from farm equipment, production and 

use of fertilizers, and any intermediate transportation steps.  Co-products such as soybean-meal 

and glycerin are generated during oil extraction and biodiesel production phases.  The emissions 

produced during the use of the biofuel are dependent on the type and efficiency of the vehicle.  A 

common assumption is that the carbon released from the fuel during combustion is offset by the 

biogenic carbon from plant growth. Other non-CO2 emissions such as NOx, however, are 

typically included in the combustion emissions.  

 

Figure 1-1: Biodiesel from soybean pathway.  From Reference [17] 

LCAs require numerous assumptions, clear definitions of boundaries, and detailed data. 

Numerous modeling tools and databases have been constructed to support fuel LCA.  Some of 

the models used include BEES, BESS, EBAMM, EcoIndicator, EIO-LCA, LEM, GaBi, 

GHGenius, GREET, GEMIS, and SimaPro. Commonly used databases include NREL‘s US LCI 

Database and EcoInvent. The GREET model, developed by Argonne National Laboratory, offers 
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over 200 specific pathwaysfor alternative fuels and vehicles. It is among the most prevalent 

models in the U.S. and is used by the EPA for the Renewable Fuel Standard (RFS2).  In addition, 

California has updated the GREET model with its state and regionally specific data to produce 

the California-GREET model, which the California Air Resources Board (CARB) is using in 

support of its Low Carbon Fuel Standard (LCFS).  Similar models have been used in support of 

other policies: GHGenius is used in support of Canadian policy, and SimaPro is used for many 

European studies. 

LCAs are typically conducted to assess the relative attractiveness of various transportation fuels, 

and are becoming a common aid in determining the most desirable options for sustainable fuel 

and energy processes.  They are increasingly used in alternative fuel policies to compute the 

benefits (or dis-benefits) of alternative fuels with respect to conventional fuels.  Many LCAs 

conducted for biofuels show a relative GHG reduction compared to petroleum 

counterparts.[18,19,20,21] However, most studies have not included the effects of indirect land 

use changes (ILUC).ILUC is of increasing concern because of its potentially dramatic impacts on 

the carbon intensity (CI) of biofuels.   

Traditional LCA models, however, have limited or no capabilities to model indirect effects such 

as ILUC, which requires the consideration of market effects. This requires expanding the system 

boundaries, in what is termed a consequential approach, to determine how supply and demand 

changes affect the broader markets.  This approach requires economic models to simulate market 

behavior.   

Even when models implement similar data or databases, they are likely to produce differing 

results because numerous assumptions differ from model to model (or modeler to modeler).  

Some of the key assumptions affecting the results include the following:  

 definition of the boundaries 

 scale of production 

 farming energy and chemical requirements 

 amount of nitrogen fertilizer for plant growth 

 conversion of nitrogen fertilizer to N2O 

 crop yields 

 energy use and efficiencies from biofuel processing plants 

 credits given to co-products 

 LUC impacts 

While some of these assumptions are simply minor variations in practices and methodologies, 

others can generate significant differences in the final results.  Three of the most influential 

assumptions that also have the largest uncertainties are discussed below.  

1.2.1 CO-PRODUCTS 

Several by-products are produced during the production of biofuels.  Dried distillers grain with 

solubles (DDGS) is a useful by-product of ethanol production, which can be used as animal feed.  

During biodiesel production, animal feed meal is also produced during the oil extraction process, 
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and glycerin is produced during transesterification.  Other co-products such as naphtha or 

propane may be produced in 2
nd

 Generation biodiesel manufacturing involving hydroprocessing. 

[22] Common practice in LCA modeling is to allocate some of the energy and emissions 

produced during the fuel life-cycle to these co-products since they can replace other similar 

products in the market.  Several different methods of co-product treatment are commonly used. 

[20,23,24]  These are described below in more detail. 

 Physical Allocation—Environmental impacts are allocated to each by-product and the 

biofuel based upon a common physical parameter such as mass (kg) or energy (MJ).  A 

drawback of this method is that it does not consider the environmental impacts that have 

been offset by replacing other products.   

 Economic Allocation—Calculations are performed on the basis of the economic value of 

the biofuel and other valuable by-products.  The economic allocation method has similar 

drawbacks to the physical allocation method in that it does not consider changes to 

environmental impacts from replacement of other materials.  

 Displacement/ Substitution—A co-product that replaces an existing product also 

displacesthe existing product‘s emissions stream.  The environmental impacts of the 

replaced product must also be assessed through LCA, and are then subtracted from the 

total fuel pathway being analyzed. Changes in assumptions, however, can have 

significant effects on the results, and more data are required for the analysis. This method 

is also referred to as the ―system expansion‖ method. 

 No Co-Product Allocation—All energy and emissions incurred in the lifecycle are 

attributed to the final biofuel product.  While perhaps the easiest approach to use, failing 

to allocate any energy or environmental impacts to co-products is clearly an over-

simplification of reality.  

The choice of allocation method may significantly affect the final results of the LCA.  Several 

studies have examined the effects that different allocation methods have on the results.  

Bernesson, et al. studied the effects of all four allocation methods listed above on soy biodiesel, 

as well as a range of production plant sizes. [25]  They found that differences in plant size were 

almost negligible in some cases, but the allocation method had significant impacts, reducing CI 

by a factor of 2 to 3 compared to no allocation, and possibly resulting in the process becoming a 

net-supplier of energy for the expanded allocation method.  A quick scan of LCA methodology 

by Guinee and Heijungs found that different allocation methods could result in up to a 250-fold 

difference in extreme cases. [24]  Numerous other studies included cases for one allocation 

method compared to no allocation, which generally produced large differences in LCA results. 

[26] 

Co-product allocation also plays an important role in the quantification of ILUC, since some 

biofuels produce a large amount of co-products which can be used as an animal feed and replace 

crops that would have otherwise been grown.  A literature review conducted by the EU 

summarized LUC studies that looked at land requirements with and without consideration of co-

products. [27]  Many of the studies were consistent in that co-products reduced the land 
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requirements by significant amounts: between 23% and 94%, with a median overall reduction 

around 36%.   

Although there are still several choices of allocation methodologies, ISO recommends the system 

expansion method, which may produce distorted results, particularly when co-products are a 

main product. [26] Co-product methodologies have been reviewed in the previous CRC E-88 

report, and are outside the scope of this work, so will not be discussed in detail.[4] 

1.2.2 AGRICULTURAL EMISSIONS 

Emissions occurring during the growth of the biofuel crop contribute substantially to the total 

carbon intensity of the fuel.  This is largely due to the emissions of N2O and CH4 which have 

high global warming potentials (GWP).  Using the IPCC 100-year GWP, a single gram of N2O 

or CH4 equates to 298 or 25 grams of CO2, respectively.  Therefore, small fluctuations in either 

gas can result in large consequences for the biofuel.   

In particular, because of their large GWP, N2O emissions can have a significant impact on the 

final CI of a biofuel.  N2O emissions typically evolve from Nitrogen fertilizers that are applied 

during the growth of the biofuel feedstock, therefore, it is crucial to account for all N inputs and 

outputs from cultivation of land to grow biomass – including crop residues, fertilizer, N fixation, 

manure, deposition, gaseous losses, crop output, runoff, N transfer between co-rotated crops, and 

others. It is also important to know how these factors change over time.[28] 

In many LCA studies, the N2O emissions resulting from the agricultural phase are dependent on 

the total amount of N-fertilizer applied and an N2O conversion factor.  The most commonly used 

conversion factor is the IPCC default factor of 1.325%, which determines the relative amount of 

N2O formed from each gram of N fertilizer applied.  The IPCC includes assumptions about direct 

emissions and indirect emissions from leaching and deposition; however, there is large 

variability in N2O conversion factors (even the variability associated with the IPCC default 

factor ranges from 0.003 to 0.03) and dissenting opinions on which factors should be applied.  

The GREET model uses the IPCC value[29] and the GHGenius model uses a factor of 

1.125%.[17] However, Crutzen et al.[30] concluded that the IPCC emission factor for N2O was 

seriously underestimated, and recommended a conversion value equivalent to an IPCC factor of 

2.24-3.74.[29] 

N2O emissions are also dependent on the region, climate, temperature, amount of precipitation, 

fertilizer type, soil type, soil moisture, and soil temperature, among other things.  A single 

conversion factor does not accurately capture these differences.  Process-based models such as 

the DAYCENT/CENTURY model have been developed to account for these factors affecting 

N2O emissions.  However, process-based models are not widely applied in fuel LCA studies.   

The methodologies to model N2O and agricultural emissions are discussed in more detail in 

Chapter 4. 
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1.2.3 LAND USE CHANGES 

Emissions from land use change (LUC) have been shown to have potentially significant effects 

when considered in a biofuel LCA.  LUC effects may occur as the demand for energy crops 

increases as a result of increased biofuel requirements. Because of international trade of 

agricultural commodities, fluctuations in supply and demand have global implications.  The 

increased need for biofuel crops will ultimately lead to the expansion of cropland, which can 

occur elsewhere in the world (indirect land use changes- ILUC).  Depending on the location and 

type of land converted, significant GHG emissions may result.  Carbon stored in vegetation and 

soils will be released as vegetation is cleared by burning or left to decompose and soils are 

disturbed.  Additionally, there may be a loss of carbon sequestration potential from clearing 

forests. Since these types of emissions are a response to increased biofuel use, some argue that 

they should be attributed to the biofuel and accounted for in the biofuel‘s CI.  Although ILUC 

effects are difficult to quantify, because of their potentially irreversible impacts ILUC modeling 

is being included in biofuel LCA used for regulatory compliance.  However, modeling LUC is 

beyond the capabilities of many traditional LCA models, and must be done through complex 

linkage to additional models and databases. Agro-economic models are used to forecast the price 

response to supply and demand changes and predict the location and type of ILUC.  The land 

requirements are then linked to databases containing information about the carbon-stock of the 

land to calculate the resulting GHG emissions.  This consequential approach is more complex 

and requires more expansive boundaries and additional models and assumptions.  However, 

biofuel policy is trending toward taking the consequential approach to incorporate ILUC effects 

over the more traditional attributional approach, in which only direct environmental impacts are 

quantified.   

The uncertainties associated with LUC are significant, and its determination requires detailed 

input and assumptions and additional modeling efforts not typically included in a traditional 

LCA.  This work will describe how ILUC is modeled in policy-related studies and investigate the 

carbon stock databases in Chapter 2.   

1.3 PREVIOUS CRC E-88 WORK 

This work is a follow-on to CRC Project No. E-88, in which an assessment of existing life cycle 

analyses of transportation fuels was performed. [4]E-88 included a review of methodologies, 

analytical tools and models.  The review focused on published studies which have received the 

greatest attention for policy.  

The E-88 study provided a detailed review of different LCA models and their key attributes. The 

models reviewed include: GREET, CA-GREET, JRC/ EUCAR/ CONCAWE, LEM, and BESS, 

detailing the key assumptions and inputs for each model.  The review compared outputs of the 

results of different fuel pathways from each of the studies to illustrate how inputs affect each 

stage of the fuel life-cycle.  The report also detailed key assumptions affecting LCA results, 
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describing how co-product allocation assumptions, agricultural emissions and ILUC impact the 

results. 

The methodologies used to determine the ILUC effect of biofuels were also described.  The 

descriptions included background on different agro-economic models used and a comparison of 

the results of these models.  Additionally, comparisons of the emission factor databases and the 

carbon stock data applied were provided.  

In the present work, we build upon CRC E-88 and further investigate the uncertainties 

surrounding both ILUC and agricultural N2O emissions, two of the most influential factors in 

determining the CI of a biofuel.   

The uncertainties associated with assessments of ILUC are significant, and its estimation is not 

always transparent.  ILUC is dependent on how much land is converted, the type of land that is 

converted, the emission factors applied, and the time horizon that is selected. In this work, we 

focus on the estimation of ILUC in the EPA‘s RFS2 and CARB‘s LCFS, as well as other 

influential studies, in an attempt to clarify the approaches taken and the assumptions made.  This 

involves describing the models and databases used and their key assumptions, and tracing the 

quantification of LUC and GHG emissions resulting from biofuel policies. The estimation of 

how much land is needed to meet biofuel crop production requirements, as well as the type of 

land that will be converted, is generally predicted through the use of agro-economic models such 

as GTAP, FAPRI, or FASOM.  A thorough investigation of economic models is outside the 

scope of this work, however, key assumptions are highlighted and results from policy-related 

work will be described.  The linkage between the economic models and emission factor 

databases will be described, and a comparison of the carbon stock data used to determine the 

emission factors will be made.  The time accounting practices applied and alternative methods 

will also be described.    

The estimation of agricultural emissions in all biofuel LCA is also highly uncertain. The N2O 

emissions in particular can have a substantial impact to the overall CI of a biofuel given its high 

GWP.  Although it is common practice to apply a single conversion factor, such as the IPCC 

factor of 1.325 % g N2O/ g N applied, the conversion of N2O from agricultural fertilizers 

depends on many factors including the climate and soil properties.  In this work, we will describe 

the significance of N2O emissions in a biofuel LCA, as well as their significance to overall 

global GHG emissions.  The development of the IPCC approaches from 1997 to 2006 will be 

described. Process-based models such as DAYCENT/CENTURY model will also be described 

and compared to the IPCC approach.   
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2 LAND USE CHANGE IMPACTS 

As biofuel production expands due to policy changes, crop production of biofuel feedstocks must 

be increased to meet the demand.  These increases can occur from increased yields through 

intensification, from displacement of existing crops, or from expansion into new lands.  All three 

methods, however, result in fluctuations of GHG emissions, while the second two result in land 

use changes (LUC), either directly or indirectly.  Direct LUC impacts are those that can be traced 

directly to the production of biofuel, e.g. those that are occurring as a direct expansion of biofuel 

production into new lands.  Indirect land use changes (ILUC) are those that occur from market 

responses as crops or croplands are diverted to biofuels.The effects of LUC and how it is 

considered (or not considered) in fuel LCA has drawn considerable attention. In particular, the 

area of ILUC has been the focus of much debate since there is  potential for significant emissions 

from the loss of carbon in vegetation (i.e., forests or grasslands) or soils, as well as the loss of 

on-going carbon sequestration that would have occurred had the land remained in its original 

state [6].   

Searchinger was one of the first to introduce the concept of ILUC, and predicted that its 

consideration would have detrimental impacts on the overall CI of biofuels, resulting in a carbon 

payback of 167 years for corn ethanol. [1]However, some argue that current practices for 

modeling ILUC result in an unacceptable range of uncertainty, so should not be included until 

the data are more scientifically robust.[31,32]  Others argue that including ILUC unfairly singles 

out biofuels, making producers responsible for activities outside of their control. [33,34]Yet, 

some argue that ILUC likely has a non-zero impact and should not be ignored.  For example, 

Liska and Perrin argue that a conservative overestimation of biofuel CI is less costly since an 

underestimation will lead to more rapid adoption and  higher initial investments and 

infrastructure.[35] Regardless of the debate, policies are trending toward inclusion of ILUC in 

LCA estimates for biofuels:  RFS2 includes a detailed assessment of ILUC within its biofuel 

LCA; CARB determines an ILUC ―adder‖ for each biofuel; and, the European Commission is 

working to understand ILUC issues to include in its RED. 

There have been several attempts to model ILUC, and results of studies are highly variable and 

uncertain.[2,3]Initial estimates by Searchinger showed that the GHG impacts of corn ethanol 

were more than doubled when ILUC is considered.  Subsequent work has been done to refine the 

analysis, and the inclusion of ILUC in policies which undergo rigorous peer review have resulted 

in a more acceptable estimation of ILUC.  All have shown, however, that the ILUC is potentially 

one of the primary sources of GHGs for a biofuel CI.  More recently, others have suggested that 

the effects of ILUC are even less severe  [5], or perhaps irrelevant[36].  Many agree that ILUC 

will likely have some impact, and should be given a non-zero value [2,31,33,37].  

Results from various LCA models and reports for corn or wheat ethanol are given in Figure 2-1. 

Many of the studies include an estimation of ILUC (shown as the white hashed bar).  The figure 
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illustrates that effects of ILUC are not insignificant, and can have dramatic impacts on the final 

CI value of a fuel as modeled by LCA. 

 

Figure 2-1: GHG Emission from Corn and Wheat Ethanol from LCA modeling and reports.  Source CRC-E88 

Final Report [4] . 

The effects of ILUC are significant, but the uncertainties associated with its estimation are also 

large.  Therefore, it is important to understand the modeling process, data, and assumptions that 

affect the results.  ILUC is not generally predicted by conventional fuel LCA models such as 

GREET or BESS.  Determination of ILUC is complex and requires knowledge of price 

fluctuations occurring in response to supply and demand changes of crops.  This requires linking 

several models to predict how and where ILUC will occur: generally an agro-economic model is 

used in conjunction with an emission factor database to determine how much land is impacted, 

where the LUC will occur and on which type of land, and how much GHGs will result. 

In this section of the report, we will first describe why LUC is significant and what contributes to 

the determination of LUC, and then describe the general approaches to model ILUC.  Since 

ILUC is quantified to determine compliance with certain fuel regulations, we will describe the 

methodologies that CARB and EPA follow to predict ILUC, and introduce the approach 

evaluated by the EC.  We will then give an introduction to the models and databases used for 

each policy and provide comparisons between them. Finally, we will use the results of various 

modeling efforts by the EPA and CARB to make comparisons between the databases and 

methodologies followed.    
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2.1 GHG FROM LAND USE CHANGES: THE CARBON CYCLE1 

As the demand for biofuel crops increases, more and more croplands will be required to satisfy 

the feedstock requirements as well as traditional food and feed crop requirements.  This demand 

necessitates that lands be converted from their current use.  Land conversion, such as converting 

from forests to cropland, results in the removal of biomass and vegetation which can store large 

amounts of carbon.  If the vegetation is burned or left to decompose, the carbon will be emitted 

to the atmosphere as a GHG. 

The terrestrial biosphere can act as both a source and a sink for carbon. The carbon cycle is the 

mass transfer of carbon by natural geological, physical, biological, and chemical processes 

between the biosphere, hydrosphere, and the atmosphere. [38]Biogenic greenhouse gas (GHG) 

fluxes associated with agriculture include the storage of atmospheric carbon in plant biomass due 

to photosynthesis, respiration, decomposition, and the uptake or release of carbon into roots, soil, 

or back to the atmosphere. Non-CO2 emissions (CH4, N2O) from agricultural practices vary 

depending on the management practice employed. The atmospheric uptake of CO2 into plant 

material is considered a credit against the biogenic carbon in the fuel. However, the biogenic 

components of feedstock production and land use are important elements of a biofuel‘s life cycle 

impact, and these emissions should include changes in soil carbon and aboveground flora and 

belowground soil and biomass. 

Land conversion also results in a flux of soil carbon. [39] Conversion of forest to cropland 

releases large quantities of soil carbon. However, reduced tillage practice or crop residues re-

incorporated back into the agricultural system can lessen this effect and provide the benefit of 

improved soil quality. [40,41,42] In addition, if existing cropland is tilled, much of the soil 

carbon(over 25%)  is released over time. [43] No-till practices can help to build up soil carbon 

and perennial crops will add to soil carbon mass in variable quantity and over time.[44] The 

effect of tillage practice remains uncertain. [45,46] 

Converting cropland or Conservation Reserve Program (CRP) land to pasture or forest generally 

results in increased storage of carbon.[47,9,35,48]Spatial and temporal relationships between 

agricultural patterns and practices and the net amount of carbon stored have not, to date, been 

adequately quantified. 

Direct LUC can be defined as the type of activity being carried out on a unit of land.[49] The 

IPCC has updated guidelines for Land-use, Land-use Change and Forestry which have set default 

values for above-ground LUC.[50]The land categories are a combination of land cover (the type 

of vegetation covering the earth‘s surface) and land-use classes.[50] Six top-level land categories 

for greenhouse gas (GHG) inventory reporting are specified. These categories include forest 

land, cropland, grassland, wetlands, settlements, and other land. 

                                                 
1
 This section is taken from CRC-E-88 [4] 
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IPCC estimates that ~1.5 billion tons of carbon are emitted to the atmosphere each year from 

forest and grassland clearing, which accounts for 20% of annual CO2 emissions [51,52]. 

2.1.1 SOIL ORGANIC CARBON (SOC) 

Global soil organic carbon (SOC) estimates are 2,300 Pg C (Pg = 10
15

 g) as shown in Figure 2-2. 

This is three times the estimated 760 Pg in the atmosphere. Yet this soil organic carbon sink is 

also one of the major sources of atmospheric CO2, as also shown in Figure 2-2.  Soil naturally 

acts as a carbon sink, the magnitude of which is affected by a combination of factors such as soil 

moisture, pH, salinity, texture, and the presence of microbes and plants that live in and above the 

earth. Natural and anthropogenic external factors such as seasonal change, tillage, and fertilizer 

and water inputs also have a strong effect on the CO2cycle. 

 

 

Figure 2-2. The Global Carbon Cycle (Adopted from IPCC 2001, 2007[53,54]) 

SOC mapping is highly variable in terms of total carbon estimates stored in vegetation vs. in the 

soil and root systems. The highest stores are found in the boreal and tropical regions. Peat lands 

are especially high in soil carbon in the boreal areas, and yet often lumped together in estimates 

from tropical peat land areas as ‗forest‘, for example. [55] 
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2.2 MODELING INDIRECT LAND USE CHANGES- GENERAL 

METHODOLOGIES 

Modeling GHGs resulting from ILUC requires quantifying how much land will be required, 

where LUC are occurring, and what the carbon stocks of the land types are.  This requires 

detailed data on historical and future trends in crop growth and LUC patterns, economic market 

and price fluctuations, and estimations of carbon stocks of converted lands. It typically requires 

linking agro-economic models and emission factor databases to the outputs of more traditional 

LCA models such as GREET or BESS, as shown in Figure 2-3.  Agro-economic models use data 

about agricultural trends to predict the amount and type of LUC that will occur and the land 

types they occur on.  Those results are linked to emission factor databases to quantify the amount 

of GHG that will be released from the vegetation, soil, and from foregone sequestration.  

Additionally, some type of time allocation is necessary.  The models and databases available for 

ILUC modeling are highlighted in Table 2-1.  Each of the input models will be discussed further 

as noted by Section in the table.  

 

Figure 2-3: Modeling flow to predict total biofuel lifecycle carbon intensity including ILUC. 

Table 2-1: The models used, their key assumptions and outputs for estimating ILUC. 

Type of Model Section of Report Models/ Methods Outputs Key Inputs/ 
Assumptions 

Econometric/ 
Agricultural Models 

Section 2.3 GTAP, FASOM, 
FAPRI 

Amount of LUC 
Type of LUC 
conversions 
Location of LUC 

 Amount of biofuel 
“shock” 

 Yield elasticity 

 Price elasticity 

 Co-products 

Emission Factor 
Databases 

Section 2.4 Woods Hole, 
Winrock/ MODIS 

How much GHGs are 
released per LUC 
location over a 
period of time 

 Carbon Stock data 

 Historical LUC 
trends 

Time accounting 
practices 

Chapter 3 Amortization 

Fuel Warming 
Potential  

Allocation of one 
time plus continuing 
emissions over time 

 Time horizon 

 Discount Rate 

Biofuel policy 
“shock”

LCA Model

Econometric/ 
Agricultural 

Model
EF database

Time 
accounting

LUC
Net GHG 
Emissions Annual ILUC 

GHG Emissions

Direct Biofuel 
Lifecycle GHG 

Emissions

+

Total Biofuel 
Lifecycle Carbon 

Intensity
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An introduction to the agro-economic models and emission factor databases will be presented 

first.  Particular attention is made to models used in U.S. policies.  In the following section, the 

model implementation and linkage between databases will be described for each policy scenario 

(EPA and LCFS).  The results of the policies will then be compared, which will be used to 

highlight differences between the modeling efforts, where possible.  Time accounting practices 

will be discussed in Chapter 3. 

2.3 AGRO-ECONOMIC MODELS 

In ILUC analysis, economic models can be used to predict how supply and demand changes of 

energy crops affect global markets.  Economic modelsrepresent economic equilibrium in which 

supply equals demand.  A change in the supply or demand of commodities moves the model out 

of equilibrium, so the model adjusts new prices, and supply and demand to establish a new 

economic equilibrium.  There are two types of equilibrium modeling: general equilibrium, in 

which equilibrium is sought for the whole economy with many interacting markets; and partial 

equilibrium, which only analyzes a single market. In ILUC analysis, agro-economic models such 

as the Global Trade and Analysis Project (GTAP) by Purdue University, the Forest and 

Agricultural Sector Optimization Model (FASOM), and the Food and Agricultural Policy 

Research Institute- Center for Agricultural and Rural Development (FAPRI-CARD), among 

others, are used. These models have long been in use to analyze global agricultural economics 

and resulting LUC, and have recently been adapted to predict ILUC for GHG analysis in 

LCA.Changes in biofuel production volumes are input to predict how much land will be required 

to compensate for the crop that has been displaced by the production of biofuels.The models can 

predict the amount and type of land required, and are spatially aggregated into different regions 

to predict the location of LUC. The resulting LUC can be used in conjunction with emission 

factor databases to determine the resulting GHGs.  

Agro-economic models require numerous input assumptions.  Key input parameters such as crop 

yields, price elasticities and transformation elasticities are used to predict price fluctuations of 

agricultural commodities, and how those price changes influence ILUC  internationally.  

Assumptions regarding crop yields and yield changes are critical to estimate the LUC.   It is 

expected that some of the increased demand for crops can be met through intensification of 

existing croplands, i.e., by increasing the yields.  Thiscan be accomplished through 

advancements in technology or application of additional fertilizers, which would have an effect 

on resulting ILUC emissions.Additionally, as lands expand, the yields of new lands are expected 

to be less than existing croplands (termed marginal lands, which describes the land brought into 

production last and abandoned first due to its poor productivity[56]), as we can assume that the 

highest productivity lands are already in use. The productivity of new croplands in comparison to 

existing croplands is a critical input factor that influences the amount of land required. Another 

key input parameter, the transformation elasticity, limits the ease of which one type of land is 

converted to another, so it affects the total amount of land required, as well as the type.  The 

market response to price changes (price elasticities) also strongly influences the economic 
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modeling results. Comparisons of the agro-economic models used in U.S. policies along with 

inputs to several key assumptions are highlighted in Table 2-2.  Each of these models is 

discussed further. 

Table 2-2: Comparison of Agro-Economic models for LUC Analysis.  (Modified from Unnasch CRC E-88 

report, Table 5.3[4]) 

Model GTAP FAPRI FASOM 

Application CARB-LCFS EPA RFS2 EPA RFS2 

Type: Global computational 
general equilibrium model 
(CGE) with explicit 
treatment of land.  

Global partial equilibrium 
model of agricultural 
sector. 

Partial equilibrium model 
of U.S. forestry and 
agriculture incorporating 
GHG emissions 

Regions 18 international AEZs 54 International regions 11 U.S. Regions 

Fuel demand Biofuel shock with 
surrogate petroleum tax 
subsidy. 

Demand for feedstock 
modeling of blend wall 
price effects. 

Demand for feedstock on 
agricultural system 

Price/ yield response 0.2-0.3 price/ yield 
elasticity plus exogenous 
yield multiplier 

0.074 long run price/ yield 
elasticity 

No price response 

Area/ yield response 0.66-0.75 area expansion 
multiplier 

0.977 area expansion 
multiplier 

Yield projections for new 
land in U.S. 

Co-product treatment Feed co-product is 
subtracted from bio-fuel 
feedstock requirements 

DGS and SBM are treated 
as separate agricultural 
commodities 

DGS and SBM are treated 
as separate agricultural 
commodities 

Co-product power New power for ag and 
biorefineries included in 
GREET calculations with 
regional specific emission 
factors 

Credit for power export 
from biorefineries using 
GREET emission factors 

U.S. agricultural system 
power modeled by FASOM 
with addition of new 
power consumption from 
biorefineries 

Carbon Accounting Emission factors from 
Woods Hole database. 

MODIS satellite data 
combined with Winrock 
analysis of land 
conversion factors 

Endogenous, direct 
emission factors 
comparable to GREET.  
Land emissions from 
CENTURY 

A thorough review of the agro-economic models is outside the scope of this work.  However, 

some of the underlying assumptions, inputs and outputs of the models are described below to 

provide a basic understanding of their general capabilities and how they affect the overall ILUC 

results. Additional details on the models were provided in CRC E-88. [4] 

2.3.1 GTAP 

The Global Trade Analysis Project (GTAP) is a computable general equilibrium model (CGE) 

developed at Purdue University.  The model uses a database containing global data describing 

bilateral trade patterns, production, consumption and intermediate use of commodities and 
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services.  It constrains primary production factors such as capital, labor and land to model the 

global economy.   

Since its application in biofuel LCA, the model has been continually updated to more accurately 

model biofuel and biofuel crop markets.  The most recent database for LUC modeling is the 

GTAP Version 7 Land Use Database, which includes land cover data by land type and agro-

ecological zone (AEZ) for the year 2004.  The GTAP model has also been improved for the 

treatment of biofuels and by products, called GTAP-BIO.[57] The database has been modified to 

include data on production, consumption and trade of biofuels including grain based ethanol, 

sugarcane ethanol, and biodiesel from oilseeds.  Tyner has updated the GTAP-BIO model 

(GTAP-BIO-ADV) for recent work to improve the analysis of corn ethanol.[5] 

GTAP uses a Constant Elasticity of Transformation (CET) supply function to estimate the supply 

of land across cropland, forestry, and grazing land. [58]The CET function used in GTAP is based 

entirely on U.S. data, but is applied to all the world regions.    

 The input parameters to GTAP for modeling LUC  include: 

 Baseline year 

 Fuel production increase 

 Land use analysis: the change in biofuel production expected in response to policy. 

 Crop yield elasticity: which defines how much a crop yield will increase in response to a 

price increase (as prices increase, farmers have more incentive to intensify production of 

their existing crops).  A higher elasticity means a greater yield increase in response to a 

price increase. 

 Elasticity of crop yields with respect to area expansion: yields on newly converted land 

will be lower than corresponding yields on existing crop land. 

 Elasticity of harvested acreage response: the extent to which land cost changes affect 

changes of cropping patterns on existing agricultural lands. 

 Elasticity of land transformation across cropland, pasture and forest land: the extent of 

which types of lands change. 

 Trade elasticity of crops: expresses the likelihood of substitution among imports from all 

available exporters.  

GTAP can be used to predictLUC in 18 agricultural economic zones (AEZ) and 19 regions 

worldwide. The CET function is used to predict how much land is transferred between forests, 

pastures and croplands, and its LUC outputs are the area of land converted under each category. 

It has been noted that because  GTAP simulates a land scarcity regime, in which biofuel demand 

results in new land to be cleared (rather than a net land surplus regime in which increased 

demand for biofuels would result in less land reversion), the methodology is flawed, and should 

instead  be able to account for the possibility of a net reduction in total agricultural lands[59].  

However, historic patterns show that demand for biofuel crops has outpaced yield improvements, 

so corn and soybean production are likely to be in the land scarcity regime in the near term. 
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GTAP is used by CARB to model ILUC as part of its LCFS, and results of these modeling 

efforts will be discussed further in Section 2.6.  Since its use in CARB analysis, Tyner and others 

at Purdue University have been working to update the models to more accurately reflect biofuels 

markets. [5,60] These revisions to the GTAP model and the resulting ILUC estimates will be 

discussed in Section2.5.4.2. 

2.3.2 FASOM 

The Forest and Agricultural Sector Optimization Model (FASOM) is a dynamic, nonlinear 

programming model of the forest and agriculture sectors in the United States. It is a partial 

equilibrium model that accounts for land competition and response to changing prices, and 

simulates land use interactions to predict the types of land converted in the U.S.FASOM utilizes 

data about crop inputs to build crop budgets which include data on yields, fertilizer, chemicals 

and energy use needed to grow crops in each of 11 market regions and 63 sub-regions.  The use 

of FASOM enables determination of secondary impacts such as crop switching, movements 

between cropland and pasture, movements between agricultural land and forestland, and 

reductions in equilibrium quantities of agricultural and forest commodities due to higher prices.  

It also accounts for changes in primary GHGs (CO2, CH4, and N2O) from agricultural activities 

and tracks carbon sequestration and losses over time. [61] 

FASOM simulates a dynamic baseline and changes from that baseline in response to policy. It 

covers the 48 contiguous States, broken into 63 sub regions for agricultural production and 11 

market regions, and tracks over 2,000 production possibilities for field crops, livestock and 

renewable fuel.  All cropland, pastureland, rangeland and private timberland throughout the 

conterminous U.S. are included, and land is allowed to move between categories with some 

limited restrictions.  FASOM includes a representation of seven different land use categories 

including: 

 Cropland- actively managed cropland used for traditional (corn and soy) and dedicated 

energy crops. 

 Cropland-pasture (CP) –managed pasture land used for livestock production, but which 

can also be converted to cropland production. 

 Forestland- includes a number of subcategories, and in which the number of acres of 

reforested, afforested and total area on public land is continually tracked. 

 Forest-pasture- unmanaged pasture with varying amounts of tree cover that can be used 

for livestock or timber harvest. 

 Rangeland- unmanaged land that can be used only for livestock grazing. 

 Developed land- high-value urban land. 

 Acres enrolled in the Conservation Reserve Program (CRP)-generally marginal cropland 

retired from production and converted to vegetative cover. 

The output of the model includes changes in total domestic (U.S.) agricultural sector fertilizer, 

energy use, and livestock (due to changes in animal-feed prices), as well as changes to land.The 
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FASOM model is endogenously linked to other models such as DAYCENT/ CENTURY and 

FORCARB models.  

The DAYCENT/ CENTURY model simulates the fluxes of C and N among the atmosphere, 

vegetation and soil.  It can be used to predict daily N-gas fluxes (N2O, NOx, N2), CO2 flux from 

soil respiration, soil organic C and N, net primary production of plants, H2O and NO3 leaching, 

and other environmental parameters. [62] 

FORCARB is a simulation model used to estimate carbon budgets in the U.S. forest system.  It 

produces national carbon inventories, partitioned into forest soils, trees, understory and forest 

floor vegetation, and C in harvested products.  [63] 

FASOM utilizes both of these models to endogenously estimate GHGs from its simulated LUC.  

The total GHGs from LUC are dependent on the changes to agricultural soil carbon and N2O 

determined, and changes to above- and below-ground and soil carbon stock in the forestry sector.  

The agricultural soil GHGs are estimated through the DAYCENT/ CENTURY model, which is 

based on factors for different types of crops, management practices and conversion effects.  

Carbon soil storage is based on the intensity of agricultural tillage, the irrigation status, relative 

abundance of grasslands, and the mix of annual versus perennial crops.  The model also yields 

changes from N2O in pastureland and cropped soil. 

Forest carbon changes are estimated within FASOM‘s forestry module, which follows the 

FORCARB model by the U.S. Forest Service.  The module tracks changes in above- and below-

ground C in both continuous and afforested forestlands, as well as in forest products.  The 

evaluation of GHG emissions from domestic forests includes tree carbon, soil carbon, forest 

floor carbon, understory vegetation, and carbon in harvested logs.   

FASOM is used in the EPA-RFS2 LUC analyses to predict the ILUC occurring within the U.S.  

Additional results and discussion of the modeling is given in Section 2.5.1.2. 

2.3.3 FAPRI-CARD 

The FAPRI-CARD model is a global agricultural model that can be used to examine land use 

fluctuations in response to renewable fuel policies.  It is a system of econometric models 

including multi-market, partial equilibrium, and non-spatial econometric models that cover all 

major temperate crops, sugar, ethanol, dairy and livestock and meat products for all major 

producing and consuming countries [64].  It projects how policy or economic shocks will affect 

agricultural commodity markets and land areas used to produce those agricultural goods.  

FAPRI accounts for several key parameters that affect the amount of ILUC including: crop yield 

growth rates over time, price induced crop yield changes, crop yields on marginal/ new lands, the 

efficiency of renewable fuel co-products over time, supply and demand in the livestock sector, 

and other variables.   
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Determination of the location of LUC is a critical factor in ILUC since that carbon stored in 

vegetation and soil, and therefore GHG emissions, can vary significantly by region.  The FAPRI-

CARD model predicts changes in both annual and perennial cropland as well as changes to 

pastureland for 54 regions (shown in Appendix A).The inputs and outputs of the model are 

shown in Table 2-3andinclude changes in crop acres.  FAPRI includes both an international and 

a U.S. domestic module. 

Table 2-3: FAPRI-CARD Model Description: Source:[64] 

 

FAPRI is used in the EPA RFS2 analysis to predict international ILUC in both crop and pasture 

land for each fuel scenario (i.e. corn ethanol, soy biodiesel, sugarcane ethanol, or switch grass 

ethanol).Only the results from the international module are used in the EPA RFS2.  Domestic 

LUC is predicted by FASOM.  In the RFS2, the changes in crop and pasture acreage from 

FAPRI are used in conjunction with the Winrock EF database to predict the international LUC.   

FAPRI results are also used to predict other ―direct‖ emissions, such as international livestock 

emissions, and international rice methane emissions. The linkage between other models in the 

RFS2 and results from modeling efforts are discussed in Sections 2.5.1.1 and 2.6. 

2.4 EMISSION FACTOR DATABASES 

As lands are converted from one use to another, a large release of GHG emissions can occur for 

carbon contained in vegetation that is removed or from soil that is disturbed.  Additionally, there 

may be lost opportunity of carbon sequestration that would have been provided by growing 

vegetation.  The area of LUC predicted by the economic models can be linked to emission 

factors to determine the net release of GHGs associated with the land conversion.  In U.S. policy 

analysis, CARB uses the GTAP model linked to the Woods Hole emission factor databases to 



19 

 

predict ILUC emissions.  The EPA uses the FAPRI model linked to the Winrock carbon stock 

database to predict international ILUC emissions, and uses the FASOM model, which contains a 

DAYCENT/ CENTURY module, to determine domestic ILUC emissions.  

The amount of GHG emissions from land conversions depends heavily on the location of the 

land, as well as the beginning and ending land types.  Emission factor databases, such as Woods 

Hole Emission Factor database and the Winrock Carbon Stock, contain relevant carbon stock 

data that, along with the land use conversion types predicted by the agro-economic models, allow 

for the quantification of GHGs from LUC.  These two primary databases are described in more 

detail in this section.  Additional details on how these emission factor databases are linked to the 

econometric models within each policy model are described in Section 2.5. 

The emissions associated with LUC can continue to be released over a period of time, which 

must also be considered when determining emission factors.  The time allocation of ILUC 

emissions are discussed in more detail in Chapter3.  However, the time period selected also 

affects the emission factor. Since both CARB and EPA have settled on a 30-year emission factor, 

that time frame will be discussed below.   

2.4.1 WOODS HOLE 

The Woods Hole emission factor database as presented by Searchinger [1]is based on research 

done by  R.A. Houghton at  the Woods Hole Oceanographic Institute [65,66,9].  The data 

discussed herein are presented in Searchinger supplemental materials and have been revised into 

Excel
TM

 tables by CARB in their ILUC analysis. [1,67]  The data arefrom Houghton‘s research 

on carbon flux due to LUC based on historical trends from 1850-1990 [68].  Carbon fluxes in C 

ha
-1

 due to anthropogenic activities are presented for vegetation, soils and lost sequestration for 

multiple ecosystem types within 10 world regions as shown in Table 2-4. The carbon flux data 

are converted to emission factors, given in g CO2, eq ha
-1

by the ratio of the mass CO2 per gram of 

Carbon (44/12).A weighted 30-year emission factor is then calculated based on the following 

data contained within the database:  

Historical Land Use Clearing by Ecosystem Type 

For each ecosystem type within each of the 10 regions, the amount of historical land clearing (in 

hectares) in the 1990‘s as analyzed by Houghton is given.[66,9]The analysis of land conversions 

included clearing of natural ecosystems for croplands and pasture, and the abandonment of 

cleared lands followed by recovery of original vegetation and soils. Both the EU and the Former 

Soviet Union (FSU) experienced a decline in cropland in the 1990‘s, while the remaining regions 

experienced an increase in croplands. The total land clearing in a region is used to calculate a 

weighted average emission from each of the ecosystems types for each region.  Additionally, the 

ecosystems are classified as either forests or grasslands (as indicated in Table 2-4), so the total 

clearing by land type can be summed to give a weighting factor for either conversion from 

forests or grasslands. 
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Carbon in Vegetation  

The ecosystems within each region have corresponding data about how much carbon is stored in 

live vegetation, as shown in Table 2-4.The data presented in the Table are ranges of global and 

regional vegetation. The values include both above- and below-ground live biomass of trees and 

ground cover.[66] 

Table 2-4: World Regions and Ecosystem types for Woods Hole data with corresponding carbon stocks in 

vegetation and soil.  The classification of ecosystems type is designated as (F) for forest or (G) for 

grassland. 

World Wide Region  Ecosystem Type 

Carbon in 
Vegetation 

Mg C/ha 

Soil Carbon 

Mg c/ ha 

1. Europe  Boreal Forest (F) 90 206 

2. Pacific Developed  Broadleaf Forest (F) 150 150 

3. Former Soviet Union  Chaparral (G) 40 80 

4. N. Africa/ Middle East  Coniferous Mountain forest (F) 150 100 

5. Canada  Coniferous Pacific Forest (F) 200 160 

6. United States  Desert (G) 6 58 

7. Latin America  Desert Scrub (G) 3 58 

8. South and SE Asia  Grassland (G) 10 42-80 

9. Africa  Mixed Forest (F) 170 160 

10. India/ China/ Pakistan  Montane Forest (F) 80 100 

  Open Forest (F) 60 50 

  Shrubland (G) 5 30 

  Temperate Deciduous Forest (F) 120-135 134 

  Temperate Evergreen Forest (F) 160 134 

  Temperate Grassland (G) 7 189 

  Temperate Seasonal Forest (F) 100 134 

  Temperate Woodland (F) 27 69 

  Tropical Dry Forest (F) 13 70 

  Tropical Evergreen Forest (F) 160-200 98-134 

  Tropical Grassland (G) 18 42 

  Tropical Moist Forest (F) 60-250 115-120 

  Tropical Open Forest (F) 55 69 

  Tropical Rain Forest (F) 127 190 

  Tropical Seasonal Forest (F) 140-150 80-98 

  Tropical Woodland (F) 27 69 

  Tundra (N/A) 5 165 

  Woodland (F) 90 90 

Soil carbon  

Soil carbon data provided in the Woods Hole database also corresponds to ecosystem type as 

shown in Table 2-4.  The soil carbon provided is the initial carbon stockmeasured to 1 m depth 

for each ecosystem type. [66]It is estimated that about 25% of the carbon is lost to the 

atmosphere with cultivation, although the rate of loss depends on the ecosystem (based on 

research in [69,70,71]).   
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Foregone Sequestration in Forests 

There are two types of foregone sequestration considered in the Woods Hole database: (1) the 

lost opportunity for CO2 uptake by existing forests once they are converted to other uses (uptake 

of existing forests), and (2) the lost opportunity from re-growing forests in lands in which 

cropland is retracting (uptake of re-growing forests), which is considered for the EU and the 

FSU. 

To determine the foregone emissions, the database includes both the total land area cover of 

growing forests (in ha), land area cover of re-growing forests (in ha) of a particular ecosystem 

type, and emission factors (EF-given in Mg C year
-1

) for each type of ecosystem.  The annual 

emissions from foregone sequestration are then the EF divided by the total area of forest.   This 

is then multiplied by the number of years of foregone sequestration (30 years for a 30-year EF).  

Other issues with the database are described in [66].  One error includes information about the 

soil carbon, which in previous reports was significantly higher due primarily to the fact that 50% 

of the soil carbon was assumed to be lost in the earlier estimate versus approximately 25-30% in 

the later estimate.  The article states that 50% loss generally applies to the upper 20-30 cm of the 

soil carbon, but 25% loss applies to soil carbon at a 1m depth. 

 

The 30 year emission factor from Woods Hole database is the sum of the carbon contained in the above and 

below ground vegetation, the carbon lost from the soil, and the number of years of foregone sequestration, 

weighted for each ecosystem within a region as shown in the equation below: 

EF30_year=  𝐹𝑖𝑖 ∗ (𝑥 ∗ 𝐶𝑣𝑒𝑔 ,𝑖 + 𝑦 ∗  𝐶𝑠𝑜𝑖𝑙 ,𝑖 + 𝑁 ∗  𝐶𝑓𝑜𝑟𝑒𝑔𝑜𝑛𝑒 ,𝑖)*(44/12) 

i each ecosystem within a region 

EF30_year  30-year emission factor (in Mg CO2,eq/ ha) 

Fi Weighting factor for each ecosystem within the region. 

Cveg Carbon in above and below ground vegetation (Mg C/ha) 

x % of C in vegetation lost during land conversion 

Csoil Carbon in soil (Mg C/ha) 

y Loss of Carbon contained in the soil.  

Cforegone Foregone sequestration (Mg C/ha yr) 

N number of uptake years (30 for a 30-year emission factor) 

44/12 gram CO2/ gram C 

 

 

 

Scheme 2-1: General equations to calculate 30-year EF from Woods Hole database 
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The sum of the emissions from carbon in vegetation, lost soil carbon and foregone sequestration 

are taken to give an emission factor for each ecosystem type within each region.  The historical 

LUC data are then used to weight the contribution of each into a single emission factor per 

region. The emission factor in g C ha
-1

is converted into g CO2 ha
-1

 by multiplying by 44/12 (the 

ratio of the mass of CO2 to C). However, the Woods Hole database is applieddifferently by 

Searchinger, CARB, and Tyner, with each using the data to calculate a slightly different 

emission factor.  The general equation is shown in Scheme 2-1, and the application of the 

equation is described for each of the studies in Table 2-5.  

As described in Table 2-5, CARB takes a similar approach to calculating 30-year emission 

factors as Searchinger.  The primary differences are (1) CARB uses the historical land use 

clearing patterns to determine two EFs (one for conversion from forests, one from conversion 

from grasslands), while Searchinger calculates a single weighted EF for each region; and, (2) 

CARB assumes that 90% of the carbon in vegetation is released upon land clearing, while 

Searchinger assumes that 100 % is released.  

Tyner, however, has taken a fairly different approach in applying the Woods Hole database.  

Similar to CARB, Tyner also determines two weighted emission factors for conversion from 

forests and grasslands.  However, he weights the data using the total forested area data, rather 

than historical land clearing.  Also, Tyner makes no assumption that the EU and FSU have 

retracting croplands, and so applies the basic approach to soil carbon (only 25%) and foregone 

sequestration as uptake avoided by existing forests.  Additionally, he assumes only 75% of the 

carbon in vegetation is lost during land conversion, and that the remaining 25% is stored in wood 

products.  

The Figure 2-4shows how these assumptions affect the 30-year EFs for each region for 

conversion from forests (Figure 2-4-A) and grasslands (Figure 2-4-B).  Although Searchinger 

calculates a single weighted EF for each region, enough data are provided to determine EFs for 

conversion from forest and grassland to compare with those of CARB and Tyner.  Figure 2-4 

shows that within each region, conversion from forest has a much higher emission factor than 

conversion from grassland (note the differences in scale between Figure 2-4-A and Figure 2-4-

B). 

 CARB generally uses slightly lower EFs than Searchinger, due to the assumed lower percentage 

of carbon emitted from vegetation.  The EFs for EU and FSU are identical for Searchinger and 

CARB.  
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Table 2-5: Application of Woods Hole database in Searchinger, CARB and Tyner. 

EF Component Searchinger (2008) CARB- LCFS (2009) Tyner (2010) 

Weighting by 
Ecosystem type 

(Fi) 

A single EF is calculated for 
each region based on the 
historical land clearing data 
from the 1990’s.  The % of 
each type of ecosystem 
cleared within the region is 
used to weight the final 
emission factor. 

Two EFs are calculated: one 
for conversion from forests 
and one from grasslands.  The 
historical land clearing data 
from the 1990’s are used to 
determine the weighting 
factors from the total area of 
grassland and total area of 
forestland cleared.  

Two EFs are calculated: one 
for conversion from forests 
and one from grasslands.  The 
total forested land area is 
used to develop the 
weighting factors for each 
land type classification.   

Carbon in 
Vegetation 

(x) 

100% of the above and below 
ground carbon is emitted. A 
correction factor for 
Harvested Wood Products is 
included, but not used. 

90 % is emitted 

CARB cites IPCC defaults, 
Searchinger, Guo, [47] and D. 
Murty[72] 

75% is emitted 

No reference provided 

Carbon in Soil 

(y) 

For cropland expansion: 25% 
of carbon in soil is assumed to 
be lost. 

For cropland retraction (in the 
EU and FSU): the carbon gain 
is calculated as 75% of the 
original 25% carbon lost from 
the initial conversion (i.e. 
18.75%). 

For cropland expansion: 25% 
of carbon in soil is assumed to 
be lost. 

For cropland retraction (in the 
EU and FSU): the carbon gain 
is calculated as 75% of the 
original 25% carbon lost from 
the initial conversion (i.e. 
18.75%). 

25% of soil carbon in all 
regions.  

Time Period of 
Foregone 
Sequestration 

30 years 30 years 30 years 

Foregone 
Sequestration 

(Cforegone) 

For cropland expansion:  the 
uptake per forest area (Mg C 
ha

-1
 yr

-1
) is calculated by the 

gross uptake/ forested area 
(or grassland). 

For cropland retraction (in the 
EU and FSU): the uptake from 
re-growing forests is 
calculated by the gross 
uptake/ area of regrowing 
forests (or grassland). 

For cropland expansion:  the 
uptake per forest area (Mg C 
ha

-1
 yr

-1
) is calculated by the 

gross uptake/ forested area 
(or grassland). 

For cropland retraction (in the 
EU and FSU): the uptake from 
re-growing forests is 
calculated by the gross 
uptake/ area of regrowing 
forests (or grassland). 

Uptake per forest area (Mg C 
ha

-1
 yr

-1
) is calculated by the 

gross uptake/ forested area 
(or grassland). 
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Figure 2-4: 30-year emission factors (in Mg CO2ha
-1

) for Searchinger, CARB and Tyner for conversion from A) 

forest and B) grassland. 

Tyner, however, uses quite different EFs.  In many cases, the forest conversion EF is actually 

higher than the EF from Searchinger, particularly for the EU and the FSU due to the differences 

in foregone sequestration calculation and differences in weighting.  However, applicationsof 

results from the Tyner study produce even more significant differences, as will be discussed 

further in Section 2.6. 

2.4.2 WINROCK CARBON STOCK DATABASE 

The Winrock emission factor database is an Excel
TM

 workbook that can be used to calculate 

emission factors for conversion or reversion factors from multiple land categories.  The database 

is much more expansive than the Woods Hole database, containing carbon stock data for 8 land 

classification categories for 755 administrative units in 160 countries [73].  The carbon stock 

data for each of the 8 categories, which include forest, soil, grassland, cropland, savanna, shrub, 

wetland, perennial and mixed, are given in tons CO2, eqha
-1

. 47unique emission factors for each of 

the 755 regions can be calculated from the spreadsheet for either conversion or reversion of land 

classifications as shown in Table 2-6.  (Note: some land conversion combinations are repeated in 

this matrix, which are excluded in the count. However, same category conversions such as grass 

to grass are included, resulting in 47 EFs.) 
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Table 2-6: Winrock Emission Factor Database carbon stock and conversion/ reversion categories. 

From To 

Forest Crop 

Grass Grass 

Savanna Savanna 

Shrub Perennial 

Wetland  

Perennial  

Mixed  

The carbon stock data for 8 land classification categories contained in the spreadsheet are 

described below.   

1. Forest Carbon Stocks 

Carbon stocks for above-ground carbon in biomass are based on spatial maps of forest carbon 

stocks compiled by Winrock International from several different data sources as shown in Figure 

2-5.  In cases where below-ground carbon (i.e. contained in live roots) was not included, 

Winrock estimated it to be about 25% of the aboveground biomass.  Spatially averaged forest 

carbon stocks for above and below ground carbon is shown in Figure 2-6. 

 

Figure 2-5: Data sources used for estimating forest carbon stocks in Winrock emission factor analysis.  

Source [55] 
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Figure 2-6: Spatially averaged forest carbon stocks in above- and belowground biomass (in t CO2 ha
-1

) used 

in the Winrock emission factor analysis.  Source [55] 

 

 

Figure 2-7: Soil carbon stocks in the top 30 cm of soil for each country and/or administrative unit as 

calculated by Winrock from the World Harmonized Soil Database v.1.1. (Units in tons CO2 ha
-1

). Source: [55] 
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2. Soil Carbon Stocks 

Soil carbon stocks data in the Winrock emission factor database are based on the Harmonized 

Soil Map of the World, V.1.1. that was released in March, 2009.  The map has 1-km resolution 

grid cells and includes bulk density (g cm
-3

) and carbon content (%C) in both the top 30 cm and 

top meter of soil.Winrock determined carbon stocks in the top 30 cm of soil by multiplying the 

volume of soil in a given hectare (3,000m³) by the bulk density and then by the carbon content to 

derive an average soil carbon stock per hectare (t C ha
-1

).  Soil carbon stocks by country or 

administrative unit are illustrated in Figure 2-7. 

3. Cropland Carbon Stocks 

Two types of cropland are included in the Winrock emission factor database, annual cropland 

(named cropland) and perennial cropland (named perennial).   

Perennial crops include sugarcane and oil palm only.  Perennial crops in Malaysia and Indonesia 

are assumed to be oil palm, which are assigned a carbon stock of 15 t CO2 ha
-1

. All other 

countries are assumed to be sugarcane with a carbon stock of 44 t CO2 ha
-1

. 

All annual cropland in all regions are assigned a carbon stock of 5 t C ha
-1

 (18 t CO2 ha
-1

) based 

on Table 5.9 of IPCC Agriculture, Forestry and Land Use (AFOLU). 

4. Grassland, Savanna and Shrubland 

Carbon stocks for above and belowground biomass in grasslands, savanna and shrubland were 

estimated from Table 6.4 from IPCC AFOLU, except Brazil, which is estimated from a variety 

of literature sources.  A proportional approach was used to estimate savanna and shrubland based 

on the Brazil dataset, which indicated that crop stocks trends from grassland, savanna, to 

shrubland in a ratio of 1 to 1.8 to 3.4.  Grassland data used in the Winrock database are shown in 

Figure 2-8. 

5. Wetland, Barren and Mixed Carbon Stocks 

Wetland carbon stocks are calculated as the average of shrubland and grassland categories.  

Barren lands are not included in the database, but are included in the corresponding MODIS 

satellite data, so are assigned a value of 0 t CO2 ha
-1

. The mixed land cover category is an 

average of carbon stocks in forest, shrubland, grassland, and cropland.  
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Figure 2-8: Grassland carbon stock estimates used in the Winrock emission factor analysis by country and 

administrative unit. For savanna, multiply by 1.8.  For shrubland, multiply by 3.4. Units in t CO2 ha
-1

.  

Source:[55] 

Emission factors are calculated within the database by the sum of changes in above- and 

belowground biomass carbon stocks, annual changes in soil carbon stocks on mineral soils, 

annual emissions from peat drainage on peat soils cleared for agriculture, annual foregone forest 

sequestration, and non-CO2 emissions resulting from land clearing by fire (N2O and CH4) 

following IPCC recommendations. [55]  In addition to the carbon stock data described above, the 

database includes numerous flags and factors for calculation of soil carbon emissions, fire 

emissions from burning to clear the land, peat drainage emissions, and foregone sequestration 

emissions.  The calculations for each of these contributions to the emission factor are described 

inScheme 2-2.   

The changes in carbon stocks from conversion or reversion of land categories are calculated to 

determine emission factors, which are estimated for year 0, years 1-19, and years 20-80.  These 

annual factors are then used to determine a 30-year emission factor for each administrative unit 

in each conversion category.   
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The spreadsheet can be used to determine emission factors for 47 land conversion or reversion 

types in each of the administrative units (Table 2-6).  Reversion factors indicate the carbon 

uptake that occurs when land is abandoned and left to revert to its original state.  The data are 

used in reverse to calculate the reversion emissions, with the exception of reversion to forests.  

Forest reversion emissions are 

estimated to be the lower of the 

annual foregone sequestration over 20 

years or the initial forest carbon 

stock. An example of the emission 

factors for the admin unit Buenos 

Aires in Argentina is given in Figure 

2-9. (Note: same category 

conversions are excluded.  These 

conversions include grass to grass, 

savanna to savanna and perennial to 

perennial, so 44 EFs are shown.) In 

all cases except forest EFs, the 

reversion EFs are estimated as the 

reverse of the conversion EFs, where 

increase in biomass stocks occur in 

year 1, and soil carbon stocks on 

abandoned cropland are recovered 

over 20 years.  For reversion of 

forests, it is assumed biomass 

accumulates over the entire 30-year 

period at a rate equal to the foregone 

sequestration rate.  

The database yields 35,485 (47*755) 

EFs by land conversion and 

worldwide region.  Therefore, it is critical to understand which types and how much of each type 

of land is converted or reverted in each administrative region in order to estimate a single 

weighted emission factor.  Additionally, since many countries are disaggregated into several 

administrative regions, the land use conversion amounts and types must be applied to determine 

a weighted emission factor for each country or region.  
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Figure 2-9:  30-year emission factors for conversion and 

reversion for each land category type for Buenos Aires, 

Argentina. (Source: Winrock EF Database, 2009) 
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The 30-year EF is calculated from EFs from year 0, year 1-19, and years 20-80 as: 

EF30 year = EFyear 0 + 19 * EFyear 1-19 + 10 * EFyear 20-80 

Where: 

EFyear 0= ΔCbiomass + ΔC soil + ΔCpeat +ΔCsequestration + ΔCfire 

EFyear 1-19= ΔC soil + ΔCpeat +ΔCsequestration 

EFyear 20-80 = ΔCpeat +ΔCsequestration 

Where,  

EF30 year 30-year emission factor [t CO2 ha
-1

] 

EFyear 0 EF for emission occurring in year 0 from land transformation [t CO2  ha
-1

] 

EFyear 1-19 EF for emissions occurring in years 1 through 19 after land transformation [t CO2  ha
-1

] 

EFyear 20-80 EF for emissions occurring in years 20 through 80 after land transformation [t CO2ha
-1

] 

ΔCbiomass Change in above and below ground carbon stocks from the initial and final land category. If forest 
land is being converted, the starting carbon stock is reduced by the percentage of harvested wood 
products (HWP) removed (this allows for consideration of HWP, although no data are currently 
included for % of HWP from any land.) [t CO2ha

-1
 yr

-1
] 

ΔC soil Annual Soil Flux, which occurs only for conversion to cropland, is determined as follows]:  

∆𝐶 𝑠𝑜𝑖𝑙 =  
𝐶𝑠𝑜𝑖𝑙 ,𝑖𝑛𝑖 𝑡𝑖𝑎𝑙 ∙(1−𝐹𝐿𝑈∙𝐹𝐼)

20 𝑦𝑒𝑎𝑟𝑠
∙ (1 −% 𝑝𝑒𝑎𝑡𝑙𝑎𝑛𝑑𝑠) [t CO2 / ha yr] 

FLU  land use factor, which reflects the soil stock changes associated with conversion to cropland, and 
ranges from 0.48 to 0.8 based on IPCC default values for different management activities. 

FI   input factor, whichrepresents different levels of C input to soil for cropland, and is set to 1 for all 
cases.   

% peatlands is a value given for Indonesia and Malaysia only. 

ΔCpeat Annual Peat Emissionsare calculated only if a flag in the database indicates that the region has 
peatlands (only Indonesia and Malaysia).  These countries include a peat emission factor in t CO2,eq ha

-

1
 yr

-1
 and a % of peat land.  The peat emission factor is the product of these two.[t CO2ha

-1
 yr

-1
] 

ΔCsequestration Lost forest sequestration is a constant value for each region ranging from 0 to 8.2 t CO2 ha
-1

 
yr

-1
, and is only applied when forests are being converted. 

ΔCfire Fire emissions from burning to clear landare applied only if land is converted to cropland, and fire is 
used to clear land. A flag in the database indicates if fire is used or not.  If fire is used, the total 
emissions arethe sum of CH4 and N2O emissions, which are each calculated by multiplying the initial 
above ground biomass carbon store (which is indicative of the total amount of biomass)  by the fire 
combustion factor (Ffire) specific to the type of land converted, and the fire CH4 or N2O emission factor 
(CH4_EF, or N2OEF).  That value is then converted to of CO2,eq based on the IPCC 100-year global 
warming potential (21 and 310, respectively- Note that IPCC 1996 GWP values are used) to give total 
emissions due to burning in tons of CO2,eq ha

-1
. Fire combustion factors, CH4 and N2O emission factors 

are given in Table 2-23 and are discussed in more detail in Section 2.7.1.3. 

ΔCfire = Cstock * Ffire* (310* N2OEF + 21*CH4_EF) 

Scheme 2-2 

Winrock calculations for 30-year emission factors for each administrative unit 
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The Winrock database is used in conjunction with MODIS satellite data imagery to determine 

emission factors for the EPA RFS2.  Images fromMODIS Version 5 land cover dataset from 

2001-2007 with a 500 km resolution are used to determine historical LUC for 79 land conversion 

categories (which includes same category conversion such as grassland to grassland) for over 

755 administration units. The calculations to link the two databases are complex and are 

described in more detail in Section 2.5.1.1.   

2.5 LUC APPLICATION AND APPROACHES IN POLICIES 

2.5.1 EPA – RENEWABLE FUEL STANDARD (RFS2) 

The EPA employs an intricate linkage of numerous models and databases to determine the 

carbon intensity of various fuels under the Renewable Fuel Standard (RFS2).  Their approach is 

illustrated in Figure 2-10.  It involves the use of two different agro-economic models to predict 

both international and domestic ILUC.  Each is linked to its own series of EF databases to 

determine resulting emissions.  Emission factors from the GREET model are used to determine 

the cradle-grave LCA emissions, and MOVES is used for tailpipe emissions. The methodologies, 

data inputs, assumptions, etc. used in the EPA RFS2 analysis underwent substantial peer review 

to ensure the most accurate results possible.  The results of many analyses and modeling efforts, 

including from the draft regulation and final regulation are docketed and available to the 

public.
2
Our analysis is from the information contained in these dockets pertaining to the final 

regulation. 

To determine the ILUC emissions associated with each fuel, the results from a reference case, or 

the ―business as usual scenario‖, is compared to the control case which includes the policy 

volume targets.  The change in each fuel volume type is modeled individually to estimate the 

changes attributable to that fuel.  The fuel volume scenarios modeled are shown in Table 2-7.   

Table 2-7: Fuel Volume Scenarios Considered in RFS2 in billions of gallons  (FromTable 2.3-1 of EPA[2]) 

Biofuel 

Reference Case 

(Low Volume) 

Control Case 

(High Volume) Change 

Corn Ethanol 12.3 15.0 2.7 

Switchgrass Cellulosic Ethanol 0 7.9 7.9 

Corn Residue Cellulosic Ethanol 0 4.9 4.9 

Imported Sugarcane Ethanol 0.6 2.2 1.6 

Soybean Oil Biodiesel 0.1 0.6 0.5 

 

                                                 
2
 Public docket materials for the RFS2 are available at www.regulations.gov under the Docket ID: EPA-HQ-OAR-

2005-0161.  Additional updates in 2011 (for canola biodiesel) are also available under Docket ID: EPA-HQ-OAR-

2010-0133. 

http://www.regulations.gov/
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Figure 2-10: System boundaries and modeling flow chart for biofuel LCA in EPA RFS2. [2] 

 

The resulting net carbon intensity of each fuel is the sum of all the outputs listed on the right 

hand side of Figure 2-10.  In this analysis, we focus on the results related to ILUC, which include 

both domestic and international ILUC.  The other ―domestic‖ and ―international‖ categories 

(including farm inputs and fertilizer N2O, rice methane and livestock) are considered as part of 

the direct feedstock production emissions in the RFS2 LCA, so are not included in this analysis. 

The domestic and international ILUC are quantified by two separate modeling chains.Domestic 

ILUC is predicted by FASOM (Forestry and Agricultural Sector Optimization Model), the 

outputs of which include domestic agricultural sector energy and fertilizer use, changes in 

number and type of livestock produced, and changes in total land use.  This is endogenously 

linked to IPCC, DAYCENT and FORCARB emission factor databases to predict the total GHG 

attributed to domestic ILUC. 

International ILUC is modeled with the FAPRI-CARD model (Food and Agricultural Policy and 

Research Institute international model as maintained by the Center for Agricultural and Rural 

Development at Iowa State University). FAPRI-CARD predicts the global land use and livestock 

changes and land use types.  Its outputs are linked to emission factors generated from Winrock 

International carbon stock data linked to MODIS satellite data of historical land conversiontrends 
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from 2001-2007. International and domestic ILUC methodologies, databases and results are 

described separately below. 

2.5.1.1 International Land Use Change 

Modeling of international ILUC in EPA RFS2 is done through use of the FAPRI agro-economic 

model linked to the Winrock EF database, which is used in conjunction with MODIS satellite 

data.  The output data from each of the modules are incongruent, so various groupings and 

weightings are accomplished through the use of a stochastic model by ICF
3
. [74,75]  The 

stochastic model first applies a Monte Carlo simulation to the MODIS satellite data to assess its 

uncertainties and produce corrected LUC. ICF uses the results of the simulations to group the 

satellite data into corresponding Winrock and FAPRI classifications.  The linkage between these 

three models and calculations within the stochastic model are described below.  

The FAPRI-CARD international module results are applied in the EPA RFS2 analysis.  

However, the results for the U.S. are included within the module, so are discussed herein 

although the U.S. GHG results are replaced by the FASOM modeling results discussed in the 

next section.  

The FAPRI-CARD model predicts changes in crop production acreages for 20 different types of 

crops within 54 regions.  It also determines the changes to units of livestock in each region, 

which is related to livestock stocking rates to predict the changes to pasture acreage.  As shown 

in Figure 2-10, the crop acreage is linked to fertilizer use to determine international agricultural 

and rice methane emissions.  These emissions are attributed to the agricultural production phase 

of the feedstock, and are not considered part of the ILUC results.  Additionally, the livestock 

changes are linked to IPCC livestock emission factors to determine emissions from livestock.  

For this purpose, these will also be considered direct changes and will not be discussed in this 

section.   

ILUC is the change in crop and pasture area (given in ha) predicted by FAPRI for each of the 54 

regions.  The crop area changes are subsequently broken down into perennial crops (which 

include sugarcane and palm oil) and annual crops.  Therefore, there are three land area 

classifications (annual, perennial and pasture) for each of the 54 regions (totaling 162 data 

points).  The land area changes are given as either a positive value (indicating an expansion of 

that land type), or a negative(indicating a retraction of land type).
4
 

The land area changes must be linked to the emission factors, which are based on a conversion-

between land categories.  The FAPRI model does not predict changes to forests or natural 

ecosystems, rather, conversion classifications are done exogenously with the stochastic model 

                                                 
3
 Note: it is not clear that the final results from the stochastic model are used for the CI calculations included in the 

final rule of the RFS2.  However, the MODIS data and emission factors are available in the stochastic model to 

discuss the methodologies that are followed for the weighting of EFs from Winrock.  
4
 FAPRI-CARD results from all scenarios are provided in the EPA public dockets at EPA-HQ-OAR-2005-0161-

3153 
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database. 
5
  The land conversions are first assumed to be moved within land classifications from 

FAPRI.  For example, if pastureland is declining while annual cropland is increasing, it is 

assumed that the decrease in pastureland is converted to annual cropland.  When there is greater 

land expansion than retraction, the expansion is met through reduction in natural ecosystems.  

This systematic approach gives the following different conversions, where a positive number 

indicates a conversion to, and a negative number indicates a reversion from each category: 

 Annual crops to/ from perennial crops 

 Pasture to/from Perennial crops 

 Pasture to/from Annual crops 

 Natural ecosystems to/from Annual Crops 

 Natural ecosystems to/from Perennial Crops 

 Natural ecosystems to/from Pasture 

Therefore, the FAPRI results yield a total of 12 land conversion types for each of the 54 regions 

(648 data points).  This matrix of land area changes (given in ha) must be linked to the 

appropriate emission factors to calculate the GHGs from LUC.   

Winrock data are used to determine the EFs; however, theyprovide 47 conversion categories for 

755 administrative units (yielding 35,485EFs).  These EFs must be aggregated into an identically 

sized matrix of EFsfrom the FAPRI output to calculate the net GHG release.  The aggregation is 

done utilizing the MODIS satellite data to appropriately weight the conversion categories and 

admin units into similar groupings for the FAPRI results.  These aggregations are also done 

within a stochastic model by ICF International [74,75].  A flow chart of the calculations and 

linkage between FAPRI and Winrock is provided in Figure 2-11, and is described in detail 

below.  

The MODIS data provide 79 different land conversion categories for over 755 administrative 

units (it includes the additional land categories of barren lands and excluded lands, which are not 

included the Winrock database. The EFs from barren lands are assigned 0 g CO2, eqha
-1

).The 

Monte Carlo simulation uses a confusion matrix to correct for land classes which tend to be 

misclassified.  The corrected MODIS data arethen used to evaluate the types of land affected by 

the projected land conversions in each scenario. 

Conversion categories from MODIS matching those from the Winrock dataset are aggregated to 

match the 12 conversion categories from the FAPRI model, as shown in Table 2-8.  Four 

additional conversion categories are included for conversion from Barren lands.  Additionally, 

Winrock does not calculate EFs for the reversion to Wetlands, and the conversion category of 

perennial to perennial is excluded.  MODIS data do not distinguish between annual and perennial 

                                                 
5
 The Stochastic model report and excel spreadsheets are available in the EPA public dockets under ID number 

EPA-HQ-OAR-2005-0161-3152. 
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cropland, so a default of 95% conversion to annual and 5% conversion to perennial cropland is 

applied. 

To determine a single weighted average conversion factor for each type of conversion within 

each region, the 755 administrative units of the Winrock data are also aggregated into 54FAPRI 

regions(as shown in Appendix A), and the 47 conversion factors are aggregated into 

corresponding 12 FAPRI conversion factors (Table 2-8). The net land use conversion occurring 

for one FAPRI classification (i.e. natural to annual) within each individual FAPRI region is 

summed to determine a land use share factor for each of the Winrock conversion classifications 

and regions.  

This land use share factor is then used to weight each of the emission factors from the Winrock 

data, which can then be summed into a single emission factor for each of the 12 conversion 

categories and 54 FAPRI regions. The matrix of emission factors is then applied to the output of 

the FAPRI results to provide an estimate of total GHGs from international ILUC. 

The results from each fuel scenario modeled are given in Table 2-9.  The results will be 

discussed in more detail and compared to other modeling results in Section 2.6. 

  



36 

 

 

Table 2-8: Conversion categories and groupings from FAPRI, Winrock and MODIS. 

Note: Superscripts: M = conversion category in MODIS only (Barren lands);1 or 2 indicates duplicate 

categories, 1 indicating its first use, and 2 indicating its second use; S= same category conversion such as 

grassland to grassland.  Excl. Indicates corresponding reversion category to Wetland from Winrock is 

excluded. 

Conversion Categories Reversion Categories 

FAPRI Winrock/ MODIS FAPRI Winrock/ MODIS 
1. Annual to Perennial Croplands to Perennial 7. Perennial to Annual Perennial to Croplands 

2. Pasture to Perennial Grasslands to Perennial1 

Savanna to Perennial1 

8. Perennial to Pasture Perennial to Grasslands1 

Perennial to Savanna1 

3. Pasture to Annual Grasslands to Croplands1 

Savanna to Croplands1 

9. Annual to Pasture Croplands to Grasslands1 

Croplands to Savanna1 

4. Natural to Annual Forestland to Croplands 

Grasslands to Croplands2 

Mixed to Croplands 

Savanna to Croplands2 

Shrubland to Croplands 

Wetland to Croplands 

Barren to CroplandsM 

10. Annual to Natural Croplands to Forestland 

Croplands to Grasslands2 

Croplands to Mixed 

Croplands to Savanna2 

Croplands to Shrubland 

Excl. 

5. Natural to Perennial Forestland to Perennial 

Grasslands to Perennial 2 

Mixed to Perennial 

Savanna to Perennial2 

Shrubland to Perennial 

Wetland to Perennial 

Barren to PerennialM 

11. Perennial to Natural Perennial to Forestland 

Perennial to Grasslands 2 

Perennial to Mixed 

Perennial to Savanna2 

Perennial to Shrubland 

Excl. 

6. Natural to Pasture Forestland to Grassland 

Grassland to Grassland S,1 

Mixed to Grassland  

Savanna to Grassland 1 

Shrubland to Grassland 

Wetland to Grassland 

Barren to Grassland M 

Forestland to Savanna 

Grassland to Savanna1 

Mixed to Savanna 

Savanna to SavannaS, 1 

Shrubland to Savanna 

Wetland to Savanna 

Barren to SavannaM 

12. Pasture to Natural Grasslands to Forestland 

Grassland to GrasslandS,2 

Grasslands to Mixed 

Grassland to Savanna2 

Grassland to Shrubland 

Excl. 

 

Savanna to Forestland 

Savanna to Grasslands2 

Savanna to Mixed 

Savanna to SavannaS,2 

Savanna to Shrubland 

Excl. 
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Figure 2-11: Flow chart of model linkage and calculation flows for international ILUC modeling in the EPA 

RFS2. The calculations within the stochastic model are shown within the dotted line. 

 

Table 2-9: International ILUC and GHG results from each fuel scenario modeled in the RFS2. 

Source: Table 2.4-29 from [2] and author’s calculations. Results from FAPRI do not include ILUC in the U.S. 

Scenario International Crop Area 
Change 

(000 ha) 

Normalized Crop Area 
Change 

(ha bBTU
-1

) 

30-year annualized GHG 
from LUC 

(kg CO2,eq mmBTU
-1

 yr
-1

) 

Corn Ethanol 789 3.94 31.7 

Soy-based biodiesel 678 10.65 42.5 

Sugarcane Ethanol 430 4.38 4.3 

Switchgrass Ethanol 1,358 2.25 15.1 

MODIS 
Satellite

Data 2001-
2007

Historical LUC area 
patterns (ha) for 

79 conversion 
categories within 
755 admin units 

(59,645 LUC data)

Select conversion categories (46 of them, 12 
are repeated to yield 58 categories) are 
grouped into 12 corresponding FAPRI 

conversion categories of each of the 755 
admin units 

(43,790 LUC data)

755 admin units are designated into 
54 corresponding FAPRI regions. 

A weighting factor for each of the 
original Winrock emission factors is 

determined by dividing each LUC 
datapoint in the matrix by the sum 
of the total land area change within 

a FAPRI region and FAPRI 
conversion category. 

Winrock EF 
Database

30 year EF for 47 
conversion types 

within 755 
admin units 
(35,485 EFs)

FAPRI
model 

(Outputs for 
LUC)

Land area 
change (ha) by 

annual, 
perennial and 
pasture for 54 

regions (162 LUC 
data)

Output LUC is  classified into 6 conversion 
categories; land is first assumed to be 

moved between categories, else is 
converted from natural lands. Positive 
values indicate conversion, negative, 

reversion to give 12 conversion categories 
(648 LUC data)

Emission Factors (gm CO2eq 
ha-1) are weighted by LUC 

weightings to generate EFs 
for 12 conversion categories 

in 54 regions
(648 EFs)

GHG emissions over 
30 years are 
calculated by 

multiplying the EF 
by the LUC for each 

conversion category, 
and summing all 
within region (54 

GHGs)

Stochastic Model
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2.5.1.2 Domestic Land Use Changes 

The area of domestic ILUC in the EPA RFS2 are predicted by the FASOM model, which is 

internally linked with data from the DAYCENT/ CENTURY and FORCARB models to predict 

the LUC-GHGs.  Since the LUC effects are interrelated for all fuels, the changes in fuel volumes 

for the complete policy are modeled simultaneously to determine the total LUC. In order to 

isolate the incremental impacts of each fuel, the other fuel volumes were held constant, and the 

volume of the fuel investigated is decreased to its business as usual scenario as shown in Table 

2-10.  The LUC effects attributed to each fuel are then the difference between the control case 

and the fuel-specific case.  

Table 2-10: EPA RFS2 2022 Fuel Volumes modeled with FASOM for each fuel scenario (in billions of gallons) 

Source: EPA- RFS2 Table 2.4-1[2] 

Note: the shaded boxes represent the business as usual scenario, without EISA. 

 
Control 

Case 
Biodiesel 
Only Case 

Corn 
Ethanol 

Case 

Corn 
Stover 
Case 

Switchgrass 
Ethanol 

Only Case 

Soybean Biodiesel 0.6 0.1 0.6 0.6 0.6 

Corn Ethanol 15.0 15.0 12.3 15.0 15.0 

Corn Stover Ethanol 4.9 4.9 4.9 0.0 4.9 

Switchgrass Ethanol 7.9 7.9 7.9 7.9 0.0 

In the final RFS2 rule, FASOM was used to model changes in the soil carbon and biomass 

carbon due to land use conversion between cropland, pasture, forestland and developed land. 

Carbon sequestration is also considered, and FASOM includes consideration for carbon storage 

that reaches equilibrium.  

The details and reports from FASOM are also available in the public docket.
6
 Since the GHG 

modeling is done within the FASOM model, it is difficult to interpret how the calculations are 

performed.  Additionally, the data provided in the reports are difficult to link without a more 

detailed explanation.  For example, the changes in domestic cropland area used for production in 

the 2022 scenario are provided in Table 2-11.  However, the data provided in the table, taken 

from the RFS2 report (Table 2.4-26 in [2]) do not match the explanation provided in the text, or 

the following figure, shown in Figure 2-12, which indicates that cropland increases by 0.9 

million acres under the corn ethanol scenario, while cropland pasture decreases by 0.9 million 

acres, forestland decreases by 0.03 million acres and forest pasture increases by 0.2 million 

acres.  The calculation of 30-year annualized GHG emissions for each scenario, also shown in 

Table 2-11, is negative, indicating that domestic ILUC result in a decrease in GHG emissions.  It 

                                                 
6
 RFS2 Dockets can be accessed at www.regulations.gov.  The FASOM Final Technical Report [61] is available 

under docket ID number EPA-HQ-OAR-2005-0161-3178, and the data from FASOM is available at EPA-HQ-

OAR-2005-0161-3179. 

http://www.regulations.gov/
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is not clear which emission factors are used to produce these results, and there is no explanation 

for the reason of negative emissions.  

Table 2-11: Change in total domestic cropland used for production by scenario in the RFS2 in 2022 and 

resulting GHG emissions. Source: [2] p 356 and p 367. 

Scenario Total Cropland 
Increase 

(million acres) 

Normalized Cropland 
Increase (acres per 
thousand gallons 

ethanol equivalent) 

Change in GHG due 
to domestic LUC 

annualized over 30 
years (kg CO2 eq 

mmBTU
-1

) 

Corn Ethanol 1.4 0.12 -4.0 

Soybean Biodiesel 1.9 0.39 -8.9 

Switchgrass Ethanol 4.2 0.04 -2.5 

Corn Stover Ethanol 0.6 0.06 -10.8 

 

 

Figure 2-12: Changes in domestic land use by type for RFS2, 2022.  Source:[2] p 358. 

 

2.5.2 CALIFORNIA AIR RESOURCES BOARD- LOW CARBON FUEL STANDARD 

California‘s Low Carbon Fuel Standard (LCFS) was implemented with the Governor‘s 

Executive Order S-01-07 in January, 2007, approved in April 2009, and went into effect in 
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January, 2010.[76]  The LCFS requires a 10% reduction in CI of transportation fuels by 2020.  

The reduction is measured through LCA, and includes ILUC.   

In 2009, CARB developed CI look-up tables for numerous fuel pathways before the regulation 

went into effect on January 12, 2010.The biofuel pathways include corn ethanol, sugarcane 

ethanol, and soy biodiesel.  The ―direct‖ emissions from the biofuel pathways were modeled with 

the GREET model adapted for California, and the ―indirect‖ LUC emissions were modeled based 

on methodologies followed by Searchinger using the GTAP economic model with the Woods 

Hole database.   

An expert workgroup consisting of 30 members was established in February 2010 to review and 

reflect on the LCFS.  In April, 2010, Purdue published a revised GTAP analysis of LUC for 

Argonne that resulted in 
1
/2to 

1
/3 the amount of GHG emissions from ILUC originally predicted 

by CARB[5].  After review of this work, the expert workgroup recommended that CARB update 

their ILUC to address the following [76]: 

 GTAP model updates by Tyner (Tyner 2010) 

 Use a consistent model version and inputs for all biofuel pathways 

 Re-evaluate DDGS co-product credit 

 Develop a more comprehensive and spatially explicit set of carbon stocks and emission 

factors 

 Gain a better understanding how food consumption is predicted 

 Justify or adjust the time accounting methodology 

 Improve and update the land pools considered accessible in GTAP 

 Address the indirect effects of other transportation fuels.  

CARB has since been working with developers of the GTAP model at Purdue University and 

others to improve the analysis of LUC.  The GTAP model has been updated to specifically 

include biofuels (GTAP-BIO), and researchers have revised inputs to reflect current economic 

fluctuations.  Additionally, CARB is moving away from using the coarse Woods Hole database 

for emission factors;is working with researchers to develop improved maps of forest, pasture and 

cropland cover data; and is adopting the Harmonized World Soils Database (HWSD).  However, 

CARB is still in the preliminary and review phases of updating its CI values for LUC, and is 

working toward having new numbers by the middle of 2012.   

In the following sections, the current methodology is described, followed by updates for the 

targeted methodology.  
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2.5.2.1 Current CARB Methodology 

In the fuel pathways currently published in CARB‘s lookup tables
7
, ILUC is modeled through 

linking the Woods Hole database with LUC predictions from the GTAP economic model. 

The GTAP model determines the land changes (in ha) in pasture, cropland and forests within 18 

different regions in response to policy changes.
8
  For the ethanol, soy and sugarcane pathways, 

15 billion gallons, 995 million gallons, and 2 billion gallons are modeled, respectively. The land 

area output of the GTAP model is linked to EFs developed from the Woods Hole Database.   

CARB uses the Woods Hole database to determine emission factors in Mg CO2,eqha
-1

 over a 30-

year time periods for the conversion of: 

 Forest lost (to crops) 

 Forest gained (from pasture) 

 Grassland lost (applied to livestock and pasture conversions) 

Emissions from cropland are assigned 18 Mg CO2, eqha
-1

year
-1

.  The Woods Hole database 

includes only 10 regions, so are matched to the GTAP AEZs as shown in Table 2-12.  The ―Rest 

of World‖ region in Woods Hole is determined by the weighted average of the 10 regions.The 

emission factors are multiplied by the land area output from GTAP for a specific type of 

conversion to determine the net GHGs from ILUC.   

Table 2-12: GTAP regions and their corresponding Woods Hole Regions in CARB. 

GTAP Region Woods Hole Region 

United States United States 

Canada Canada 

European Union- 27 Europe 
Rest of Europe 

Brazil Latin America 
Latin American Exporters 
Rest of Latin America 

India China India Pakistan 
China and Hong Kong 

Soviet Union/ Russia Former Soviet Union 

Oceania Developed Pacific 

Middle Eastern and North Africa North Africa / Mid. East 

Sub-Saharan Africa Africa 
Rest of Africa 

South Asia Southeast Asia 
Rest of Asia 

Rest of High Income Asia Rest of World 
Japan 

                                                 
7
 Lookup tables for CI values used in the LCFS are published at http://www.arb.ca.gov/fuels/lcfs/lcfs.htm. CI values 

discussed herein were last updated on February 24, 2011. 
8
 GTAP includes 19 regions, yet only 18 of them are reflected in the Woods Hole spreadsheet published by CARB.  

http://www.arb.ca.gov/fuels/lcfs/lcfs.htm
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Figure 2-13: Schematic of CARB ILUC modeling database flow. 

Although the LCFS underwent peer review, datasets for each fuel pathway are not as detailed as 

those provided by the EPA.  Data and reports are scattered in many locations, including the Staff 

Report [77] and its appendices [78], as well as documents for each of the individual pathways 

[79,80,81,82].  However, there have been revisions and updates to individual pathways and new 

documents have been published for those revisions (for example, updates to ILUC analysis for 

soy-biodiesel  on  01/29/2010 are published on the LCFS website [83]), but the initial staff report 

has not been updated.  Much of the calculations, data and descriptions for ILUC modeling are 

distributed throughout the documentation, and results from different pathways are presented in 

different locations. For those reports that are available, the level of detail of the results is 

minimal.  For example, the ILUC modeling for corn ethanol is provided in Chapter IV of the 

staff report.  The documentation provides some key sensitivity analysis inputs and LUC results 

from each.  The LUC is only segregated by forest and pasture converted within the U.S. and total 

land converted globally. It does not provide detailed results for the international location of LUC.  

Additionally, the CI values used in the look-up tables for LUC are determined as averages of 

scenarios in the sensitivity analysis.  Details on the distribution of CI are not available (or at 

least, we cannot find them). To estimate the breakdown of LUC and CI by location for corn 

ethanol in Section 2.6, results presented in Hertel are used, which is the study that much of the 

CARB results are based on. [84]Similar studies for other fuel pathways are not available.  

It is therefore difficult to trace the calculations to compare the emission factors applied in the 

ILUC analysis.  An Excel
TM

 spreadsheet of CARB‘s calculation of EFs from the Woods Hole 

database is available [67].  The EFs provided in that spreadsheet are used for comparison with 

other studies.  However,without additional information, it is not clear how these EFs are applied 

to GTAP results.  Overall results from each of the fuel pathways for California are provided in 

Table 2-13 below. The breakdown of results will be discussed in more detail in Section 2.6. 

GTAP 

Land change of 
forest, pasture and 
cropland within 18 

different AEZ
54 LUC (ha)

Woods Hole 
EF Database

EF’s for 10 world 
regions for 3 
conversion 
categories
(30 EF’s)

EF’s are 
combined into 
matching GTAP 

regions to 
calculated the 
GHG emissions 

(Mg CO2)
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Table 2-13: LUC and CI results from CARB’s LCFS. 

Fuel Pathway 
Volume modeled 
(billion gallons) 

Total LUC 
(million ha) 

ILUC- CI 
(g CO2,eq MJ

-1
) 

Corn Ethanol [77] 13.25 3.89 30 

Sugarcane Ethanol [77] 2 1.09 46 

Soy Biodiesel [83] 0.995 0.94 66 

 

2.5.2.2 Updates to CARB ILUC Analysis in 2011 

The revisions to CARB‘s ILUC values were influenced by work done at Purdue University to 

update the GTAP model to include data specific for biofuels[5].  Tyner‘s results (discussed in 

more detail in Section 2.5.4.2) showed that updates to the GTAP model predicted considerably 

lower ILUC emissions than previously estimated by CARB.  Recently, CARB has been working 

with Tyner and others at Purdue to incorporate the updated GTAP model into the LCFS policy.  

Additionally, they have been working with others at UC Berkeley (Plevin) and the University of 

Wisconsin, Madison (Gibbs) to produce a completely new carbon stock database to predict 

emission factors that are specifically matched to the GTAP output.  CARB is working to finalize 

these changes and get them approved into regulation bymid-2012. 

Changes and updates to the GTAP model have continually been made since CARB initially used 

it to model ILUC for the current CI look-up tables.  The revised approach to ILUC still uses the 

GTAP model to predict the land conversions within the categories of cropland, forest and 

pastureland. However, they are working to include updates to the model as they were presented 

in Tyner‘s report as well as additional updates that Purdue University is  working on [5,60].  In 

the newest version, the GTAP model has been revised with: 

 Updated energy elasticities 

 Improved treatment of DDGS 

 Separation of soy from other seeds and oils 

 Modified model structure for livestock sector 

 Revised land conversion factor for new cropland 

 Incorporate cropland-pasture for US and Brazil and CRP for US (however, CRP is not 

used) 

 Endogenous yield adjustment for cropland pasture 

 Greater flexibility in cropland switching 

Although the modifications have not yet been adopted into a final CI number for the LCFS 

lookup tables, CARB has presented a preliminary sensitivity to some of the parameter changes 

within the GTAP model. [85] Parameter modifications include:  yield-price elasticities (changed 

from 0.25 to 0.10, which results in an increased CI); crop transformation (changed from 0.5 to 

0.75, which slightly reduces the CI for all biofuel pathways); cropland pasture yield adjustment 
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(which reduces the CI for all biofuel pathways); and changing the food constant for the 

developing world (which increases the CI for all fuel pathways).  

The GTAP LUC results will then be linked to updated soil and biomass carbon stock estimates, 

rather than to the EFs from the Woods Hole Database.  Researchers at University of Wisconsin- 

Madison are working to develop revised geographically explicit carbon stock data that are 

compatible with GTAP[86].  The database will provide weighted average soil and biomass 

carbon for 203 unique regions, which are the combination of 19 GTAP regions and 18 AEZs as 

shown in Figure 2-14.   

 

 

Figure 2-14: GTAP Regions combined with AEZs result in 203 unique regions. Source: [87] 

The soil carbon stock data for these regions are based on the Harmonized World Soil Database 

(HWSD) combined with cropland, forest and pasture maps. The HWSD database provides 

estimates of soil carbon to both 30 cm depth and 100 cm depths.  The analysis of carbon stocks is 

based on the 30 cm depth dataset to follow IPCC.  Additionally, forest biomass carbon stocks are 

estimated with a combination of datasources. The database considers carbon pools in above- and 

below-ground biomass, soil carbon, litter, understory, harvested wood products and dead 

wood[87].  

The LUC output from GTAP is combined with the carbon stock data using and AEZ- EF model, 

as shown Figure 2-15 below.   
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Figure 2-15: AEZ-EF model to combine LUC results from GTAP with carbon stock data to predict total GHG 

emissions from LUC.Source: [87] 

No results have yet been published from this revised CARB work.  However, draft reports of the 

changes are available, along with presentations at the CARB LCFS website.
9
  A summary of the 

changes in comparison to the previous approach is shown in Table 2-14. 

 

Table 2-14: Comparison of revised CARB model to predict ILUC to original approach. Source: [87] 

 Prior Model New Model 

Basis Searchinger et al. 2008 Newly developed 

Carbon Stocks Woods Hole data for 10 regions Gibbs & Yui (2011) data for 203 
AEZ-region combinations 

What’s 
represented 

Landcover types at agricultural 
frontier 

Average C stock in each AEZ region 
combination 

Soil emissions 25% of top 100 cm Variable by regions; IPCC method 
(30 cm) 

Conversion 
sequences 

Forest and grassland to cropland 8 transitions among forest, 
pasture, cropland and cropland 
pasture 

Other -- 

 

Non- CO2 emissions. Peatland in 
Indonesia/ Malaysia. 

 

2.5.3 EUROPEAN UNION- RENEWABLE ENERGY DIRECTIVE 

In 2009, the European Commission adopted the most recent Renewable Energy Directive (RED), 

which includes a 10% target for renewable energy in transport fuels by 2020.  This also includes 

a minimum rate of direct GHG savings and restrictions on type of land that can be converted to 

produce biofuel feedstocks.   The revised Fuel Quality Directive (FQD), adopted at the same 

                                                 
9
 The presentations and draft reports to CARB are available at www.arb.ca.gov/fuels/lcfs/lcfs.htm. 
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time as the RED, includes sustainability criteria and targets a reduction in life-cycle GHGs from 

biofuels of 6% by 2020.   

ILUC have yet not been included in the EU-RED.  However, the European Commission 

launched several studies in order to more fully understand the implications of ILUC  and how to 

include it in sustainability criteria.  In 2009, four studies were carried out by the EC regarding 

ILUC:  

1. An assessment of existing modeling activities (JRC) [88] 

2. A study using the AGRI/OECD partial equilibrium AgriLink model [89] 

3. A literature review [27] 

4. A general equilibrium model using GTAP and MIRAGE to determine the impacts on 

international trade and land use of the EU biofuels policy. [8] 

A brief description of each of these studies is provided below.  The fourth study is the primary 

study to assess the GHG impact of ILUC from the EU policy.  

2.5.3.1 EU Study to Assess Existing Modeling Activities 

The EU commissioned a study to compare ILUC results of marginal increases in biofuel 

production from different economic models.  It compared results from: 

 AGLINK-COSIMO (from OECD) 

 CARD (from FAPRI) 

 IMPACT (from IFPRI) 

 GTAP (from Purdue) 

 LEI-TAP (from LEI) 

 CAPRI (from LEI) 

For each of the following scenarios: 

 Marginal extra ethanol demand in the EU 

 Marginal extra biodiesel demand in the EU 

 Marginal extra ethanol demand in the US 

 Marginal extra palm oil demand in the EU (for biodiesel or pure plant oil use) 

Land area results are compared on a kHa/ Mtoe basis.   

2.5.3.2 Study Using AGRI/ OECD Partial Equilibrium Model 

As part of the EC assessment of ILUC, the Institute for Prospective Technological Studies 

(IPTS) carried out an analysis of the results of several agro-economic impact models.  The study 

compares the results from three models: AGLINK-COSIMO, ESIM, and CAPRI.  Each of the 

agro-economic models isa partial-equilibrium model designed for simulating policy changes in 

the agricultural sector.  In each case, the models are used to compare a baseline scenario (in 
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which the EU biofuel policy for 2020 is in effect) to a ―counterfactual‖ scenario(in which no 

biofuel policy is in effect to drive supply and demand).   

The primary results of the modeling efforts provide a comparison in effects of biofuel and 

feedstock prices and trading.  The simulation results provided in the report estimate land 

conversions by crop type for each model‘s relevant regions.  However, the GHGs from the LUC 

estimates are not predicted, so the modeling results are not discussed in detail. 

2.5.3.3 EU Literature review of LUC studies 

A comprehensive literature review of ILUC  modeling efforts was undertaken by DG Energy for 

the European Commission.  The literature review concentrates on comparing studies‘ 

methodological and data choices, rather than results.  Over 20 modeling exercises were 

reviewed; however, many studies lacked the detail required for extensive comparisons.  

2.5.3.4 IFPRI ILUC GHG Assessment 

The fourth study is the primary study assessing the impact of EU policy ILUC.  It was conducted 

by IFPRI and CEPII to investigate a 5.6% share of biofuels use in the transport sector under a 

business-as-usual scenario and under different trade policy scenarios.  Results are compared 

against a baseline scenario which uses the latest energy and economic data from IEA and OECD.   

The study is used to assess the potential impacts on production and trade under alternative fuel 

policies, as well as other land use and environmental impacts.   

 Model and database description 

The MIRAGE model is used for the study, which is a CGE model developed at CEPII for trade 

policy analysis, and modified by IFPRI to address economic and environmental impacts of 

biofuel policies. It relies on the GTAP 7 database for global economy-wide data.  The MIRAGE 

model allows energy sector modeling, fertilizer modeling, biofuels sector modeling, and co-

product and livestock sector modeling. It also includes a land use module which models the 

decomposition of land into different uses by AEZ.   

To determine the land extension coefficients, this study followed Winrock modeling for the 

preliminary EPA- RFS ruling, which relied on MODIS remote sensing data from 2001-2004.  

 Model approach 

In the IFPRI model, the overall effect of the EU biofuel policy is modeled.  The policy target is 

5.6% of transportation fuels from alternative fuels, which equates to 17.8 Mtoe of biofuels use in 

the EU.  Two scenarios are modeled and compared to a baseline, in which biofuel consumption 

is maintained as constant between 2009 and 2020.  The scenarios include a ―business as usual‖ 

scenario, and a full trade liberalization scenario. Additionally, a sensitivity analysis is performed 

on different mandate levels, which range from 4.6% to 8.6% in 1% increments.  
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The model is run for the complete fuel policy, which includes use of both ethanol and biodiesel, 

each from a variety of feedstocks. The ILUC results are not broken down byfeedstock or fuel 

type, but are the influence of the complete policy.  (In the US, an ILUC ―adder‖ is determined 

for each type of biofuel by modeling the contribution of each individually to determine ILUC for 

a single type of biofuel with respect to the complete policy).  However, a marginal approach is 

taken in evaluatingeach biofuel to determine those with the lowest impact.  This marginal 

calculation is done by increasing the demand for biofuels in 2020 by an additional 1 million GJ, 

and allowing the corresponding increase to be met only by a particular fuel type while holding all 

others constant.  This approach provides a CI or LUC number for each fuel type that can be 

compared to the individual direct emissions set forth in the RED.   

ILUC effects considered in the study include emissions from converting forests to other land 

types, cultivation of new lands, and below-ground carbon stocks of grasslands and meadows 

using IPCC coefficients for the different ecosystems.  Emissions from peatlands are also 

considered for Indonesia and Malaysia.  The study follows the EU recommendation of allocating 

ILUC emissions over a 20-year period.  

 Results 

The study predicts the overall land use impacts for the entire EU alternative fuel policy.  The 

results are presented by LUC within each region and are also broken down by land type (i.e., 

cropland, pasture, forest, etc.).  The overall results for ILUC and resulting GHG emissions are 

shown in Table 2-15.  These results are described in more detail in Section 2.6.  

Table 2-15: ILUC and resulting indirect emissions from EU-IFPRI Study[8]. 

Scenario 

Land Use 
Change 
(000 ha) 

Percentage 
LUC 

GHG emissions 
from LUC (million 

tons CO2,eq) 

Increase in 
Biofuel Use 
(million GJ) 

GHG emissions 
from LUC 

(CO2,eqMJ
-1

 yr
-1

) 

Data Source in [8] Table 7 Table 7 Table 9 Table 11 Table 11 

Business as Usual 820 0.07% 107.5 300 17.73 

Full trade liberalization 973 0.08% 117.7 303 19.45 

The results shown in Table 2-15 are for the complete policy. The policy blend of ethanol and 

biodiesel is shown, as well as the marginal effects for each feedstock, in Table 2-16.The results 

show that sugarcane and sugarbeet ethanol are the most efficient feedstocks in terms of land use.  

Under the trading scheme, sugarbeet ethanol ILUC is increased substantially.  Corn maize 

ethanol results in significantly higher ILUC results than other ethanol feedstocks. 
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Table 2-16: Marginal indirect ILUC results from the EU-IFPRI study, g CO2, eqMJ
-1

yr
-1

.  (20-year life cycle). 

Source: [8] 

Note: MEU_BAU is the “business as usual” scenario, and MEU_FT is the full multilateral trade scheme.  

Figures are provided with and without peatland effects. 

 

 

Figure 2-16: ILUC emissions and direct savings for different EU mandate levels in the EU-IFPRI Study. 

Note: Scenario is “business as usual” with no change in trade policy.  Negative figures represent an 

emission reduction; positive values represent an emission increase.  

Biodiesel feedstocks result in much greater ILUC emissions, and also are adversely affected 

when peatland emissions are considered.  Palm oil is the most efficient biodiesel feedstock, but 

still has an ILUC much higher than ethanol. Palm is the most efficient for two reasons: it 
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produces co-products and has a high oil yield (6 times the yield of rapeseed by hectare).  Soy 

biodiesel puts the most pressure on land extension in Brazil, and therefore has the highest ILUC 

effect.  

Figure 2-16shows results for modeling of different EU mandate levels with no change in trade 

policy.  As the biofuel mandate is increased, the ILUC emissions also increase.  Several 

mechanisms contribute to the non-linear behavior of the ILUC response to different mandate 

levels as highlighted in the report: 

 Land substitution is represented by a CET function, and the marginal productivity of 

transforming one hectare from one sector to another declines quickly. 

 The rigidity of other sectors to reduce consumption of feedstocks, which is defined by a 

CES function.  The propensity to forego units declines with each additional unit.  

 The saturation effect on fertilizers. 

 The below-average productivity assumed for new units of land.  

Direct emissions also increase with increasing biofuels mandate (i.e. result in a decreasing 

reduction in GHGs with respect to the baseline): increased demand for biofuel production results 

in use of less efficient feedstocks and production technologies.   

The EU27 SAM and GTAP7 databases are used, and the analysis follows IPCC evaluations and 

factors.  However, little or no description is provided to explain these databases and how they are 

used to derive LUC and GHG results.  Results from the complete policy are broken down into 

contributions to LUC and GHG from each of the regions included in the model. These will be 

used for comparison in Section 2.6.  

2.5.4 OTHER MODELS 

2.5.4.1 Searchinger 

Searchinger‘s study was one of the first to question how biofuels policies cause ILUC.  To 

illustrate the potential impacts of LUC on the GHG emissions of biofuels, Searchinger first 

modeled the impacts of ethanol, using an LUC analysis based on research done by a CARD 

research team in 2007, which estimated that approximately 10.8 million hectares of cropland 

would be required globally to meet the demand of 55.9 billion liters of corn ethanol in 2016.  

[90,1,91]Searchinger used the LUC results from this study in conjunction with the Woods Hole 

database and the GREET LCA model to predict a carbon payback period of corn ethanol of 167 

years. [1] The approach taken to calculate the EFs from the Woods Hole database is described in 

Section 2.4.1. 

Searchinger also applied the same analysis for biodiesel. [6]In this study, several scenarios were 

investigated for replacement of diverted soybean oil including: replacement solely by soy oil, 

replacement by soybeans, and replacement by a mix of oils.  Each of these scenarios was 

investigated with and without demand reductions and price-induced yield increases.  The results 
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of the main scenario (which produce the highest LUC emissions) are reported in Table 2-17. 

Further discussion of the results is provided in Section 2.6.  

Table 2-17: Corn ethanol and Soy biodiesel ILUC and resulting emissions from Searchinger. [1,6] 

Fuel Volume Fuel 
Modeled (billion 

gallons) 

Land Use Change 
(000 ha) 

Total Emissions  
(million tons CO2 

eq) 

CI (g CO2 MJ
-

1
annually) 

Corn Ethanol 14.772 10,817 3,801 106 

Soy Biodiesel 0.264 789 340 340 

 

2.5.4.2 Tyner – GTAP Bio-ADV 

Tyner and others performed an assessment of LUC changes associated with U.S. corn ethanol 

production using the updated GTAP-BIO-ADV model in 2010. [92,5] The updated model 

included many changes to improve the analysis of corn ethanol.  While the group at Purdue is 

continually working to update the GTAP data and improve biofuels analysis, the significant 

updates for this study included: addition of a biofuels module, including corn and sugarcane 

ethanol and biodiesel; addition of cropland pasture in the U.S. and Brazil and Conservation 

Research Program (CRP) lands; re-estimation of demand and supply elasticities to reflect 2006 

reality (more inelastic than previous); addition of DDGS; a restructuring of the livestock sector; 

econometric estimation of corn yield response to higher prices; and, estimation of productivity 

on marginal lands based on the ratio of net primary productivity of new cropland to existing 

cropland in each country and AEZ. [60] 

Three simulations were performed in the study: the first used the 2001 database, the second used 

the updated 2006 database and compared to a baseline of the world economy during 2001-2006, 

and the third used the 2006 database with the assumption that population and crop yields 

continue to grow. The data and results from the second simulation are used in this report for 

comparison to other studies. 

The GTAP model is used to predict changes to cropland, forest and pasture within each of the 

GTAP regions. The marginal impacts of ethanol production are assessed through incremental 

increases in production from the 2001 level (1.77 billion gallons) until a total production of 15 

billion gallons in 2015 (a change of 13.23 billion gallons).  The marginal LUC results from the 

second simulation are shown in Table 2-18. 
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Table 2-18: Simulated global ILUC due to U.S. ethanol production.  Source:  p 28 of [5] 

 

The LUC results are then linked to emission factors generated from the Woods Hole database. 

The emission factors calculated are based on 25% of the soil carbon, 75% of the carbon in the 

vegetation, and foregone sequestration from existing forests.  The EFs are weighted based on the 

shares of vegetation area in each of the 10 Woods Hole regions.  More detailed description of the 

EF calculation is provided in Section 2.4.1.  The marginal emissions from each incremental 

increase in ethanol production are calculated, as shown in Table 2-19. 

Table 2-19:  Annual marginal and average estimated ILUC emissions due to U.S ethanol production from 

Simulation 2.  Source  p 40 of [5]. 

 

The results from this study produced significantly lower ILUC estimates than previously used by 

CARB in their LCFS.  The average annual emissions of 1426 g CO2,eq gallon
-1

 of ethanol equates 

to about 18 g CO2,eqMJ
-1

 (for LHV of 76,330 BTU/gal used in CARB), which is nearly half of 

the 30 g CO2,eqMJ
-1

 listed in the LCFS lookup tables for corn ethanol.  CARB workgroups 

evaluated this study during review of the earlier LCFS, and suggested that the ILUC modeling be 

revised to include the updates to the GTAP model.  Since then, CARB has worked to incorporate 

these changes along with updates to the EFs used.   
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2.6 COMPARISON OF LUC MODEL RESULTS 

Results from EPA- RFS2, CARB LCFS, Searchinger, Tyner and EU-IFPRI are compared to 

highlight the differences in assumptions and application of data in each.  The comparison of 

results, i.e., the differences in ILUC and resulting GHGs predicted, can be used to highlight the 

differences within the models and application of data, with a particular focus on the C-stock and 

emission factor databases.  These differences will be discussed in the next section.  

Table 2-20 provides the final annualized LUC- CI results from each study for various fuel 

scenarios modeled.  

Table 2-20: Comparison of 30-year ILUC results (IFPRI is for 20 years) from different studies. Units are g CO2, 

eq MJ
-1

 fuel. 

 

Searchinger 

EPA 
International 

(FAPRI) 

EPA 
Domestic 
(FASOM) CARB Tyner IFPRI 

Corn Ethanol 106 30 -4 30 18 54 

Soy biodiesel 340 40 -8 62 

 

75 

Sugarcane Ethanol 

 

4
A
 1

A
 46 

 

18 

Rapeseed Biodiesel 

  
 

  

53 

Complete Policy with 
blend of fuel types   

 
  17 

Note: The U.S. studies annualize ILUC emissions over a 30-year period, while IFPRI follows EU 

recommendation to annualize over a 20-year period.  The results from Searchinger’s work are from two 

different studies, the corn ethanol results are given in [1] and the soy biodiesel results are in [6].  

Additionally, the results from the international (FAPRI) and domestic (FASOM) analyses from the EPA are 

shown separately.  

A
Both domestic and international results for sugarcane ethanol in the RFS2 are modeled with FAPRI. The 

results are not detailed in the RIA, but can be found in the spreadsheets.  It appears that the International 

total includes GHG estimation in the U.S., but the U.S is again included separately in the domestic emissions. 

Influential factors that contribute to the differences in results include how much land is 

converted, how much GHG the land produces, and what type of land is converted.  These results 

will be compared in the following subsections.  

However, it is difficult to directly compare the results from each of the studies due to differences 

in data availability, input assumptions, and detail of outputs.  Reporting differences also make 

details difficult to obtain and compare.  Since the results are not directly comparable between 

studies, the following data manipulation and caveats apply to subsequent sections: 

 Both ILUC and GHG are categorized into the coarsest output for comparison in Figure 

2-17 through Figure 2-19below.  Data from all studies are aggregated into the 10 regions 

of Woods Hole.  GHG results from Searchinger and Tyner are already aggregated to the 

Woods Hole regions.  However, the ILUC results from GTAP, and all results from 



54 

 

FAPRI (which has 54 regions) are aggregated into corresponding Woods Hole Regions as 

shown in Appendix A. 

 The results from CARB studies are not spatially explicit, and only provide land 

classifications for the U.S. and the Rest of the World.  Results from Hertel, which 

influenced the CARB analysis for corn ethanol are used.[84]The CARB analysis for other 

fuels is only categorized by U.S. and the Rest of the World. 

 The volume of fuel modeled also results in differences in the total amount of LUC and 

GHGs.  Therefore, the results are normalized by the energy contained in the fuel (in 

billion BTU), based on the fuel volume and the lower heating value of the fuel applied in 

each study.  These values are provided in Table 2-21. Note for FASOM modeling results 

in the EPA study, fuel volumes differ from those applied for the international module.  

 Sugarcane ethanol results are calculated in the RFS2 dockets, but are not presented in the 

final RIA.  The results shown in Table 2-21are from the FAPRI results spreadsheet and 

the Impacts results spreadsheet. 
10

 In the final impacts results spreadsheet, the 

international emissions from ILUC are given as the sum of all FAPRI regions, including 

the U.S.  However, domestic ILUC emissions are also given, which are the U.S emissions 

resulting from FAPRI analysis.  Therefore, it appears that these emissions are double 

counted.  Since the sugarcane ethanol results are not presented in the RIA, there is no 

additional description or final presentation of the results to verify the calculation.  

  

                                                 
10

 FAPRI results spreadsheet, which provide the total LUC for RFS2 fuel pathways, can be found under docket ID 

number EPA-HQ-OAR-2005-0161-3153 for all fuel pathways.  Lifecycle GHG final results spreadsheets for each 

fuel pathway can be found under docket ID EPA-HQ-OAR-2005-0161-3173 at www.regulations.gov 
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Table 2-21: ILUC modeling inputs and results. 

Fuel/ Study 
Fuel Volume 
(bill. gallons) 

LHV 
applied 

(BTU/gal) 

Time 
Horizon 
(years) 

Total LUC 
(000 ha) 

Total GHG 
(mil. tons CO2,eq) 

Final CI
A
 

(g CO2,eqMJ
-1

) 

Corn Ethanol 
Searchinger 14.8 76,330 30 10,817 3,801 106 

EPA-RFS2 
FAPRI- International 

FAPRI- U.S 
FASOM- U.S 

2.7 
 
 

8.2 

76,000 30  
789 
140 
580 

 
190.9 
25.0 
-75.1 

 
30 
4 
-4 

CARB-LCFS 13.2 76,330 30 4,200 877 30 

Tyner, 2010 13.2 76,330 30 2,037 565 18 

Soy Biodiesel 
Searchinger 0.26 119,550 30 789 340 340 

EPA-RFS2 
FAPRI- International 

FAPRI- U.S 
FASOM- U.S 

0.54 
 
 

1.5 

118,000 30  
678 
101 
763 

 
81.3 
-2.5 
-48 

 
40 

-1.2 
-8.9 

CARB-LCFS 0.995 119,550 30 940 230 62 

Sugarcane Ethanol 
EPA-RFS2  FAPRI

D
 

International 
Domestic 

1.3 76,000 30  
395

E
 

35 

 
12.7

F 

3.0 

 
4 
1 

CARB- LCFS 2.0 76,330 30 1,090 222
c
 46 

EU-IFPRI
B
 -- -- 20 820 107 18 

A
 Final CI value can be calculated from Table using 1055.87 MJ BTU

-1
 

B
 IFPRI model is for complete policy with a blend of fuel types with 5.6% share of transport fuels from 

biofuels. This corresponds to an increase of 300 million GJ or 284,130 billion BTU.  
C
 Total GHG emissions from CARB Sugarcane scenario is calculated from final CI value. 

D
 Sugarcane ethanol is only modeled with FAPRI in the RFS2.   

E
 Land use change results are provided from the FAPRI spreadsheet in the EPA docketed information.  Land 

use is given for the U.S. and as the sum of the rest of the FAPRI regions.  

F
 In the docketed spreadsheet results for sugarcane ethanol, the international emissions given include the 

emissions from the U.S.  However, the U.S. emissions are also accounted separately as domestic emissions. 

Therefore, the domestic emissions appear to be double counted. 

 

2.6.1 LAND USE CHANGES 

The amount of ILUC predicted from each of the models is a key difference which can lead to 

significantly different final GHG emissions:  larger amounts of ILUC bring larger GHG 

emissions.  The ILUC modeling is primarily done through agro-economic models, however, a 

detailed discussion and comparison of the assumptions in the agro-economic models is outside 

the scope of this report. Therefore, the differences in LUC predictions from each model are 

presented without detailed description as to the reasons for the differences.  The total projected 
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LUC, normalized by the fuel energy, in response to each fuel volume are presented in Figure 

2-17 A. The LUC from each study is aggregated into regions corresponding to those in the 

Woods Hole database. 

Searchinger‘s analysis predicts substantially larger ILUC per energy content of fuelthan the other 

studies for both corn ethanol and soy biodiesel.  For corn ethanol, the ILUC is distributed around 

the world, with much of it occurring in Latin America, China/ India/ Pakistan, and the U.S.  The 

total amount of LUC in the Searchinger study is based on results of a study using the FAPRI-

CARD model. [91]A study by Dumortier, et al. used a modified version of the FAPRI-CARD 

model and GreenAgSim (to assess the GHG emissions) to show that differences in assumptions 

used in the Searchinger study and updates to the FAPRI model resulted in much lower LUC and 

resulting emissions. [90] 

Other ethanol modeling efforts predictILUC that is less than half of Searchinger‘s.   The results 

from CARB‘s analysis using GTAP and EPA‘s analysis using FAPRI predict similar ILUC 

acreage, although the locations are quite different.  In CARB‘s corn ethanol analysis, much of 

the LUC conversion occurs in the U.S., while in the EPA analysis, FAPRI predicts that nearly 

half of the conversions will occur in Latin American countries.  The EPA results shown in Figure 

2-17include both domestic and international ILUC from FASOM and FAPRI.  The LUC 

predicted by FAPRI are shown as solid lavender, and additional LUC predicted by FASOM is 

shown as dotted lavender bar, so the total resulting LUC is the sum of the two (which is the total 

from FASOM).  FASOM predicts a net increase in domestic croplands of 1.4 million acres (580 

thousand hectares) for corn ethanol. However, this number is the area of cropland increase, 

which is offset by changes in cropland-pasture and other land types.  The increase in cropland is 

also normalized by 8.2 billion gallons of ethanol, an output from the FASOM model.  A 

comparison of the FASOM and FAPRI results is provided in Table 2-21.  

The Tyner and CARB corn ethanol studies are both based on the GTAP model; however, 

Tyner‘s results are less than half of those predicted by CARB because of updates in the GTAP 

model.  In Tyner‘s study, the LUC is distributed throughout the world, with no disproportionate 

changes occurring in any one country.  In the CARB study, much of the LUC occurs within the 

U.S.  

Soy biodiesel results in much more ILUC than corn ethanol, due to soy oil‘s status as a valuable 

food commodity, which requires that it be replaced by other vegetable oils.  CARB, the EPA and 

Searchinger all present results for soy biodiesel.  Again, the ILUC predicted by Searchinger is 

much larger other, more recent studies. Much of the ILUC in the Searchinger study occurs in 

Latin American countries (11.3 ha bBTU
-1

, occurring in primarily Argentina, followed by Brazil) 

and Southeast Asia (4.9 ha bBTU
-1

, occurring in primarily Indonesia and Malaysia).  In the EPA 

study, much of the land conversion occurs in Latin American countries (about 7.6 ha bBTU
-1

), 

with limited amounts in Southeast Asia.  Again, the results of the FAPRI analysis are shown in 

the figure; however, the FASOM results for domestic changes are applied in the final rule.  
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FASOM analysis shows approximately 1.9 million acres of new cropland is required (763 

thousand ha), more than the total international LUC.  However, the volume modeled in FASOM 

is 1.5 billion gallons, more than three times the policy volume, resulting in about 4.3 ha bBTU
-1

 

(compared to about 1.6 shown in the figure).  This would result in a total LUC of about 15 ha 

bBTU
-1

 for biodiesel. The results in the CARB analysis are only provided for the U.S. and the 

rest of the world.  The total ILUC  is about half of the total ILUC in the EPA analysis. 

The results from the EU- IPFRI study are from the complete policy, including combinations of 

ethanol and biodiesel. The results are not provided in detail to breakout each feedstock or fuel for 

comparison.  The IFPRI study predicts that a large percentage of total LUC from the EU policy 

will occur in Latin American countries, primarily in Brazil.  This is due to the combination of the 

demand for ethanol (sugarcane) and oilseeds, and the high elasticity of land extension for Brazil.  

2.6.2 GREENHOUSE GAS EMISSIONS FROM LAND USE CHANGES 

In each study, the location of LUC is tied to corresponding EFs from databases indicated to give 

the total land-induced emissions shown in Figure 2-17-B.  Again, the emissions are aggregated 

corresponding to the Woods Hole regions for comparison between relative impacts of each 

region.  Both the FAPRI and FASOM results from the EPA analysis are shown.  For corn 

ethanol, the FAPRI analysis predicts an increase in GHG emissions from ILUC in the U.S. 

(shown as an open purple bar), while the FASOM analysis results in a reduction to GHG 

emissions even though there is an increase in ILUC in the U.S.  For the biodiesel analysis, both 

FAPRI and FASOM resulted in a net decrease of GHG emissions, with the total reduction 

represented by both bars.  

The Searchinger analysis results in the highest GHG impacts for both corn ethanol and soy 

biodiesel despite being normalized by energy content.  For example, Searchinger predicts just 

under 10 ha/billion BTU LUC for corn ethanol, but over 100 tons of CO2,eq bBTU
-1

, indicating 

an overall emission factor of around 10 tons CO2ha
-1

yr
-1

.  

Soy biodiesel results in higher ILUC emissions than corn ethanol.  However, the EPA analysis 

for soy biodiesel predicts fairly significant ILUC, but relatively small resulting GHGs. As 

explained in the next section, this is because the EPA assumes relatively little conversion of 

forests. 

The analysis for CARB is not provided in enough detail to break out the contributions by region, 

so is shown as a single bar for ―Rest of the World‖.  
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Figure 2-17: Land Use Changes (A) and GHG from ILUC (B) from alternative fuel policies in the EU (modeled 

by IFPRI) the U.S. (modeled by Searchinger and EPA) and California (modeled by CARB and Tyner). WH= 

Woods Hole 
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2.6.3 TYPE OF LAND USE CHANGE 

The significant differences between the GHG and LUC results from each study have much to do 

with the type of land that is assumed to be converted.  For example, in Searchinger‘s biodiesel 

scenario, about 20% of the total land conversion occurs in Southeast Asia, which contributes to 

nearly half of the net GHG emissions, while in the EPA analysis of biodiesel, about 5% of the 

LUC occurs in Southeast Asia, which results in about 20% of the GHG emissions.  Much of the 

difference in scale has to do with the type of land use conversion.  In Searchinger‘s analysis, no 

grasslands are assumed to be converted in Southeast Asia, resulting in a substantially higher EF 

applied.  

The breakdown of total land use conversion classifications from each study is shown for corn 

ethanol in Figure 2-18-A and for soy biodiesel in Figure 2-18-B, normalized by billion BTU for 

comparison between studies. The Figure gives the classifications of forest, grassland or pasture, 

and ―other‖ in total ha/b BTU for each study.  The percentage breakdown is also noted on the 

figure. For the EPA analysis ―other‖ refers to perennial crops, while in the IFPRI analysis, 

―other‖ is not specified.  

 

 

Figure 2-18: ILUC classification, normalized by billion BTU for each study for A) Corn Ethanol, and B) Soy 

Biodiesel.  IFPRI study shown in A is for complete policy with a blend of fuels. 

NOTE: The results from Searchinger studies are determined by the percentage of grassland and forests in 

each region, and the percentage of land conversion occurring in each region.  

The EPA-RFS2 results are interpreted from the FAPRI international results (U.S. results are excluded) for 

conversion TO annual crops only.  The classification for “forest” in the EPA analysis is for conversion from 

“natural to annual” crops.  “Natural” categories include conversion from grassland, shrubland, savannah, 

mixed categories, barren and woodland.  Results from the stochastic model indicate breakdown from natural 

to annual conversion as follows: 13% forests, 60% from grassland, savannah, and shrubland, 24% from 

mixed category and 3% from barren and wetland. This indicates that less than 10% (13% x 65%) of the land 

conversion is estimated to come from forests in the ethanol case and less than 5% is from forests in the soy 

biodiesel case (compared to 65% and 26%, respectively).  
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This classification of land use has substantial impacts on the overall GHG calculations, since EFs 

from forests are considerably larger than EFs from grasslands (See carbon stock and EF data in 

Figure 2-20).In both Searchinger studies, the bulk of land conversion is from forests, particularly 

for soy biodiesel.  This is primarily due the assumptions that much of the land conversion occurs 

in Southeast Asia, which has no conversion from grassland.  More recent reports predict less 

conversion of land from forests, from 20 to 30%. (Note: in the EPA analysis, the distribution in 

the figure for ―forests‖ includes conversion from natural lands.  Actual conversion from forests is 

around 13% in the corn ethanol case). 

The low conversion of forests in EPA‘s soy biodiesel study explains why lower GHG emissions 

are predicted for significantly more LUC in comparison to the ethanol study.  

2.6.4 COMPARISON OF EMISSION FACTORS FROM KEY STUDIES 

Based on the data presented in the reports discussed and their corresponding databases, it is not 

possible to make a direct comparison between the emission factors from Woods Hole and 

Winrock databases.  The EFs from the Winrock database are weighted into different conversion 

categories for each of the regions corresponding to the FAPRI regions.  They are not weighted 

into a single EF for each region.  Therefore, the final EF is dependent on how much of each type 

of land is converted within each region for each fuel scenario.   

In order to make an approximate comparison between each of the overall EFs used in each study, 

we have back-calculated them based on the total land conversion and the total GHGs for each of 

the 10 regions corresponding to the Woods Hole database. The comparison of these EFs is 

shown in Figure 2-19 for corn ethanol.  A ―total world emission factor‖ was calculated for each 

study based on the total land conversion and the resulting GHGs.  Although this method allows 

for comparison between the Woods Hole and Winrock databases, the LUC EF for Winrock is not 

a very representative calculation when based on the land conversion reported.  The LUC reported 

is the net change in crop area (including both annual and perennial crops).  However, land 

changes to pasture are also considered when determining the total emissions from each region.  

Therefore, to determine a more representative overall EF, the net land change including cropland 

and pasture is considered.  This adds additional uncertainty in the comparison between 

databases.  However, the data are still shown since other methods of comparison would require 

detailed and time-intensive calculations using the results of the publically available models.  The 

apparent emission factor from the FASOM results is also shown for EPA‘s analysis for the U.S.  

Additionally, data from the CARB studies are not sufficient to calculate EFs from each region, 

so are not presented here.   

The EF factors used in the Tyner study are generally slightly lower than those applied in the 

Searchinger study.  Although both studies apply the Woods Hole database, this is expected since 

Tyner assumes 75% of the carbon in the vegetation is lost upon conversion whereas Searchinger 

assumes that 100% is lost.  Tyner uses higher EFs than Searchinger, however, for China/ India 

and Pakistan, Europe and Canada.  For China/India and Pakistan, Searchinger assumes that only 
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grasslands are converted, while Tyner‘s results predict that some forestland is also converted, 

leading to a slightly higher EF for the region.  The forest carbon stock for the region is assumed 

to be equivalent to Southeast Asia, which has the highest carbon stocks of the region.  The 

assumption that Tyner makes about land reversion in Europe also results in a higher EF for that 

region than Searchinger (see Table 2-5).  The apparent EF for Canada is higher in Tyner‘s report 

due to the fact that over 60% of the land conversion there is assumed to come from forests, 

compared to only 20% in the Searchinger study.  

 

Figure 2-19: Total 30-year emission factors for key studies for corn ethanol, corresponding to Woods Hole 

regions. Note: The IFPRI study is based on the complete policy, with a blend of fuels. Author’s calculations. 

The factors determined from the EPA results are also lower than those used in Searchinger, 

except for a few cases. The EF calculated for Canada is negative due to movement of land 

classifications.  A larger amount of annual crops is converted to pasture than natural lands 

converted to pasture, which carries a larger impact to reducing emissions.  The calculated EF 

from the FASOM results is also negative, because of an assumed net land conversion with a 
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decrease in GHG gases.  It is unclear how this result is determined since FASOM endogenously 

applies the DAYCENT/ CENTURY and FORCARB emission factors.  

The factors used in the IFPRI study are consistently smaller than other studies.  The data and/or 

EFs applied are not presented in the study, however, so it is difficult to pinpoint the reasons why 

they are lower.  However, as shown in Figure 2-18, a small percentage of the total land 

conversion is predicted to occur in forests, which helps to limit the impact.  It also should be 

noted that the time horizon is 20 years rather than 30, so additional GHG occurring in the final 

10 years are not considered. However, these emissions are primarily foregone sequestration, 

which has minimal impact on the final amortized CI value, so amortizing over a shorter time 

frame should result in a higher emission rate. 

The carbon stock data in each of the databases is compared in the next section to illustrate the 

reasons for the differences in the emission factors.  

2.7 COMPARISON OF EMISSION FACTOR DATABASES 

The application of the emission factor databases contributes to differences in the total emissions 

due to ILUC in each model.  The total land use estimated from the economic models is tied to 

emission factors, which provide an estimate of carbon (or CO2, eq) emitted per hectare of land 

conversion. The main contributors to the emission factors are the release of above and below 

ground carbon contained in vegetation, soil carbon, and foregone sequestration.  Emission factor 

databases use carbon stock data for each of these contributors.    

The EPA RFS2 utilizes the Winrock International database which utilizes carbon stock data for 9 

land types over 756 regions to determine a 30-year emission factor for each region (described in 

Section 2.4.2).  In comparison, CARB, Searchinger, and Tyner apply the Woods Hole emission 

factor database, which is based on research by Houghton using historical carbon trends 

(described in Section 2.4.1).  In the Woods Hole database, Houghton determines emission factors 

for six different land types over 10 world regions.   

Although it is not possible to make a direct comparison between the data used in the databases 

because of differences in spatial aggregation and weighting schemes, we have developed several 

figures to compare the carbon stock data from each of the databases. Since it is not possible to 

provide a spatially weighted average of the Winrock data, in order to present a single figure for 

comparison, an average of all carbon stock data is given for each administrative unit within 

thecorresponding Woods Hole region. In Figure 2-21 and Figure 2-22, error bars represent the 

minimum and maximum values given over all the administrative units. 

Figure 2-20 provides example EFs from both Winrock and Woods Hole with a breakdown of 

contributions to the final EF for both conversion of forest to cropland and grasslands to cropland.  

The carbon released from vegetation is the primary contributor to the EF, particularly when 

forests are converted.  Soil carbon also has a significant impact on the final EF, particularly for 

grasslands, where the C in vegetation is not as high.  When forests are converted, foregone 
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sequestration also has some impact on the EF, but is generally not considered for other land 

conversions.  In countries with peat soils, emissions from converting those lands can have sizable 

contributions to the overall EF.  The Winrock data applies conditions for peat soils for Indonesia 

and Malaysia.  The EF shown for Indonesia is an average for all regions within that country, 

where emissions from peat soils range from zero for some regions to 33 tons CO2, eqha
-1

yr
-1

 for 

regions with high peat areas.  Since these emissions are assumed to occur over the entire time 

horizon (30 years), the contribution from peat soils can have substantial impact in these regions, 

which far outweigh even the release of C in the vegetation.    

 

Figure 2-20:  Contribution of C sources to EFs from Winrock and Woods Hole for Latin America and 

Southeast Asia. 

Note: Winrock data are the average of all admin units within a WH region.  The Woods Hole data are the 

weighted average of forest or grassland ecosystems within each region.  100% of the C in vegetation and 

25% of the soil C is represented in the figure (following Searchinger approach) 

 

Because a direct comparison of the data in the Winrock and Woods Hole databases is not 

possible, we have aggregated the Winrock administrative units into corresponding Woods Hole 

regions (As shown in Appendix A)to produce an average value of C-stock data for each region.  

A more appropriate comparison would be to weight the data by land cover, which could be done 

using the MODIS satellite data.  However, this would require intensive calculations, which is 

beyond the scope of this work.  In order to capture the wide ranges of data for each category in 

the Winrock database, the average value is presented along with error bars that represent the 

minimum and maximum stock data.   
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2.7.1 COMPARISON OF C-STOCK DATA FROM WOODS HOLE AND WINROCK 

DATABASES 

2.7.1.1 Above/ Below Ground Carbon 

The carbon stored in the biomass both above and below ground is the key contribution to upfront 

emissions caused by land-clearing as land use is changed from one classification to another, 

particularly for land conversion from forests.   

Different land types have significantly different carbon stores.  For example, forests have 

significantly greater C-stock than grasslands.  The comparison of C-stock data used in Winrock 

and Woods Hole is shown in Figure 2-21-A for forests and Figure 2-21-B for grasslands.  The 

ranges of data applied for carbon stock of forests are similar in each database, although the 

resulting Winrock average EF is lower than the Woods Hole EF for most regions. Data from 

Winrock comes from multiple recent literature and sources (as shown in Figure 2-5). Some of the 

data are based on more recent research by Houghton than the Woods Hole data, and some are 

based on IPCC default factors.  

 

 

Figure 2-21: Comparison of C stock data for above- and below- ground C in vegetation in Woods Hole 

regions and corresponding Winrock regions for forestlands (A), and grasslands (B). 

Note: The Woods Hole data are weighted averages of ecosystems classified as forests or grasslands within 

each region.  The error bars indicate the minimum and maximum values.  The Winrock data are averages of 

all administrative units within a corresponding Woods Hole Region, with the error bars noting the minimum 

and maximum C-stocks within the region.   

A B 
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Winrock applies IPCC default factors for grasslands by ecosystem type, as shown in Figure 

2-21-B, which also generally results in lower stock values than Woods Hole.  Winrock uses 

additional grassland categories of shrubland and savannah and applies multipliers of 1.8 for 

savanna and 3.4 for shrubland.  There is no difference in classification of these land types in the 

Woods Hole database.    

The accounting of the above and below ground carbon stock data is also done differently for 

EPA than for CARB, Tyner and Searchinger.  

As described in Section 2.4.1, Searchinger assumes that 100% of the carbon in the vegetation is 

released as a GHG, while CARB and Tyner assume 90% and 75%, respectively.  CARB‘s 

assumption is based on IPCC 2006 defaults (GPG- Section 5.3.1.2), while Tyner states that they 

assume 25% of the carbon is stored in wood products that are harvested and used for buildings, 

furniture and wood.  

Included in the Winrock database is a calculation to reduce the vegetation emission by carbon 

contained in harvested wood products.  However, no data are currently applied, so 100% of C-

stock in the converted land, less the carbon stock contained in the new land is applied.   

2.7.1.2 Soil Carbon 

The analysis of soil carbon in the Winrock database is significantly different than in the Woods 

Hole database. In the Winrock database, the Harmonized World Soil Database (HWSD) is used 

with soil carbon stocks to a depth of 30 cm.  The changes to the soil carbon stock are calculated 

based on Section 5.3.3.4 of the IPCC[93] as described in Scheme 2-1 and shown below.   

∆𝐶 𝑠𝑜𝑖𝑙 =  
𝐶𝑠𝑜𝑖𝑙 ,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∙(1−𝐹𝐿𝑈∙𝐹𝐼)

20 𝑦𝑒𝑎𝑟𝑠
∙ (1 −% 𝑝𝑒𝑎𝑡𝑙𝑎𝑛𝑑𝑠) [t CO2 ha

-1
 yr

-1
]  

For lands without conversion from peatlands, the equation becomes:  

𝐶𝑠𝑜𝑖𝑙 =  
𝐶𝑠𝑜𝑖𝑙 ,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 ∙ (1 − 𝐹𝐿𝑈 ∙ 𝐹𝐼)

20 𝑦𝑒𝑎𝑟𝑠
 

The calculation is based on stock change factors for land use and inputs.  The input factor (FI) is 

set to 1 for all regions, but the land use factor (FLU) is based on IPCC default factors as shown 

for each region below (Table 2-22). The higher the FLU, the lower the emissions from soil will 

be.  Emissions from soils are assumed to occur over a 20-year period.  

In the Woods Hole emission factor database, soil carbon stock data are given based on 

Houghton‘s research for carbon fluxes.  The data presented are in the top 100 cm of soil, and 

25% of the carbon is estimated to be released upon land conversion.  (This same assumption is 

applied for Searchinger, CARB and Tyner work). 

A comparison of the carbon stock data is provided in Figure 2-22.  Again, the Winrock data are 

based on an average of all administrative units within the corresponding Woods Hole region.  

The data shown are the carbon stock data, so naturally, the Woods Hole data would be higher for 

most regions, since it accounts for 100-cm depth compared to 30-cm depth.  
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Table 2-22: Land Use Factors for Soil Emissions in Winrock 

Region (corresponding to 
Woods Hole Regions) 

Land Use 
Factor (FLU) 

range 

U.S. 0.8 

Southeast Asia 0.5-0.6 

China/ India/ Pakistan 0.5-0.7 

Developed Pacific 0.5-0.6 

North Africa/ Middle East 0.5-0.8 

Latin America 0.5-0.8 

Former Soviet Union 0.8 

Europe 0.7-0.8 

Africa 0.5-0.8 

Canada 0.8 

 

Figure 2-22: Carbon soil stock data from Woods Hole and Winrock. 

In the Winrock database, peat emissions are included for Indonesia and Malaysia only.  The 

resulting emissions are assumed to occur over a 30-year time period, which substantially affects 

the overall EF for regions with high fraction of peat.  The Woods Hole database does not include 

a separate calculation for peat emissions.  However, the carbon stock data for Southeast Asia is 

based on wetlands with high quantities of organic soils. 
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2.7.1.3 Non-CO2/ Combustion Emissions 

The Winrock analysis includes non-CO2 emissions produced from lands where fire is used as a 

means for site clearing and preparation.  To define the regions using fire, expert opinion was 

used to judge which regions commonly use fire for agricultural clearing. [55]Entire countries or 

continents are flagged as either using fire for land clearing or not.  The countries include much of 

Africa, SE Asia, and much of Latin America (excluding Chile and Argentina). 

Fire emissions are only calculated for conversion of natural lands to cropland.  A flag in the 

database indicates whether the fire emissions will be calculated for each administrative unit.  The 

fire emissions are a one-time contribution to the GHG from ILUC, and are calculated as 

described in Scheme 2-1.  The fire combustion factor, andCH4 and N2O emission factors used to 

calculate the fire emissions are given in Table 2-23 for each initial land category.  The emission 

factors for each gas are based on IPCC values. [93] The fire combustion factor for conversion 

from forests is the lowest at 0.5, which estimates the mass of fuel available for combustion. 

Russia is the only country that is given a different combustion factor at 0.3. The report on the 

updates to the Winrock database for the final rule of the RFS2 [55] states that the factors for 

forests come from the IPCC (Tables 2.5 and 2.6 in [52]) and the remaining factors come from 

literature [94].   

Table 2-23: Fire and combustion factors for land conversion to crops in Winrock database. 

Initial Land 
Type 

Fire Combustion 
Factor 

CH4Emission 
factor 

N2O Emission 
factor 

Forest 0.5 (Russia = 0.3) 2.3-6.8 0.2-0.3 

Grass 0.8 2.3 0.2 

Shrub 0.7 2.3 0.2 

Savanna 0.6 2.3 0.2 

Wetland 0.7 2.3 0.2 

Mixed 0.8 2.3-3.8 0.2 

The Woods Hole database does not include a separate calculation for emissions from fire. It is 

unclear if additional consideration for fire is made within the data themselves. Houghton 

describes that the structure of the model used to develop the Woods Hole data includes burning 

to clear land [66], but it is unclear how fire emission rates are included, or if they exclude CH4 

and N2O.  However, the contribution of fire emissions to the overall GHG from land clearing is 

small.  
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3 TIME ACCOUNTING PRACTICES 

When comparing the life cycle GHG of biofuels to conventional fuels, it is important to consider 

the time profile associated with each fuel‘s emission stream.  The GHG emissions resulting from 

production of conventional fuels are primarily associated with the extraction, conversion and 

combustion of the fuel, and are unlikely to change significantly from year-to-year.  Although 

biofuels also have consistent year-to-year emissions associated with production and use of the 

fuel, the indirect land use change (ILUC) emissions that are linked to the biofuel follow a 

different temporal distribution.  The ILUC emissions, which include a large up-front GHG 

release associated with bringing new lands into production and an ongoing release from soil 

carbon or loss of carbon sequestration possibilities, must be allocated over the entire quantity of 

fuel produced during the biofuel production period.  Therefore, a common metric must be 

applied that allows the ongoing emissions to be aggregated into a single measure in order to 

make comparisons between fuels.  Many LCA studies that include ILUC use a straight-line 

amortization method, which spreads out the net emissions occurring during a select time period 

over the entire time period.  The choice of accounting method can have a significant effect on the 

net GHG impacts. In particular, two important parameters are the time frame considered and the 

weighting scheme that allows for the comparison of emissions occurring today with those 

occurring at various points in the future.  

Figure 3-1illustrates the ILUC emissions occurring as a result of expansion of biofuel use.  A 

large release of GHG emissions occurs in year zero from changes in vegetation as a result of land 

conversion.  Additionally, soil carbon emissions continue to be released for approximately 20 

years, and foregone sequestration is accounted for through the duration of biofuel production. 

Three distinct time periods are illustrated inFigure 3-1.  The first is the production period, which 

is an estimate of how long the biofuel feedstock will be produced until the fuel is economically 

displaced or until production is ceased.  The production period affects how much biofuel is 

produced (considering an annual production volume).  The analytical horizon defines the period 

of time over which all emissions are accounted for and attributed to the volume of biofuel 

produced.  The analytical time horizon determines how long the biofuel has to ―pay back‖ the 

ILUC emissions.  The analytical horizon can coincide with the production period or extend past 

it.  For cases when it extends beyond the production period, what occurs to the land after biofuel 

production has ceased may be considered.  This period is called the recovery or reversion period, 

during which the land could be recovered into a natural state or used for other purposes. What 

occurs during this recovery or reversion period is dependent on what happens to the land. 

Inclusion of GHG emissions during this recovery phase has been debated. 

The issue of time accounting is complex, and is in essence a question of how to combine one-

time changes in carbon storage in soils and plants associated with expansion of biofuel 

production with a carbon intensity that is based on continuing life cycle inputs. [95]  The length 

of time over which emissions are considered, and the weighting that future emissions are given 

compared to current emissions, can have considerable impacts.  Weighting of emissions over 
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time is generally done by applying a discount rate, which is used in economics to value 

investments over time. Applying higher discount rates weight future emissions less than current 

emissions.  Several alternative methods to discounting, such as calculating a fuel warming 

potential, have also been suggested.  Longer time frames and/ or low discount rates favor 

biofuels in comparison to conventional fuels. There is a general lack of consensus within the 

scientific community about appropriate time horizons and discounting practices. [10,96,97] 

After thorough review and discussion, both the EPA and CARB have currently settled on using a 

30-year time horizon with a 0% discount rate.  The debate by which each has arrived at these 

values and alternative methods of time accounting will be discussed in this section.  

 

Figure 3-1: Emission flows over time. (Adapted from[95]) 

3.1 ANNUALIZATION 

Because of its simplicity and consistency, EPA, CARB, and EU-RED have adopted the 

annualization method, in which all indirect emissions occurring over the biofuel production time-

period are totaled and divided by the total volume of biofuels produced during the production 

period.  A discount rate can be applied to the emissions to weight near term and future emissions 

differently.  Both the EPA and CARB have settled on a 30-year time period for analysis with a 

0% discount rate, while EU applies a 20-year production period.  Although the annualization 

method is simple, it is not without its own inadequacies or areas of controversy.  When 

considering the time profile, two main assumptions have the most significant impact: (1) the 

analytical horizon considered, and (2) the discount rate applied to future emissions.  
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3.1.1 ANALYTICAL HORIZON 

The selection of the analytical period used to amortize indirect GHG emissions can have 

considerable impact on the final aggregated CI results for ILUC.  If shorter periods are 

considered, the large upfront emissions occurring during the initial land conversion are 

apportioned over a smaller time, providing less time for the biofuel to ―payback‖ its carbon debt.  

Additionally, any emissions, positive or negative, occurring beyond the analytical time horizon 

are truncated.  If a long time horizon is considered, emissions impacts from the large upfront 

emissions are generally lessened.  If the time horizon extends beyond the biofuel production 

period, there may also be a recovery period that can be considered, further lessening the carbon 

debt.  

The selection of time frame is somewhat arbitrary, and although policies have generally agreed 

upon a period of 30 years (EU applies a 20-year time frame), there are consequences of selecting 

both shorter and longer time frames.  The EPA gave the following reasons for selecting a 30-year 

time frame: 

“The main reasons for why a short time period is appropriate: this time frame is 

the average life of a typical biofuel production facility; future emissions are less 

certain and more difficult to value, so the analysis should be confined insofar as 

possible to the foreseeable future; and a near-term time horizon is consistent with 

the latest climate science that indicates that relatively deep reductions of heat-

trapping gasses are needed to avoid catastrophic changes due to a warming 

climate.” 

In both the EPA‘s draft regulatory impact analysis (RIA)  and final RIA, cases were presented 

for 30-year time frame with 0% discount rate and a 100-year time frame with 2% discount rate 

[2]. In both cases, the time horizon coincides with the production period to avoid the issue of 

reversion emissions (discussed in more detail in Section 3.1.3).  EPA reviewers suggested time 

periods ranging from 13 years (which corresponds with the policy time frame to the year 2022) 

to 100 years.  Many agree that a shorter time frame that coincides with the life of a biofuel 

production facility (20 to 30 years) is more defensible and emissions are more certain than over a 

longer time frame such as 100 years (Fargione, Heimlich, Martin, Marshall in [10]).  However, 

some (Richards) argued for 100-year time frames to encompass all emissions resulting from the 

project.  A longer time frame introduces the issue of land reversion emissions, if the biofuel 

production period is shorter than the time frame.  In general, the reviewers agreed that 

consideration of reversion emissions is too uncertain and should be avoided.  Based on the 

review and other comments, the EPA settled on a 30-year time frame for the final rule. 

The time accounting methodologies applied in CARB‘s LCFS also underwent expert workgroup 

review, with similar disagreement and general recommendations as those from the EPA.  

CARB‘s time accounting workgroup recommended a short project horizon since a shorter time 

period promotes fuels with lower upfront LUC costs and earlier benefits, and since it is more 

difficult to predict future production methods and shifts in fuel usage over the long term.  
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Some of the advantages and disadvantages discussed for shorter and longer time frames are 

presented in Table 3-1 below. 

Table 3-1: Advantages and Disadvantages for applying short or long time frames in GHG time accounting. 

Time Frame Advantages Disadvantages 

Short Time 
Frame (20-30 
years) 

Emphasizes importance of early emissions in 
the atmosphere. 

More “conservative” since longer time frames 
are more uncertain. 

A shorter time frame may under-predict the 
actual fuel production period, but then biofuels 
would outperform whereas an over-prediction 
might result in irreversible GHG releases.  

Truncates potential benefits that occur over 
time. 

Long Time Frame 
(100 years) 

GHGs persist in the atmosphere for long 
periods; 100 years is similar to GWP 
accounting. 

Allows for the consideration of land reversion/ 
land conversion after biofuel production. 

Long term biofuel production is reasonable to 
consider because advances in technology and 
decreases in production costs make it more 
competitive with respect to conventional fuels. 

(EPA benefit) RFS does not have a specific end-
date. 

Climate change is a long term problem, allows 
the opportunity to assess intergenerational 
issues. 

Increases Uncertainty- changes in market 
conditions could see a decline in biofuel use 
over a shorter period of time; benefits would 
never be realized. 

Reduces the importance of large up-front 
emissions.  

A time period is also applied to estimate and make comparisons between various GHGs in 

applying the GWP. The most frequently used time period for GWP is 100 years, which is 

considered a ―rolling time horizon,‖ meaning that the accounting period begins from the 

emission of the GHG.   

3.1.2 DISCOUNT RATE 

The continuing existence of GHG in the atmosphere brings up the question of how to rate the 

relative importance of GHG emissions over time.  The IPCC has noted that risks associated with 

climate change includeloss of glaciers and biodiversity.[98]Under such a scenario, if near term 

emissions aren‘t reduced, long term reduction may occur too late to mitigate or reverse these 

impacts.  When considering ILUC emissions occurring over a long period of time, it is therefore 

important to consider how current emissions may have more or less impact than future 

emissions.  This can be done by applying a discount rate to weight the damage done by 

emissions in different time periods.  Every year that an event is delayed makes it worth less by a 
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percentage, called the discount rate.  By applying a discount rate, near-term emissions are 

weighted more heavily than future emissions. 

The application of a discount rate to ILUC 

emissions from corn ethanol is shown in 

Figure 3-2
11

. When no discount rate is 

applied (blue bars in Figure 3-2), future 

emissions have a greater value than when a 

discount rate is applied (red bars) The net 

present value (NPV, which is the sum of all 

emissions over the given time frame, 30 

years in this case) of the discounted 

emissions are less than the NPV of the non-

discounted emissions.  However, when the 

NPV of the emissions is annualized to 

determine an annual net present value 

(ANPV), they are treated as a mortgage 

payment on a loan, with the discount rate 

acting as the interest rate.  Therefore, a 0% discount rate means ―no interest is paid‖ so that the 

ANPV of the ILUC emissions are less than when a discount rate is applied (blue line compared 

to red line).  Therefore, a zero or low discount rate favors biofuels.     

Discounting is an economic practice that is used to determine the value of investments over time, 

and is being applied to physical GHG emissions as a method to compare future versus current 

emissions. Whether or not to apply a discount rate and what the appropriate discount rate to use 

have been debated. In the EPA‘s Review process for the LCFS, reviewers of the time accounting 

methodologies had dissenting opinions on the use of a discount rate[10].  Some argued that the 

use of a discount rate is too uncertain, further complicating the ILUC analysis. Additionally, 

some argued that discounting is an economic practice, which may not apply to physical 

phenomena, since a release of a unit of CO2 years from now may do more or less damage than 

the same unit discharged today. Instead, GHG emissions should be valued monetarily through a 

damage factor or social cost before discounting.  [99,11,10]   However, others argued that a zero 

discount rate does not give enough emphasis to the importance of reducing near term emissions.  

Arguments for and against discount rates are given in Table 3-2.  

  

                                                 
11

From EPA analysis of corn ethanol.  Results shown are for year 2022 baseline results of a dry mill, natural gas, 

corn ethanol plant with CHP and DDGS.  Excel spreadsheets for corn ethanol LCA results can be found in docket 

ID number: EPA-HQ-OAR-2005-0161-3173.6 at www.regulations.gov. Docket results were modified to show 

results for a 5% discount rate. 

Figure 3-2: ILUC emissions of corn ethanol (EPA 

analysis) with 0% and 5% discount rates and 30 year 

time horizon. 

http://www.regulations.gov/
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Table 3-2: Arguments for and against discounting ILUC emissions. 

 Arguments for  Arguments against 

0% or No 
discount rate 

 Simple, reduces uncertainty. 

 Avoids the issue of intergenerational equity 
since all benefits and damages are weighted 
equally for current and future generations. 

 Gives no incentive to reduce emissions in the 
near term since future technology advances 
will provide better and cheaper opportunities 
for the same benefit. 

Discounting  Weights current emissions heavier than 
future emissions, since they will exist in the 
atmosphere longer and likely cause more 
damage or result in reaching a “tipping point” 
sooner.        

 The risks associated with climate change 
include irreversible damages which increase 
with increasing atmospheric GHGs.     

 Any future reductions in emissions should not 
be valued the same as current emissions 
since they will have less benefit and will be 
less likely to reverse damages. 

 Intergeneration Equity issue: discounting 
gives less weight to the well-being of future 
generations. 

 Lack of consensus for an appropriate 
discount rate. 

 Applies an economic principle to a physical 
phenomenon, which introduces further 
uncertainty (Do we really know if emissions 
will cause more or less damage in the future). 

 Applying a discount rate increases the 
uncertainty when determining ILUC 
emissions. 

The appropriate discount rate to use is also heavily debated.  The selection of a discount rate 

requires consideration of multiple additional variables including the rates of carbon accumulation 

and decay and estimates of marginal damages arising or avoided from atmospheric carbon 

stocks. [100]  The EPA reviewers suggested discount rates ranging from 0 to 7.9%. [10] 

Discount rates ranging from 2.7 to 7.9% are recommended by the Office of Management and 

Budget [101].  Since high discount rates imply a low value for future GHG emissions resulting 

from today‘s actions, lower discount rates of around 2-3% are considered more appropriate[102].  

Others argue that ILUC emissions are highly uncertain, so applying a discount rate is 

meaningless. 

Some suggest that as carbon stocks in the atmosphere increase, each additional unit released 

brings us nearer a catastrophic ―tipping point‖.  In this case, each additional unit of carbon will 

result in more damage which means that a negative discount rate should be used. [100] 

Although both the EPA and CARB have currently settled on a 0% discount rate for their 

analyses, some argue that by rejecting a discount rate, GHG emissions occurring today are the 

equivalent of those occurring 30 years from now.  This methodology does not take into account 

irreversible impacts that may be caused as a result of higher near-term emissions resulting from 

LUC.  It also implies that owing to technological advances, it will be cheaper to avoid emissions 

in the future for the same benefit as emissions avoided today. [10,95] 

Other methodologies have been discussed to more appropriately discount emissions.  O‘Hare has 

proposed relating emissions using cumulative radiative forcing (CRF, discussed below) which 
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treats emissions similarly as those that are weighted by GWP. [11]  Others argue for applying a 

cost to carbon, which can then be discounted appropriately.  [100,103] 

3.1.3 LAND REVERSION 

The use of biofuels is not expected to continue indefinitely, which will likely result in a 

subsequent land conversion once the biofuel program ends and/or the biofuel feedstock is no 

longer grown. This introduces the possibility that the land would either revert to its prior state or 

be redirected for other uses.  When the analytical time frame considered is longer than the 

project time horizon, what happens to the land post-production needs to be considered.   

 The possibility of re-vegetation of land after the biofuel program ends may lead to additional 

carbon sequestration as the native vegetation is re-grown (as illustrated inFigure 3-1).  This 

sequestration could reduce the carbon debt of the biofuel if considered in the ILUC analysis, and 

some argue that these reversion emissions should be included.  Delucchi argues that the end of 

the biofuels program will be marked by a reversal of the expansion of demand, resulting in some 

amount of land reversion which should be considered, [96] although these reversion emissions 

are not likely to entirely offset the initial LUC emissions because of changes and fluctuations in 

supply and demand over time.  Additionally, he argues that these reversion emissions don‘t have 

as much value as emissions avoided today, so time accounting practices should include 

discounting.  

Others, however, argue reversion emissions are too uncertain and should not be considered.  In 

the EPA and CARB policy review processes, both work groups reached a general consensus that 

reversion emissions should not be included.  Some argue that the subsequent land use should 

receive the credit for any carbon sequestration, and would be double counting if it were already 

accounted for by the previous crop, while others argued that future land use is too uncertain and 

there is no way to know if the land would actually revert or if it would be kept in crop 

production. [10,95]  In this case, the biofuel could receive a credit that is never realized.  

Reversion emissions are not included in either the current LCFS or RFS2 methodologies.  In 

RFS2, the analytical horizon is considered to be the same as the production period to avoid the 

issue of reversion emissions. 

3.2 CUMULATIVE RADIATIVE FORCING & FUEL WARMING 

POTENTIALS 

When a GHG is released to the atmosphere, it has a cumulative impact that increases with its 

time in the atmosphere.  Other methodologies of time accounting have been proposed that take 

into consideration the cumulative effects of GHG.  Several methodologies have been proposed 

that are based on a calculation of the cumulative radiative forcing (CRF) of the ILUC emissions.   

CRF has been widely used to estimate the global warming potentials (GWP) of different gases, 

and attempts to include the cumulative effect of GHGs as they persist in the atmosphere.  CRF is 

a measure of additional warming the atmosphere experiences over a particular time interval due 
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to the increase of GHGs.  The Radiative Forcing (RF) is determined by multiplying the radiative 

efficiency (a) of a component (i) by the time-dependent decay function of the gas [Ci(t)] as 

shown on the left hand side of the equation below.  The CRF is then determined by integrating 

the RF over the entire time horizon (TH).  

 

 

Equation 1 [104] 

 

 GWPs are determined on a 20-, 100-, and 500-year time frame for different GHGs by comparing 

the CRF over each time period to the CRF of the same amount of a reference gas (r), which is 

typically CO2 to determine CO2,eq.  The 100-year GWP is most frequently used in LCA, 

however, the time frame selected for the GWP is critical due to the differences in residence time 

of GHGs in the atmosphere.  Table 3-3gives the lifetime, GWP and radiative efficiencies for 3 

primary GHGs.  Methane has a much shorter lifetime in the atmosphere than does N2O, so it has 

a higher GWP when considered on a shorter time frame. When the time horizon considered is 

shorter than the gas‘s lifetime, the remaining effects are truncated.  The GWP treats all future 

warming within the time horizon equal and then truncates warming beyond the analytical 

timeframe. 

Table 3-3: Lifetimes, radiative efficiencies and direct GWPs relative to CO2.  [104] Note: data taken from IPCC/ 

TEAP 2005. 

GHG Formula 
Lifetime 
(years) 

Radiative 
Efficiency 

Global Warming Potential for Given Time Horizon 

20-year 100-year 500-year 

Carbon Dioxide CO2 1 1.4*10-5 1 1 1 

Methane CH4 12 3.7 *10-4 72 25 7.6 

Nitrous Oxide N2O 114 3.03 * 10-3 289 298 153 

3.2.1 FUEL WARMING POTENTIAL 

O‘Hare, et al. have proposed applying the CRF methodology to time accounting of ILUC 

emissions, which removes consideration of economic discount rates, instead relying on physical 

science for the calculation. O‘Hare applies the CRF approach to calculate a physical fuel 

warming potential, which compares the CRF of a biofuel to the CRF of a reference fuel. [11]The 

following calculations can be applied using the Biofuel Time-Integrated Model of Emission 

(BTIME). [105] 

The Physical Fuel Warming Potential (FWPp) is the ratio of the CRF associated with a biofuel 

scenario (CRFb) and a gasoline scenario (CRFg). The FWP is a multiplier for the direct 

emissions to estimate a fuel warming intensity (FWI), given in g CO2, eqMJ
-1

, that can be 
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compared between fuels (this is similar to GWP, which is multiplier for each gas to convert a 

gram of emissions into a gram of CO2,eq emissions).  

𝐹𝑊𝑃𝑃 =  
𝐶𝑅𝐹𝑏

𝐶𝑅𝐹𝑔
           Equation 2 

This method is similar to GWP except that it compares to fuel production scenarios rather than to 

GHGs over the same time period.  Figure 3-3 illustrates the accumulation of CO2 in the 

atmosphere for ethanol versus gasoline. The annual emissions streams over time are shown by 

the dashed lines for gasoline and ethanol (95 g CO2, eq MJ
-1

 vs. 60 CO2, eqMJ
-1

 direct emissions 

over 25 years, respectively).  The emission stream is converted using the Bern carbon cycle 

model into additional CO2 in the atmosphere as shown by the solid lines. Due to the large initial 

emissions, ethanol production leads to higher CO2 abundance for the first 20 years.  Although a 

cross-over occurs after around 20 years, the damage caused by the ethanol emissions is greater 

since they have been in the atmosphere longer.  This is illustrated by the cumulative warming 

effects, captured by the FWP and fuel warming intensity (FWI) metrics shown in Figure 3-4.   

 

Figure 3-3: CO2 abundance resulting from ILUC and direct emissions of ethanol (25 years at 60 g CO2,eq MJ
-1

) 

and gasoline (25 years at 94 g CO2,eq MJ
-1

) (From [11,105]) 
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Figure 3-4: Fuel warming intensity (g CO2,eq MJ
-1

) vs. analytical horizon (From [11,105]). 

A discount rate can be applied to the FWP to give an economic Fuel Warming Potential (FWPe).  

In O‘Hare‘s methodology, the radiative forcing is discounted, and the FWPe is given by the ratio 

of the net present values: 

𝐹𝑊𝑃𝑒 =  
𝑁𝑃𝑉𝑏

𝑁𝑃𝑉𝑔
                    Equation 3 

There is growing support behind the use of the FWP methodology because it is analogous to the 

GWP method to convert GHGs into a CO2-equivalent value and follows the well-known 

methodology of radiative forcing. It can also be used in conjunction with a discount rate.  The 

FWP method takes into consideration how concentrations of GHGs and warming change over 

time. However, it does add additional computational complexity because it requires calculation 

of future GHG concentrations, as well as concentration dependent radiative forcing.  

Additionally, a damage function needs to be determined.  In the ICF review of EPA‘s time 

accounting approach, Heimlich suggested the following limitations be addressed before the FWP 

methodology should be employed [10]: 

1. Decay rate for atmospheric CO2 assumes a constant background atmospheric 

concentration. In reality, radiative efficiency for a unit of CO2 decreases non-linearly as 

atmospheric CO2 concentration increases, and CO2 atmospheric residence time 

increases.  

2. FWP assumes that GHG radiative efficiency is constant.  

3. FWP only deals with CO2; it does not include methane or nitrous oxide.  
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3.2.2 TIME CORRECTION FACTOR 

Kendall has proposed using a time correction factor (TCF) that can be used to adjust the value of 

amortized emissions which also follows the CRF metric [106].  The TCF method is similar to the 

FWP method, but instead compares the CRF of a pulse of emissions to the CRF of the emission 

amortized over a set time horizon.  The TCF method was developed to address the challenge of 

representing climate change effects of amortized CO2 emissions in LCA, which is distinct from 

the FWP method in that the FWP metric compares biofuels to conventional fuels, which provides 

a means to discount.  

3.3 OTHER METHODOLOGIES 

As part of the CARB Expert Work Group (EWG) activities, two additional methodologies were 

discussed which have not been published in peer-reviewed journals.  A summary of the 

methodologies as they are described and discussed in the EWG reports is given below. [95] 

3.3.1 BASELINE TIME ACCOUNTING 

Kloverpris and Mueller have introduced a baseline time accounting methodology in which ILUC 

is measured relative to baseline changes in land use. [12,107] They argue that agricultural lands 

are expanding in the developing world, but contracting in the developed world.  Increased 

biofuels may cause land to come into use sooner than it otherwise would in the developing 

world, resulting in more warming, and may cause land in the developed world to stay in 

production longer which would delay reversion and result in additional GHGs.  In the baseline 

time accounting metric, the GWP over 100 years is used to determine an ILUC factor which is 

independent of the production period.  

Kloverpris and Mueller have expanded this concept into a white paper that gives the full 

description of the methodology. [95] The members of the EWG subgroup assessing the issue of 

time accounting generally agreed that more work and description of the baseline time accounting 

methodology is needed before it should be considered.  

3.3.2 SIMPLIFIED TIME ACCOUNTING 

The simplified time accounting method discussed in the CARB EWG report is based on the 

Baseline Time Accounting methodology, avoids assumptions about the production period, and 

does not require analysis of atmospheric forcing or residence.  In the simplified time accounting 

method, a variable equivalent ILUC discharge (Gcv) that can be added to the direct emissions is 

calculated with the following equation: 

Gcv= Gc- (1-r)Gc = rGc  Equation 4 

Where Gcis the ILUC discharge associated with increasing production capacity (in g CO2,eqMJ
-1

) 

and r is the discount rate. 
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Some of the CARB reviewers argued against this methodology, however, since it adds to the 

uncertainty and does not eliminate the complication of choosing a subjective discount rate.  

3.4 SOCIAL COST OF CARBON 

Rather than applying a discount rate to a physical carbon unit, it has been suggested that the 

social cost of carbon can be applied to determine a ―damage weighted‖ carbon content. [100]  

The social cost of carbon (SCC) is a dollar value assigned to each unit of carbon emissions 

which reflects the price of damages occurring both today and in the future caused by each 

additional ton of CO2 released into the atmosphere.  In GHG reduction projects, the SCC is used 

to measure the financial value of damages avoided, and therefore the benefit of the mitigation 

project. [103] Therefore, the larger the SCC, the more attractive the project. The SCC is a critical 

element in the cost-benefit analysis of climate change since current climate policy proposals (e.g. 

a carbon tax or a cap-and-trade allowance market) are based on the price of carbon emissions. A 

higher SCC gives emphasis on the risk of catastrophic climate change and provides incentive to 

reduce emissions.  

The SCC is estimated by combining scientific models of global warming with a socio-economic 

model of the underlying impacts.  Models to predict the SCC include DICE, FUND, and PAGE. 

[108] There are some ethical judgments that must be made to determine a SCC.  For example, 

the loss of an endangered species is difficult to monetize. [108] As such, there is disagreement on 

how the SCC should be calculated.  There are large uncertainties surrounding SCC.  One of the 

primary uncertainties in its determination is the discounting scheme that is applied.  Some 

suggest that a declining discount rate should be used in which the discount factor (or weight that 

is placed on future emissions) increases over time. In a sensitivity analysis by Guo, applying 

different discounting schemes grossly affected the SCC, with prices ranging from $-2.6 to $226 

/tC (in 2005  prices).  A negative SCC (which was estimated at a 3% discount rate, the highest 

evaluated) indicates that near term benefits outweigh future damages because of heavy 

discounting.  The variability reflects the large amounts of uncertainty surrounding the 

determination of an SCC.  

Marshall points out that the SCC can be applied to time accounting for biofuel ILUC to 

determine a ―damage weighted‖ carbon content that can be compared amongst fuels. The result 

is a physical discount rate that is much lower than an economic discount rate. [100]To date, 

however, a social cost has not been included in alternative fuel policies.  
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4 N2O EMISSIONS FROM AGRICULTURAL ACTIVITES 

4.1 BACKGROUND/INTRODUCTION 

Nitrous oxide (N2O) is a colorless, non-toxic, non-flammable gas with a slightly sweet odor. It 

has a variety of small volume uses including anesthetics (laughing gas), aerosol propellant, 

oxidizer for rocket fuel, and others. N2O is also an important species in the overall biochemical-

geochemical cycling of nitrogen. It is produced naturally in soils by microbial processes of 

nitrification and denitrification. The oceans are also recognized as a significant natural source of 

N2O. In rough terms, approximately 1/3 of global N2O results from ocean sources, with 2/3 

resulting from land sources [53]. 

Due to its potent greenhouse gas (GHG) behavior, and its influence by human activities, N2O is 

considered an important contributor to anthropogenically-induced radiative forcing of climate 

change. Figure 4-1, taken from the most recent Intergovernmental Panel on Climate Change 

(IPCC) report, shows the relative importance of N2O compared to other radiative forcing 

substances. Because much of this N2O originates from agricultural activity, it is of considerable 

interest in life-cycle assessments (LCAs) of biofuels. In this chapter, we discuss several topics 

related to N2O from agricultural activities – including formation mechanisms, modeling 

approaches for determining inventories, and potential mitigation measures. 

 

Figure 4-1: Radiative forcing of climate between 1750 and 2005. (Taken from IPCC-2007 [54]) 
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4.2 N2O OCCURRENCE AND INVENTORIES 

The pre-industrial atmospheric concentration of N2O is estimated to be 270 ppb, whereas today‘s 

concentration is approximately 322 ppb [54,13]. The current rate of increase is 0.26% per year. 

As shown in Figure 4-2, the atmospheric concentration of N2O has risen sharply during the past 

century; although the rate of increase is less than that of carbon dioxide (CO2) or methane (CH4).  

 

 

Figure 4-2: Concentrations of long-lived GHGs over the past 2000 years. (Taken from IPCC-2007 [54]) 

 

N2O is removed from the atmosphere by photolytic reactions with ozone in the stratosphere 

[109].  In fact, N2O is regarded as an ozone-depleting substance (ODS) of increasing importance, 

as emissions of chlorofluorocarbons (CFCs) are declining [110]. N2O is now thought to be the 

single most important ODS, although it remains unregulated under the Montreal Protocol, which 

limits other ODSs.  

However, of primary concern here is N2O‘s global warming potential (GWP), which is much 

higher than that of CO2. The exact value of N2O‘s GWP is somewhat confusing. In the Second 

Assessment Report (SAR) from the IPCC (IPCC-1996) a GWP value of 310 was assigned to 

N2O (for a 100-year time horizon) [111], meaning that 1 kg of N2O in the atmosphere has the 

same radiative forcing effect as 310 kg of CO2. In IPCC‘s Third Assessment Report (TAR) 

(IPCC-2001) the GWP of N2O was revised to 296 [53]. In the Fourth Assessment Report (AR4) 

(IPCC-2007) the GWP was further revised to 298 [54].  
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Most literature reports during the past decade have used either the IPCC-2001 or IPCC-2007 

value for N2O‘s GWP (296 or 298). However, for official inventory purposes, the U.S. (and other 

countries) continue to use the IPCC-1996 value of 310 [13]. This is in accordance with GHG 

reporting standards under the U.N. Framework Convention on Climate Change (UNFCCC; of 

which the U.S. is a signatory), and is done so that current estimates of GHG emissions are 

consistent and comparable with previous estimates.  

As with all GHGs, N2O emissions inventories are generally expressed in units of teragrams (Tg) 

CO2,eq. (1-Tg = 10
12

 g = 1 million metric tonnes.) Detailed N2O emissions inventories for the 

U.S. have recently been reported by the U.S. EPA [13]. The inventories for three time periods 

(1990, 2000, and 2009) are provided in Figure 4-3, which shows that agricultural soil 

management is the dominant source of anthropogenic N2O emissions, accounting for 

approximately 60% of the total.  Similarly, on a global basis, IPCC estimates that agriculture is 

responsible for 58% of total N2O emissions [54]. Figure 4-3also shows that the 2
nd

 largest 

contributor to the N2O inventory, mobile combustion, was reduced substantially between 2000 

and 2009. This reduction is attributed primarily to phase-in of more effective emissions control 

systems on light-duty vehicles. 

 

Figure 4-3: Total U.S. Anthropogenic N2O Emissions Inventories, Tg CO2,eq. (Data from U.S. EPA[13]). 

 

Total U.S. GHG inventories from 1990 and 2009 are presented in Figure 4-4, showing the 

relative global warming potential (GWP) of the major GHG contributors. This illustrates that 

N2O emissions represent only a small fraction of total GWP – 5.1% in 1990; 4.5% in 2009. (U.S. 

N2O emissions in the year 2000 are not shown here, but can be interpolated from the 1990 and 

2009 data.) On a global basis, N2O provides a somewhat larger contribution to total GWP than in 

the U.S. As shown in Figure 4-4, the U.S. EPA estimates that N2O contributed 7.5% of total 

global GWP in the year 2000 [112]. It is interesting to note that both globally and in the U.S., 

methane‘s contribution to the total GHG inventory is approximately twice that of N2O‘s 
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contribution. However, only a small fraction of this methane is related to non-livestock 

agricultural activities – the subject of this report. 

 

Figure 4-4: Total GHG Inventories, Tg CO2,eq. (a) U.S. 1990; (b) U.S. 2009; (c) Global 2000. (Data from U.S. EPA 

[13,112]) 

U.S. emissions inventories are commonly disaggregated by economic sector. Such a breakdown 

of GHG emissions is provided in Figure 4-5, which shows that overall, the agricultural sector is a 

rather small contributor to total GHG emissions. (In Figure 4-5, CO2 emissions from electricity 

generation are distributed across the relevant economic sectors.) This figure also illustrates that 

GHG emissions from the agricultural sector in the U.S. have been relatively constant over the 

past 20-years, whereas emissions from the other sectors have varied significantly. A sharp 

downturn due to the recent economic situation is particularly evident in the industry and 

transportation sectors.  

As opposed to all other sectors, which are dominated by CO2 emissions, GHG emissions from 

the agricultural sector are dominated by N2O and methane (CH4). The main sources contributing 

to these two GHGs in the U.S. in 1990, 2000, and 2009 are shown in Figure 4-6. Field burning of 

agricultural residues contributes a very small fraction of U.S. N2O emissions, but is more 

significant in some other countries. For example, in Australia, it is estimated that prescribed 

burning of savanna is responsible for approximately 25% of the total agricultural sector‘s N2O 

emissions [113]. [Not shown in Figure 4-6 are CO2 emissions attributed to the agricultural sector, 

which contributes approximately 80-90 Tg in each time period. The USDA also estimates that 

U.S. agricultural soils provide a small net sink (20-30 Tg of CO2) [114].]  
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Figure 4-5: U.S. GHG emissions trends. Emissions from electricity generation are distributed to the relevant 

economic sectors. (Taken from U.S. EPA [13].) 

 

 

Figure 4-6: Non-CO2 GHG emissions from the U.S. agricultural sector. (Data from U.S. EPA [112].) 

Overall, CH4 and N2O have comparable contributions to total agricultural sector GHG emissions 

in the U.S. However, most of the CH4 emissions are attributed to enteric fermentation in 

livestock which is outside the scope of interest for this report. USDA estimates that corn is the 

leading crop for N2O emissions, followed by soybeans and wheat [114]. Emissions from corn 

cropping are high because of the extensive land area used for corn production, and the large 

amounts of nitrogen (N) fertilizer applied. 

On a global basis, the agricultural sector is a larger contributor to total GHG emissions than in 

the U.S. Global estimates suggest that agriculture is responsible for 32% of total anthropogenic 

GWP, as opposed to only 8% in the U.S. [13,112]. It is also estimated that agriculture is 

1990 2000 2009 



85 

 

responsible for about 80% of global anthropogenic N2O emissions [115,116], as compared to 

only about 60% in the U.S. Other differences between U.S. and global agricultural GHG 

emissions can be seen in Figure 4-7, which shows non-CO2 GHG inventories projected from 

1990 to 2020. (The units used here, Mt CO2,eq, are identical to Tg CO2,eq.) Of major concern is 

the global increase in non-CO2 GHG emissions over this 30-year period. This increase is a 

consequence of producing more food (and higher quality food) to satisfy the growing global 

population. Also shown in Figure 4-7is the relatively large contribution of rice cultivation to 

global agricultural GHG emissions, as compared to the small U.S. contribution (compare Figure 

4-6 and Figure 4-7).  

 

Figure 4-7: Global non-CO2 GHG’s from the Agricultural Sector. (Taken from U.S. EPA [112].) 

As shown in Figure 4-7, much of theprojected increase in global GHGs from the agricultural 

sector is attributed to soils. (N2O formation mechanisms in soils are discussed in a later section.) 

Figure 4-8 shows where this growth of N2O emissions from soils is expected to occur, with the 

majority coming from the developing world, particularly China, Latin America, Africa, and 

Southeast Asia. N2O soil emissions from countries comprising the Organization for Economic 

Cooperation and Development (OECD), which includes the U.S. and Europe, are expected to 

remain nearly constant. 
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Figure 4-8: N2O Emissions from agricultural soils. (Taken from U.S. EPA [112].) 

In the most recent national GHG inventory, EPA has followed the IPCC-recommended approach 

for estimating uncertainty. For this purpose, a ―Tier 2‖ analysis was performed, employing the 

Monte Carlo Stochastic Technique [13]. The overall GHG inventory has relatively low 

uncertainty, since it is dominated by reasonably well-known CO2 emissions. However, the N2O 

inventory has considerably higher uncertainty, as illustrated below in Table 4-1.  

Table 4-1: Estimated Uncertainty in U.S. GHG Inventory (From U.S. EPA [13]) 

GHG  

Species 

2009 Mean 

Value,  

Tg CO2,eq 

Standard 
Deviation,  

Tg CO2,eq 

Relative Std. 
Deviation, % 

CO2 5,622.5 97.5 1.73% 

CH4 702.8 45.3 6.45% 

N2O 334.2 42.1 12.60% 

PFC, HFC, & SF6 143.7 4.8 3.34% 

Total 6,803.2 115.0 1.69% 

 

4.3 N2O FORMATION MECHANISMS 

N2O is an important component in the overall nitrogen cycle by which nitrogenous species are 

converted among various chemical forms throughout the biosphere. Key processes within the 

nitrogen cycle include nitrification, denitrification, fixation, and mineralization [117]. A 

depiction of the nitrogen cycle involving agricultural soils and N2O emissions is provided in 

Figure 4-9. As this illustrates, N2O is emitted directly from soils, but also from numerous indirect 

sources including reaction of NOx and NH3 that are lost from soils by volatilization, nitrogen 
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species that leach from the soil, decomposition of crop litter and other vegetation, and 

degradation of human and animal wastes.  

 

Figure 4-9: Nitrogen cycle of agricultural soils and its relationship to N2O production. (Taken from Oonk & 

Kroeze (1998) [118] by permission of John Wiley & Sons, Inc.) 

Direct emissions from land are the largest agricultural sources of N2O.These emissions result 

from a complex set of microbial soil processes that include both nitrification and denitrification 

[119,120,121]. As shown in Scheme 4-1, nitrification involves conversion of ammonium (NH4
+
) 

to nitrate (NO3
-
), with nitrite (NO2

-
) as an intermediate [122]. These oxidative processes occur 

under aerobic conditions by the action of various soil microorganisms. N2O is produced by 

specific bacteria as a minor by-product in the oxidation of nitrite (NO2
-
) to nitrate (NO3

-
) 

[123,124].  Nitrification converts relatively immobile NH4
+
 to highly mobile NO3

-
, which is 

more available for plant uptake, but is also susceptible to leaching from the soil [125,126].  

Scheme 4-1 

Nitrification Process 

NH4
+
 → NO2

-
 → NO3

-
 

Numerous parameters influence the extent of nitrification within soils, including availability of 

oxygen, moisture content, soil organic matter (SOM) content, temperature, and pH. However, 

from a management (and modeling) standpoint, perhaps most critical is the availability of 

ammonium, which is directly influenced by application of nitrogen fertilizer. Hence the 

importance of applied N as a model input when estimating N2O emissions from agricultural 

activities. (These models are discussed in a later section.)  

 



88 

 

Denitrification is the process by which NO3
-
 is transformed to nitrogen gas (N2). This 

transformation occurs through a series of chemically defined steps, as shown in Scheme 

4-2[127,128], with N2O being produced as an intermediate species [119,120,124]. This reductive 

transformation proceeds under anaerobic conditions, and involves a number of microbial-

induced processes. 

Scheme 4-2 

Denitrification Process 

NO3
-
→ NO2

-
 → NO → N2O → N2 

Nitrification and denitrification processes can occur simultaneously within soils, creating a 

complex (and difficult to model) situation. The balance between aerobic and anaerobic 

conditions is affected by numerous factors, including soil type, tillage practice, moisture level, 

and others. One particularly important parameter in this balance is the water-filled pore space 

(WFPS) within the soil. Anaerobic denitrification processes are generally not very significant 

until the WFPS becomes quite high – at least 60-80%, depending upon soil type. The extent of 

WFPS changes rapidly with precipitation (or irrigation), which can result in periodic ―N2O 

bursts‖ from the soil, arising from rapid denitrification processes. 

Besides the direct emissions of N2O from soils, there are several indirect processes by which 

N2O is emitted into the atmosphere. These include re-deposition of volatilized nitrogenous 

species, leaching and runoff of nitrate from soils, and sewage treatment processes. Both direct 

and indirect N2O formation processes are discussed below in the context of N2O modeling.  

4.4 MODELING APPROACHES FOR AGRICULTURAL N2O EMISSIONS 

INVENTORIES 

A variety of modeling approaches have been developed and applied to estimate N2O emissions 

from agricultural activities. Perhaps most widely used are the approaches developed by IPCC to 

estimate country-wide N2O emissions inventories. A different approach -- involving use of a 

process-based model for determining direct N2O emissions -- is used by the U.S. EPA. Both of 

these approaches, and variations of them, are discussed below. 

4.4.1 IPCC MODELING APPROACH 

The United Nations Framework Convention on Climate Change (UNFCC) requires that all 

countries periodically update and publish national inventories of GHGs, using comparable 

methodologies. By necessity, this requires a fairly simple approach using readily available inputs 

that can be broadly applied to provide country-level inventories. IPCC‘s initial inventory 

methodology development, called Phase I, was published in the 1995 IPCC Guidelines for 

National Greenhouse Gas Inventories [129]. 
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4.4.1.1 IPCC 1995 Methodology 

The IPCC Phase I effort was based on the state of knowledge of N2O emissions that existed at 

that time, as documented in earlier IPCC reports [130] and literature reviews [131,132]. While 

the complexity of agriculture‘s influence on N2O emissions was fully recognized, it was 

necessary to develop a simplified modeling approach utilizing input variables that were readily 

available. As described previously, the importance of nitrogen fertilizer inputs upon N2O 

emissions was known. In addition, reliable information about land areas used for agriculture and 

amounts of applied fertilizer was available for many countries using databases of the United 

Nations Food and Agricultural Organization (FAO). Consequently, a simplified approach of 

estimating direct N2O emissions from agricultural cropping lands was developed, based solely 

upon the level of nitrogen inputs to the soil. A conversion factor of 1.25% ± 1.0% was adopted – 

meaning that 1.25% of applied nitrogen would eventually be emitted from the soil in the form of 

N2O. The derivation of this factor was described by Mosier et al. [131]. It was based upon 

evaluation of several experimental studies that had been conducted, and was believed to cover 

more than 90% of the published data [133,134].  

The nitrogen inputs considered in the IPCC Phase I approach included synthetic fertilizers, 

organic nitrogen from manure application, nitrogen remaining in crop residues, and biological 

nitrogen fixation. However, no clear mechanism existed to estimate nitrogen inputs from either 

crop residues or N-fixation. Also, no mechanism existed to account for indirect N2O emissions 

resulting from soil leaching and runoff. The same direct conversion factor of 1.25% was applied 

to all soil types, cropping systems, and climate regions – even though it was known that N2O 

emissions are affected by changes in these parameters. However, because these relationships are 

very complex, and insufficient data were available to properly address them, it was expedient to 

utilize this simple, conversion factor-based estimate for deriving national-level N2O inventories.  

4.4.1.2 IPCC 1997 Approach 

Following publication of the IPCC-1995 Guidelines for National Greenhouse Gas Inventories, a 

Phase II Workgroup was convened to develop an improved methodology for estimating N2O 

emissions from agricultural activities. The efforts of this Workgroup are described by Mosier et 

al. [135,136] and were incorporated into the revised IPCC Guidelines of 1997 [137]. This 

updated methodology defined and estimated N2O emissions in three categories: (1) direct 

emissions from agricultural soils, (2) emissions from animal production, and (3) emissions 

indirectly induced by agricultural activities. The methodology relates N2O emissions to the 

agricultural nitrogen cycle, and to systems into which nitrogen is transported once it leaves the 

agricultural system. Compared to the previous IPCC approach, the 1997 methodology was much 

more comprehensive, although it still ignored impacts of climate, soil type, and cropping 

systems. Further descriptions are provided below for each of the N2O emissions categories 

considered by IPCC-1997. 
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 Direct soil emissions 

As described above, biogenic N2O emissions from soil result from nitrification and 

denitrification processes, with N2O being produced as an intermediate in both processes. 

Addition of fertilizer-N stimulates additional N2O formation, although the effects are highly 

specific, and vary with soil type, moisture level, temperature, pH, soil carbon availability, and 

other factors. Another important factor with respect to fertilizer application is loss of some 

nitrogen by volatilization of certain nitrogenous species – particularly nitric oxide (NO) and 

ammonia (NH3). Once these species are volatilized, they are no longer available to participate in 

the soil production of N2O through nitrification and denitrification processes. In the IPCC-1997 

approach, a distinction was made between synthetic fertilizer and manure application with 

respect to volatilization of NO and NH3. For synthetic fertilizers it was assumed that 10% of the 

applied nitrogen was lost due to volatilization; for manure usage, 20% of applied nitrogen was 

assumed to be volatilized. For the fertilizer- and manure-derived nitrogen that was not 

volatilized, a fixed fraction was assumed to result in N2O emissions. This fraction, defined as 

emission factor EF1, was 0.0125 (± 0.01) kg N2O-N/kg N input – the same factor as was used in 

IPCC-1995. 

Another important soil nitrogen input arises from atmospheric N2 fixation, which occurs with 

leguminous crops. This fixed nitrogen can participate in nitrification and denitrification 

processes in the same way as fertilizer-N, thus providing a source of N2O. The amount of 

nitrogen added to the soil by means of N2 fixation is variable and poorly known. For national 

inventory purposes, IPCC-1997 assumed that the mass of soil nitrogen from fixation was two 

times the crop yield mass times the nitrogen content of the crop. Due to lack of other 

information, a default value for nitrogen content in leguminous crops was set at 3.0%. These 

seemingly arbitrary values were derived to be representative of the few literature reports 

available at that time. [135,136]Crop yields are available from the U.N. FAO database for many 

crops and countries. A fraction of this fixed nitrogen is assumed to produce N2O emissions in the 

same way as does fertilizer-applied nitrogen. Thus, the same emission factor, EF1, (with a default 

value of 0.0125 kg N2O-N/kg N input) is applied to fixed nitrogen. 

Another direct source of agricultural N2O emissions is degradation of crop residues. The nitrogen 

content of the plant residues may be known in specific cases, but default values are used in most 

cases. For N-fixing crops, it is assumed that crop residues (on a dry mass basis) contain 3.0% 

nitrogen, while non-N-fixing crop residues are assumed to contain 1.5% nitrogen. The mass of 

crop residue is assumed to be twice the mass of the edible crop, which is available from FAO 

databases. Because nitrogen from these crop residues is believed to participate in nitrification 

and denitrification processes in the same way as fertilizer-applied nitrogen, the same emission 

factor, EF1, is employed.  

IPCC-1997 also distinguished between N2O resulting from cultivation of high organic content 

soils and other soils. In some regions of the world, soils with high organic content (>20% 

carbon), known as histosols, are being drained and cultivated. (Peat is an example of a histosol 
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soil.) This can result in very high N2O emissions due to enhanced mineralization of old, N-rich 

organic matter [138,139]. Thus a high default emission factor, EF2, is used for estimating N2O 

emissions from such soils. For histosol soils in temperate regions, EF2 is set at 5 kg N2O-N/ha-

yr; for histosol soils in tropical regions, EF2 is set at 10 kg N2O-N/ha-yr. In a simple, 

mathematical form, the IPCC-1997 method for estimating direct N2O emissions from agricultural 

soils is shown below in Scheme 4-3. 

Scheme 4-3 

IPCC (1997) Method for Direct N2O Emissions from Agricultural Soils 

N2ODirect = (fertilizer-N + manure-N + fixed-N + crop residue-N) * EF1 + histosol area * EF2 

 

Where:  Fixed-N is the fraction of nitrogen in N-fixing crops (default of 3.0%) times double the 
mass of edible crop yield. 

Crop residue-N is the fraction of nitrogen in crop residue (default of 3.0% for leguminous 
crops; 1.5% for other crops) times double the mass of edible crop yield. 

The default emission factor EF1 is 0.0125 (± 0.01) kg N2O-N/kg N input. 

The default emission factor EF2 is 5 kg N2O-N/ha-yr for histosol soils in temperate 
regions, and 10 kg N2O-N/ha-yr for histosols soils in tropical regions.  

Also: The fertilizer and manure nitrogen application levels used in this formula are reduced to 
correct for the assumed volatilization losses (10% reduction for fertilizer; 20% reduction 
for manure). 

 Direct N2O from animal production activities 

Earlier IPCC emissions estimates from agricultural sources did not include N2O from animal 

production. However, by the time the IPCC Phase II Workgroup was organized, it was 

recognized that this could be a significant source that should not be overlooked [135,140,141]. 

Three potential animal production sources were considered by IPCC-1997: (1) animals 

themselves, (2) waste from confined animals, and (3) waste from grazing animals.  

Direct emissions of N2O from ruminant animals is known to occur [142]. Although the amount 

of N2O emitted in this way is uncertain, it is thought to be quite small – far less than 10 g N2O-

N/kg N feed intake. Therefore, direct animal emissions of N2O was not included in the IPCC-

1997 methodology. 

N2O emissions from animal waste (both confined animals and grazing animals) are significant. 

Estimates of these emissions are made based upon the amount of nitrogen excreted from 

different animal types, and emission factors that indicate the amount of N2O formation per 

amount of nitrogen excreted. Clearly, this is a complex area, with large uncertainties [136,135]. 

IPCC-1997 assigned separate default nitrogen excretion factors (kg N/animal-year) for six 

classes of animals: (1) dairy cattle, (2) non-dairy cattle, (3) poultry, (4) sheep, (5) swine, and (6) 

other animals. For each animal type, a variety of animal waste management systems (AWMS) 

was considered, with each AWMS having a defined emission factor, EF3, expressed in units of g 
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N2O-N/kg N excreted. Values of EF3 ranged from very low (0-2) for anaerobic lagoons and 

liquid AWMS to very high (5-30) for solid storage and pasture grazing.  

The IPCC 1997 method for estimating N2O emissions from animal production in a given country 

is shown mathematically in Scheme 4-4. 

Scheme 4-4 

IPCC (1997) Method for Estimating N2O Emissions from Animal Production 

N2OAnimals = ∑ NT1 * N-excretionT1 * AWMST1 * EF3 AWMS 

 

Where: NT1 = number of animals of type 1 

N-excretionT1 = kg nitrogen excreted per animal per year 

AWMST1 = fraction of excreted nitrogen managed by AWMS 

EF3 AWMS = N2O emission factor for given AWMS 

To estimate the total N2O inventory contribution from animal production in a given country, the 

individual contributions from each animal type are summed. 

 Indirect N2O emissions from agricultural activities 

Several pathways for indirect N2O emissions are related to agricultural activities. The IPCC-

1997 methodology explicitly treated three such pathways: (1) atmospheric deposition of NOx 

and NH4, (2) leaching and runoff, and (3) human consumption followed by municipal sewage 

treatment. Each is discussed below: 

As previously mentioned, a fraction of the nitrogen applied to crop land in the form of synthetic 

fertilizer or manure  is assumed to be lost by volatilization of NO and NH3. It is further assumed 

that these volatilized species are converted in the atmosphere to oxides of nitrogen (NOx) and 

ammonium (NH4), which are subsequently deposited onto soils and surface waters, and thereby 

participate in biogenic N2O formation. There is limited data suggesting that between 0.2% and 

1.6% of nitrogen deposited onto soils is eventually emitted as N2O [135,143]. Based upon this, 

the IPCC-1997 Workgroup adopted a default emissions factor, EF4, of 0.01 kg N2O-N/kg of N 

volatilized from application of fertilizer and manure. For inventory purposes, all N2O resulting 

from deposition is allocated to the country in which the fertilizer and manure application occur, 

regardless of where the deposition occurs. The IPCC-1997 formula for estimating N2O emissions 

from deposition is shown below in Scheme 4-5. 
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Scheme 4-5 

IPCC (1997) Method for Estimating Indirect N2O Emissions from Atmospheric Deposition 

N2ODeposition = (Fertilizer-N * 0.1 + Manure-N * 0.2) * EF4 

Where the default value for EF4 is 0.01 kg N2O-N/kg of N volatilized 

A considerable amount of fertilizer nitrogen applied to agricultural soils can be lost through 

leaching and runoff. It has been estimated that the fraction of applied nitrogen taken up by the 

crop ranges from 20% to 70% [136,144]. Much of the remaining nitrogen enters groundwater, 

rivers, and coastal marine areas, where it participates in nitrification and denitrification processes 

to produce N2O. The amount of nitrogen lost due to leaching and runoff is highly variable, and 

the amount of N2O that this produces is quite uncertain. Nevertheless, the IPCC-1997 Phase II 

methodology developed a detailed process for estimating N2O resulting from leaching and 

runoff.  

The rationale and mechanisms for these estimates are provided in Mosier et al. [135,136]. First, 

the amount of nitrogen lost due to leaching and runoff is defined to be a fraction of the total 

applied nitrogen (as fertilizer and manure). While this fraction is believed to range from 0.1 - 0.8 

[135,145], IPCC adopted a leach default (NLeach) value of 0.3. Second, different emission factors 

were defined to estimate the N2O emissions occurring from nitrification and denitrification in 

three separate regions following leaching and runoff: 

1. Groundwater: EF5-g = 0.015 g N2O-N/g NLeach 

2. Rivers: EF5-r = 0.0075 g N2O-N/g NLeach 

3. Estuaries: EF5-e = 0.0025 g N2O-N/NLeach 

Combining these three hydrologic components gives a total EF5 value of 0.025 g N2O-N/g 

NLeach. The default formula for estimating all N2O from leaching and runoff is shown below in 

Scheme 4-6. 

Scheme 4-6 

IPCC (1997) Method for Estimating Indirect N2O Emissions from Leaching and Runoff 

N2OLeach = 0.3 * Applied Nitrogen * EF5 

 

Where:  Applied Nitrogen is synthetic fertilizer-N + manure-N 

The default value for EF5 is 0.025 kg N2O-N/kg NLEACH 

The final indirect N2O pathway addressed by IPCC-1997 involves human consumption of 

nitrogen-containing foodstuffs and disposition of the sewage nitrogen. To determine the total 

amount of a country‘s sewage nitrogen, per-capita protein consumption is used (obtained from 

FAO data) with the assumption that nitrogen comprises 16% of total protein mass. Land disposal 

of human sewage is neglected as a source of N2O, but nitrogen discharges from sewage treatment 

plants are included. It is assumed that all discharged sewage nitrogen eventually enters rivers and 
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estuaries, in the same way as nitrogen that is leached from the soil (discussed above). Therefore, 

N2O emissions from sewage nitrogen are treated the same way as N2O from leached nitrogen 

[135,146], and the same N2O emission factors are used in both cases. Thus, the emission factor 

for sewage nitrogen in rivers, EF6-r, was defined as 0.0075 g N2O-N/g Nsewage, and the factor for 

sewage nitrogen in estuaries, EF6-e, was defined as 0.0025 g N2O-N/g Nsewage – giving a total EF6 

default value of 0.01 g N2O-N/g Nsewage. The formula for total N2O emissions from human 

sewage is given below in Scheme 4-7. 

Scheme 4-7 

IPCC (1997) Method for Estimating Indirect N2O Emissions from Human Sewage 

N2OSewage = NSewage * EF6 

 

Where the default value for EF6 is 0.01 kg N2O-N/kg NSewage 

 Summary of IPCC 1997 

The objective of the IPCC-1997 methodology described above was to enable derivation of 

country-wide estimates of N2O emissions from agricultural activities, using readily available 

information sources. This was achieved by determining, and summing together, the N2O 

emissions attributed to three separate categories, as shown in Scheme 4-8: 

Scheme 4-8 

IPCC (1997) Method for Estimating N2O Emissions from all Agricultural Activities 

Total Agricultural N2O = N2ODirect + N2OAnimals + N2OIndirect 

 

Where: N2ODirect is shown in Scheme 4-3 

 N2OAnimals is shown in Scheme 4-4 

 N2OIndirect is shown in Scheme 4-5 through Scheme 4-7 

 

The Phase II IPCC-1997 methodology was used to determine global N2O emissions from 

agricultural activities in the year 1989 [135]. This showed nearly identical contributions from 

each of the three N2O categories of Direct, Animals, and Indirect (2.1 Tg N2O-N from each). 

Further details of this inventory allocation are shown in Figure 4-10. 
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Figure 4-10:  Global agriculture-related N2O emissions in 1989, Tg N2O-N. Calculated using IPCC 1997 

methodology. (Data from Mosier et al.[135].) 

This 1989 inventory, when combined with existing estimates of N2O from natural sources, 

provided a reasonable balance to the global N2O budget. This is illustrated in Figure 4-11, which 

shows the global N2O budget as computed with the IPCC-1997 Phase II methodology, as well as 

two earlier IPCC methodologies. With the IPCC-1992 methodology, the global N2O inventory 

was significantly underestimated, resulting in a large mis-balance between sources and sinks. 

Using the 1995 IPCC methodology gave a better balance, with the sinks now only slightly 

exceeding the sources. Using the 1997 IPCC methodology gave an excellent balance between 

sources and sinks. 
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Figure 4-11: Global N2O budgets derived using different IPCC methodologies. (Data from Mosier et al. [135].) 

Providing a good balance between estimated sources and sinks does not guarantee that the N2O 

inventory is correct. Given the large number of parameters used in the IPCC methodology, and 

the large uncertainty associated with many of the model inputs, a rather high total model 

uncertainty should be expected. This was investigated by Van Aardenne, who used a Monte 

Carlo sampling technique along with regression and correlation analyses to simulate model 

outputs while varying 14 model parameters [135,147]. Dutch agriculture nitrogen values were 

used to run the model. The two parameters that contributed the most to total uncertainty were 

EF1 (emission factor for direct soil emissions) and the fraction of nitrogen input that is lost 

through leaching and runoff. Surprisingly, the total uncertainty was quite small, with a standard 

deviation of the calculated mean N2O inventory value of only 20%. This may be because the 

Netherlands is a small country with little variation in soil type and climate, and relatively well 

known values for agricultural inputs. 

The IPCC-1997 Phase II Work Group also identified a few specific areas where improvements in 

the N2O estimation methodology were most needed. It was pointed out that several recent 

published studies had demonstrated significant N2O emissions from soils in winter and early 

spring periods, especially during spring thaw [148,149,150]. Because of this, the IPCC 

methodology, which ignores spring thaw emissions, may underestimate the true N2O emissions 

from agricultural soils. Other issues to address included the following: (1) methodologies to 

account for effects of crop type, soil type, and climate upon N2O emissions, (2) better 
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understanding of soil methane processes, (3) impacts of soil NOx emissions upon regional ozone 

concentrations, and (4) effects of mitigation measures to reduce N2O emissions and increase soil 

sinks for CH4. 

The Workgroup also stated that to significantly improve inventory methodologies for N2O from 

agricultural soils, a process-based model should be utilized. In addition, more appropriate models 

should be developed for N2O emissions from animal production, and for nitrogen transformation 

in aquatic systems. Finally, it was suggested that models regarding soil carbon and soil nitrogen 

should be integrated, since soil processes involving C and N are inter-related. 

4.4.1.3 IPCC 2006 Methodology 

In 2006, the IPCC issued a major update to their guidelines for determining national GHG 

inventories, with Volume 4 addressing inventories in the Agriculture, Forestry and Other Land 

Use (AFOLU) sector [52]. Chapter 11 of this volume addresses N2O emissions from managed 

soils. A concept introduced in the IPCC-2006 guidelines is the hierarchical tiers of methods that 

range from simple, default emission factors to the use of country-specific data and models. The 

three tiers of methods are briefly summarized below: 

 Tier 1 methods are designed to be the simplest to use, for which standard equations and 

default parameter values are applied (for example, the default values for EF1 – EF6 as 

described above under the IPCC-1997 methodology).  

 Tier 2 methods utilize the same methodological approach as Tier 1, but apply emissions 

and stock change factors that are based on country- or region-specific data for the most 

important land-use or livestock categories. Higher temporal and spatial resolution and 

more disaggregated activity data are typically employed in Tier 2 methods. 

 Tier 3 methods employ models and inventory measurement systems driven by high-

resolution activity data and disaggregation at sub-national levels. These higher order 

methods are tailored to address specific national circumstances, and generally provide 

GHG estimates of greater certainty than lower tiers. 

As with the earlier methodology, IPCC-2006 estimated N2O emissions from managed soils as the 

sum of direct and indirect processes. However, in this updated methodology, N2O emissions 

from animal production are not treated as a separate source, but are allocated between the direct 

and indirect sources. A schematic showing the overall sources and pathways of nitrogen that 

contribute to N2O under the IPCC-2006 methodology is provided in Figure 4-12. 
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Figure 4-12: Schematic diagram illustrating sources and pathways of N that result in direct and indirect N2O 

emissions from soils and waters. (Taken from IPCC 2006 [52]) 

 Direct N2O Emissions 

In the earlier IPCC-1997 methodology, direct emissions from conventional agricultural soils 

were determined from various nitrogen inputs multiplied by an emission factor, EF1. To this was 

added the N2O contribution from cultivation of highly organic soils (histosols), which was 

defined as the area of histosol cultivation times an emission factor, EF2 (see Scheme 4-3). In the 

IPCC-2006 Tier 1 methodology, a similar approach was taken, although now the direct N2O 

emissions are defined as the sum of three terms, as shown in Scheme 4-9. 
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Scheme 4-9 

IPCC (2006) Method for Estimating Direct N2O Emissions 

N2O-Ndirect = N2O-NN-inputs + N2O-NOS + N2O-NPRP 

 

Where: N2O-NN-inputs = direct N2O-N emissions from nitrogen inputs to managed soils; kg N2O-N/year 

 N2O-NOS = direct N2O-N emissions from managed organic soils; kg N2O-N/year 

 N2O-NPRP = direct N2O-N emissions from animal waste deposited on grazed pasture, range 
and paddock; kg N2O-N/year 

As shown in Scheme 4-9, N2O in the IPCC-2006 methodology is estimated in units of nitrogen 

mass, not N2O mass, as was done in IPCC-1997. To convert to N2O mass, the N2O-N amounts 

must be multiplied by the factor 44/28. In the Tier 1 method, each of the three direct N2O-N 

terms shown in Scheme 4-9is computed from a combination of factors, as described below: 

 N2O-NN-inputs is the sum of nitrogen inputs from synthetic fertilizer, animal manure and 

sewage sludge, crop residues, and mineralized soil – all multiplied by a single emission 

factor, EF1. This emission factor is the same for all crop types, except for rice grown in 

flooded fields, in which case a different factor, EF1FR is used. The value of EF1 was 

changed to 1.0%, compared to 1.25% in the IPCC-1997 methodology. This was due to 

new analyses of experimental data which drew upon a larger body of measurements than 

were available previously [151,152,153,154,155]. A nitrogen input term for atmospheric 

nitrogen fixation was removed as a direct source of N2O in the IPCC-2006 methodology, 

due to lack of evidence that this is a significant process [156]. On the other hand, a term 

was added to account for mineralization of nitrogen contained in soil organic matter 

(SOM). Thus, the total N2O-NN-input term can be expressed as shown in Scheme 4-10. 
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Scheme 4-10 

IPCC (2006) Method for Estimating Direct N2O Emissions from Soil N Inputs  

N2O-NN-input = (FSN + FON + FCR + FSOM) * EF1 

 

Where: FSN is the annual amount of synthetic fertilizer-nitrogen applied to soils. Unlike 
previously, this term is no longer adjusted for the assumed amounts of NO and NH3 
volatilization after application to the soil. 

 FON is the annual amount of organic fertilizer-nitrogen applied to soils. This includes 
applied manure, sewage sludge, compost, and other organic amendments. 

 FCR is the annual amount of nitrogen in crop residues – including both above-ground and 
below-ground residues – that is returned to the soil. The amount of crop residue, and the 
nitrogen content of this residue, varies with crop type. The IPCC- 2006 guidelines 
include default factors for 24 different crop types. To develop a national inventory, the 
residue-N values are first computed for each crop, then summed over all crops. An 
additional term within FCR is used to account for nitrogen remaining on the soil after 
burning of crop residues. 

 FSOM is the annual amount of nitrogen associated with soil organic matter (SOM) that is 
mineralized (converted to NH4 and NO3) as a consequence of land use change or 
management practice. Organic carbon and nitrogen are intimately linked in SOM. When 
soil carbon is lost through oxidation as a result of land use or management change, the 
organic nitrogen is mineralized, thus becoming available for conversion to N2O [157]. 
IPCC-2006 provides guidance to compute this soil nitrogen input term for various soils 
and land use types. 

 N2O-NOS is the sum of numerous terms, each of which is the land area of a particular 

histosol soil times an emission factor, EF2, specific for that soil type. The various histosol 

soils include temperate and tropical, with sub-classifications within each category. The 

values of EF2 for these histosol classifications are given in Table 4-2, along with the 

comparable values used in the IPCC-1997 methodology. 

 N2O-NPRP is determined by multiplying the annual amount of animal waste nitrogen 

deposited by grazing, times an emission factor, EF3, for a specific animal type. In IPCC-

1997, six different classes of animals (and six different EF3‘s) were used; in the updated  

IPCC-2006 methodology, only two sets of animals (and two EF3‘s) are considered:  

o EF3CPP pertains to cattle, poultry, and pigs 

o EF3SO pertains to sheep and other animals  

The values for these EF3 factors are shown in Table 4-2. In the IPCC-1997 methodology, 

different EF3 factors were assigned for different animal waste management systems 

(AWMS). For grazing activities with no AWMS (such as pasture, range, and paddock) an 

emissions factor of 0.02 kg N2O-N/kg N excreted was used – with no distinction among 

animal types. The same emission factor of 0.02 is used for most animals in the updated 

IPCC-2006 methodology, while the factor for sheep is only half as large, at 0.01. 
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The default emission factor values shown in Table 4-2 apply to the IPCC Tier 1 method. If more 

detailed emission factors and activity data are available to a particular country, further 

disaggregation of the N2O-N direct terms in Scheme 4-9can be performed. This so-called Tier 2 

method utilizes the same computational framework as in Tier 1, but introduces greater regional 

specificity due to improved knowledge of nitrogen sources, crop types, crop management, land 

use, climate, soil type, or other condition-specific emission factors. 

Table 4-2: Default Emission Factors to Estimate Direct N2O Emissions from Managed Soils 

Emission Factor 
IPCC-2006 Defaults IPCC-1997 Defaults 

Value Uncertainty Value Uncertainty 

EF1 – Nitrogen from synthetic fertilizer, organic amendments, 
crop residues, and N mineralization [kg N2O-N/kg N] 

0.01 0.003 - 0.03 0.0125 
0.0025-
0.0225 

EF1FR – same nitrogen additions as with EF1, but from flooded 
rice fields [kg N2O-N/kg N] 

0.003 0.000-0.006 - - 

EF2 CG,Temp – temperate histosol soils used for crops and 
grassland [kg N2O-N/ha] 

8 2 - 24 5 2 - 15 

EF2 CG, Trop – tropical histosol soils used for crops and 
grasslands [kg N2O-N/ha] 

16 5 - 48 10 2 - 15 

EF2F, Temp, Org, R – temperate, nutrient rich  histosol soils with 
boreal forests [kg N2O-N/ha] 

0.06 0.16 - 2.4 - - 

EF2F, Temp, Org, P – temperate, nutrient poor histosol soils with 
boreal forests [kg N2O-N/ha] 

0.1 0.02 - 0.3 - - 

EF2F, Trop – tropical histosol soils with forests [kg N2O-N/ha] 8 0 - 24 - - 

EF3PRP, CPP – N inputs to soil from grazing cattle, poultry, and 
pigs [kg N2O-N/kg N] 

0.02 0.007 - 0.06 0.02 0.005 - 0.030 

EF3PRP, SO – N inputs to soil from grazing sheep and other 
animals [kg N2O-N/kg N] 

0.01 0.003 - 0.03 0.02 0.005 - 0.030 

IPCC Tier 3 inventory methods are very different, being based upon modeling and measurement 

studies, rather than use of default emission factors. Such modeling relates N2O emissions to 

specific physical and chemical processes that occur in a particular situation. A considerably 

larger amount of data inputs are required to run such process models.  These models should only 

be used when sufficient inputs are available, and after model validation has been demonstrated 

by experimental measurement. Further discussion of N2O emission models is provided in a later 

section of this report. 

 Indirect N2O Emissions 

IPCC-2006 methodology considers two pathways for indirect emissions of N2O: (1) 

volatilization of NH3 and NOx, and subsequent re-deposition of nitrogen species to soils and 

waters, and (2) leaching and runoff of nitrogen (mainly NO3
-
) from managed soils. These two 

indirect pathways are discussed separately below. 

The Tier 1 method for determining indirect N2O emissions resulting from atmospheric deposition 

is represented in Scheme 4-11. 
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Scheme 4-11 

IPCC (2006) Tier 1 Method for Estimating Indirect N2O Emissions from Atmospheric Deposition 

N2OATD-N = [(FSN * FracGASF) + ((FON + FPRP) * FracGASM)] * EF4 

Where:  N2OATD-N is the annual N2O-N produced from atmospheric deposition of N volatilized 
from managed soils; (kg N2O-N/yr) 

 FSN is the annual amount of synthetic fertilizer-nitrogen applied to soils; (kg N/yr) 

 FracGASF is the fraction of synthetic fertilizer that volatilizes as NH3 and NOx; (kg N 
volatilized/kg N applied) 

 FON is the annual amount of organic fertilizer-N applied to soils. This includes applied 
manure, sewage sludge, compost, and other organic amendments; (kg N/yr) 

 FPRP is the annual amount of animal waste deposited by grazing animals on pasture, 
range, and paddock; (kg N/yr) 

 FracGASM is the fraction of organic N materials (FON) that volatilizes as NH3 and NOx; 
(kg N volatilized/kg N applied or deposited) 

 EF4 is the emission factor for N2O emissions from atmospheric deposition of N on soils 
and water surfaces; (kg N2O-N/(kg NH3-N + NOx-N volatilized) 

The Tier 1 default values for EF4, volatilization fraction, and leaching fraction are shown in 

Table 4-3. The default EF4 value is 0.010 kg N2O-N/kg N volatilized – the same value as used in 

IPCC-1997. However, the uncertainty range in IPCC-2006 is wider, because of recent 

experimental studies showing that in certain environments with high rates of nitrogen deposition, 

the N2O emission rates are substantially higher than previously reported [158,159,160]. The 

FracGASF and FracGASM default values are also the same as in IPCC-1997, although uncertainty 

ranges have been added in IPCC-2006 (see Table 4-3). As was the case with IPCC-1997, for 

national inventory purposes all indirect N2O emissions from deposition sources are attributed to 

the country where the volatilization occurred, not the country where deposition occurred. 

The Tier 1 method for determining indirect N2O emissions resulting from leaching and runoff is 

represented in Scheme 4-12. 
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Scheme 4-12 

IPCC (2006) Tier 1 Method for Estimating Indirect N2O Emissions from Leaching and Runoff 

N2OL-N = (FSN + FON + FPRP + FCR + FSOM) * FracLEACH-(H) * EF5 

Where:  N2OL-N is the annual N2O-N produced from leaching and runoff of N additions to 

managed soils in regions where leaching/runoff occurs; (kg N2O-N/yr) 

 FSN is the annual amount of synthetic fertilizer-nitrogen applied to soils in regions 
where leaching/runoff occurs; (kg N/yr) 

 FON is the annual amount of organic-N (from manure, sewage sludge, compost, and 
other materials) applied to soils in regions where leaching/runoff occurs; (kg N/yr) 

 FPRP is the annual amount of animal waste deposited by grazing animals on pasture, 
range, and paddock in regions where leaching/runoff occurs; (kg N/yr) 

 FCR is the amount of N in crop residues (above- and below-ground) returned to soils 
annually in regions where leaching/runoff occurs; (kg N/yr) 

 FSOM is the amount of N mineralized in soils (associated with loss of soil C due to 
changes in land use or management) in regions where leaching/runoff occurs; (kg 
N/yr) 

 FracLEACH-(H) is the fraction of all N added to managed soils in regions where 
leaching/runoff occurs that is lost through leaching and runoff; (kg N2O-N/kg of N 
addition) 

 EF5 is the emission factor for N2O emissions from N leaching and runoff; (kg N2O-
N/(kg N leached and runoff) 

The Tier 1 default value for EF5 is 0.0075 kg N2O-N/kg N in leach/runoff. This is considerably 

lower than the IPCC-1997 value of 0.025. Experimental results that support this reduction in EF5 

were recently published by Reay et al. [161] In both IPCC-1997 and IPCC-2006 the EF5 

emission factor is the sum of three separate factors: (1) EF5g for groundwater, (2) EF5r for rivers, 

and (3) EF5e for estuaries. In IPCC-2006, all three of these have default values of 0.0025; in 

IPCC-1997, the factor for EF5g was 0.015 and EF5r was 0.0075. 

The default FracLEACH term has changed significantly from the previous IPCC methodology. In 

IPCC 1997, FracLEACH had a value of 0.3 (30% of applied nitrogen was lost by leaching and 

runoff) for all soil conditions. In IPCC-2006, this term has been changed to FracLEACH-(H). The 

value of this term is still 0.3, but it now applies only to soils in which the water-holding capacity 

is exceeded as a result of rainfall and/or irrigation. The IPCC-2006 guidelines include a method 

for determining when such conditions are reached. 

As with the direct N2O emissions, the methodology for determining indirect N2O can advance to 

Tier 2 by utilizing more detailed, regional-specific inputs for emission factors, volatilization 

factors, and leaching factors. Tier 3 methods for determining indirect N2O emissions inventories 

would be based on modeling and measurements.   
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Table 4-3: Default Emissions, Volatilization and Leaching Factors for Indirect Soil N2O Emissions 

Factor 
IPCC-2006 Defaults IPCC-1997 Defaults 

Value Uncertainty Value Uncertainty 

EF4 – Nitrogen volatilization and re-deposition [kg N2O-N/kg 
NH3-N + NOx-N volatilized] 

0.010 0.002 - 0.05 0.01 0.002 - 0.02 

EF5 – leaching and runoff [kg N2O-N/kg N leached/runoff] 0.0075 
0.0005-
0.025 

0.025 0.002 - 0.12 

FracGASF – volatilization from synthetic fertilizer [(kg NH3-N + 
NOx-N)/kg N applied] 

0.10 0.03 – 0.3 0.1 - 

FracGASM – volatilization from organic N applied and 
deposited  [(kg NH3-N + NOx-N)/kg N applied] 

0.20 0.05 – 0.5 0.2 - 

FracLEACH-(H) – N losses by leaching/runoff for regions where 
soil water-holding capacity is exceeded [(kg N)/(kg N applied 
and deposited] 

0.30 0.1 – 0.8 0.3 - 

 Summary of IPCC 2006 Methodology 

While largely based on the same structural and operational foundation as the earlier methodology 

for determining N2O emission inventories, the IPCC-2006 approach introduced several 

improvements. Some changes were due to on-going research efforts, which led to updated 

default values for certain emission factors or activity use factors. Other changes were more 

fundamental – such as considering nitrogen leaching from soils only in cases where the soil 

water-holding capacity is exceeded. Thus, it would appear that even when using the simple 

default value-based Tier 1 approach, the IPCC-2006 method would provide more reliable results 

than the IPCC-1997 method. However, we are not aware of any systematic study to confirm this 

expectation. 

Further improvements in reliability would be expected by using an IPCC-2006 Tier 2 method. 

Presumably, information sources that are specific to a particular country (or region within a 

country) would be more reliable than the general default values used in Tier 1. Rochette et al. 

developed and applied Tier 2 methodology for determining the national N2O emission inventory 

for Canada [162,163]. Regional-specific conditions (precipitation, soil texture, spring thaw, etc.) 

were considered in developing emission factor adjustments that were then applied on an eco-

district scale. Total agriculture-related N2O emissions between 1990 and 2005 were estimated to 

average 58.1 Gg N2O-N/year, with 68% attributed to direct emissions from soils, 15% attributed 

to direct emissions from animal waste management, and 17% attributed to indirect emissions. (1 

Gg = 10
9
 g, = 0.001 Tg.) The authors concluded that compared to IPCC Tier 1, application of 

this Tier 2 methodology yielded more accurate estimates of national emissions, as well as a 

better description of N2O spatial and temporal patterns. 

Application of a Tier 3, process model-based method for determining N2O emissions inventories 

may be expected to provide the most reliable results – provided sufficient inputs of high quality 

are available to run the model. Numerous studies have compared N2O emissions determined by 

process model-based methods and emission factor-based methods. Some of these comparisons 
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are discussed in the next section, in which the structure and use of process-based models are 

presented.   

4.4.1.4 Comparison of IPCC Estimates with Field Measurements 

Although it is desirable to compare IPCC N2O emissions estimates with actual field 

measurements, there are several factors which make this difficult and highly uncertain. Many of 

these factors are related to differences in temporal and spatial scales. The IPCC methodology is 

intended to estimate annual average N2O emissions on a large spatial scale – typically country-

wide. In contrast, field measurements of necessity are focused on smaller regions, and usually 

shorter time frames, but with higher temporal resolution. The development and application of 

automated flux chambers has enabled more rapid and reliable field measurements of N2O, 

providing multiple measurements throughout a 24-hour period, without disturbing the soil being 

sampled [164,165,166]. An example of such high resolution measurements is provided in Figure 

4-13. 

 

Figure 4-13: Measurement of N2O fluxes on a near-continuous basis. Arrows indicate dates of N fertilization. 

(Taken from Smith & Dobbie (2001) [164] by permission of John Wiley and Sons.) 

While these high resolution measurements are very useful in providing greater temporal ―fine 

structure‖ of N2O emissions, spatial variability may be more important in understanding total 

N2O emissions [164,166,167]. Even within a single field under identical agricultural activity, 

variations in soil type and water content result in significant differences in N2O emissions. Also, 

recent studies have shown that N2O emissions are affected not only by the total amount of 

applied fertilizer, but also by the form of the nitrogen (ammonia, urea, and other forms) 

[168,169] and the application technique [170,171]. Additionally, N2O emissions are influenced 

by land topography (slope) [172] and degree of compaction [173], due to the impact of these 

factors on soil structure and water content.  

In some agricultural regions, the springtime thaw of soils has been recognized as a significant 

contributor to the total annual emissions of N2O [148,174,175]. Johnson et al. showed that up to 
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65% of the total N2O annual flux in the U.S. cornbelt occurs during spring thaw [174]. It is 

generally believed that this ―spring burst‖ is due to both release of N2O trapped in the frozen soil, 

and to enhanced formation due to increased nutrient availability in the spring. However, Wagner-

Riddle recently showed that most of this spring burst is due to newly produced N2O in the soil 

surface layer (primarily by denitrification processes), not due to release of trapped N2O [175]. 

Given these many factors that influence N2O emissions, but are not accounted for in the simple 

IPCC Tier 1 methodology, comparison between IPCC estimates and field measurements would 

not necessarily be expected to provide good agreement in specific cases. However, it should be 

remembered that the IPCC default emission factor, EF1, for direct emissions of N2O was derived 

from analysis of numerous field studies [151,152,153,154,155]. (Only measurements of direct 

soil N2O emissions can be compared with IPCC estimates, as indirect emissions occur 

elsewhere.) Also, although the IPCC default factor is often referred to as a single value (i.e. EF1 

in IPCC-2006 is 1.0% of applied nitrogen), this value has considerable uncertainty, with a stated 

range of 0.3% - 3.0% (see Table 4-2).  

Since establishment of the IPCC-2006 default N2O emissions factor, several experimental studies 

have been reported in which measured values were compared with IPCC default values. 

Hyvönen et al. measured N2O fluxes from a peat extraction site in Finland that was used to 

cultivate Reed Canary Grass [176]. According to IPCC, considerable N2O emissions are 

expected from cultivation of histosol soils (such as peat). The IPCC-2006 default emissions 

factor for background N2O from temperate histosol soils used for crops and grasslands is 8 kg 

N2O-N/ha (see Table 4-2). However, over a 4-year measurement period, these researchers 

obtained an average value of only 0.56 kg N2O-N/ha – far below the IPCC default value. Van 

Beek et al. also measured N2O fluxes from fertilized and unfertilized grasslands on peat soils in 

the Netherlands [177]. Over a 2-year period, they found background N2O emissions in the range 

of 0.2 - 7.6 kg N2O-N/ha, with the result depending upon the wetness of the fields. These authors 

suggested that the IPCC methodology for peat soils could be improved by including a factor to 

account for annual average groundwater level.  

Chirinda et al. measured direct N2O emissions under several cropping systems on two soils in 

Denmark [178]. They determined annual N2O emission values that corresponded to 0.5-0.8% of 

applied fertilizer nitrogen. This range is slightly below the IPCC default EF1 value of 1.0%, but 

clearly within the established uncertainty range. Barton et al. measured N2O fluxes from canola 

croplands in semi-arid regions of Australia [179]. They found very low N2O levels, 

corresponding to 0.06% of applied fertilizer nitrogen – a value below the lower uncertainty range 

of EF1 established by IPCC. 

Jiang et al. investigated use of several different fertilizer types on corn and wheat crops in China 

(especially slow-release nitrogen compounds) [168]. N2O emissions were found to vary 

significantly with both crop type and fertilizer type, but were generally lower than predicted 

using the IPCC default EF1 value by a factor of 2-4. Finally, Vilain et al. investigated the effects 

of topography and slope position on N2O emissions in the Seine River basin of France [172]. 
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They found that N2O emission levels varied across the regions of shoulder, backslope, footslope, 

and riparian zones; and that this variation was largely explainable by differences in WFPS 

(water-filled pore space) and soil NO3
-
 concentrations across the topography. Measured annual 

average N2O emissions across the landscape ranged from 0.6% to 2.2% of applied nitrogen 

fertilizer, which is within the IPCC-2006 default range. 

Crutzen et al. have taken a very different approach in comparing N2O measurements with IPCC 

estimates [30]. Their top-down analysis is based on global atmospheric budgets of N2O. Using 

known atmospheric removal rates and a fixed pre-industrial N2O mixing ratio of 270 ppb, these 

authors determined the amount of anthropogenic N2O required to explain the current atmospheric 

mixing ratio. After subtracting estimated industrial sources, the remainder was defined to be 

agricultural sources of N2O. It was then determined that 3-5% of all nitrogen inputs to the 

terrestrial biosphere (whether by chemical, biological, or atmospheric mechanisms) were emitted 

as N2O. It was pointed out that this range of 3-5% greatly exceeded the IPCC-2006 direct N2O 

default value of 1.0% (or about 1.3% when including indirect N2O sources).  

This discrepancy between the Crutzen top-down and IPCC bottom-up inventory results is not as 

large as it initially appears. For example, N2O emissions associated with confined animal 

production are known to be large and variable – depending upon the type of animal waste 

management system (AWMS) being used. In IPCC-2006, however, this source of N2O is not 

included in the agricultural category. Other sources possibly mis-classified as agriculture-related 

by the Crutzen ―remainder calculation‖ include biomass combustion and mobile sources 

[180,181] Also, very recently, Destouni and Darracq identified an additional indirect N2O source 

that has been neglected by IPCC, but included implicitly in Crutzen‘s top-down method [182]. 

This N2O source results from conversion of leached nitrate in the sub-surface water system. The 

IPCC method does consider the impacts of leached nitrate, but only in surface water systems, not 

sub-surface. Based upon modeling of a Swedish drainage basin, these authors concluded that 

leaching-derived N2O emissions are of similar magnitude in the surface and sub-surface water 

systems. In summary, the approach taken by Crutzen et al. appears to over-estimate the amount 

of N2O that originates from agricultural activities. 

4.4.2 PROCESS-BASED MODELS FOR ESTIMATING N2O EMISSIONS 

While expedient for estimating country-level N2O emissions inventories using readily available 

information sources, the IPCC emission factor (EF) approach is unable to address numerous 

processes known to be important in affecting nitrification-denitrification mechanisms and N2O 

production [183,184,135]. For example, the IPCC-EF approach considers all agricultural systems 

to be the same throughout the world. It does not take account of differences in crops, soils, 

climate, and agricultural management practices – all of which are known to be important. 

Furthermore, IPCC-EF assumes that all cropped systems are in steady-state, with the entire N 

cycle occurring within a single calendar year. Clearly, this is an erroneous assumption, as 

nitrogen can be stored in the plant/soil system for longer periods of time, and participate in N2O 

–forming processes after a lag period of over 1-year [185,186]. 
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Process-based biogeochemical models are used to simulate fluxes of C and N among the 

atmosphere, vegetation, and soil; and determine global budgets for these species. Historically, 

these models were developed and applied to address critical agricultural concerns such as plant 

growth, crop yield, and soil organic matter (SOM) as functions of soil texture, temperature, 

precipitation, nutrient supply, tillage practices, and other parameters. More recently, these 

models have been adapted for use in estimating GHG emissions (including N2O) from 

agricultural activities.  

In contrast to simple, empirical models (such as IPCC Tier 1), process-based models simulate the 

biological, chemical, and physical processes that control C and N flows. These more complex 

models require detailed parameterization and extensive computation. Numerous biogeochemical 

models have been developed and applied to estimate GHG emissions from agricultural activities. 

Recently, the Technical Working Group on Agricultural Greenhouse Gases (T-AGG) issued a 

report describing three models commonly used in the U.S.: (1) CENTURY/DAYCENT, (2) 

DNDC (De-Nitrification De-Composition), and (3) EPIC/APEX [187]. These models were 

compared with respect to data input requirements, agricultural management practices included, 

crop types included, and other aspects. While these models are quite similar overall, a large 

number of subtle differences are identified. It was concluded that the primary limitations of these 

models are gaps in research and data, both of which are being filled over time. 

Other process-based models have been developed and applied to estimate N2O emissions in 

various agricultural situations around the world. Examples reported in the literature include the 

Nitrous Oxide Emission (NOE) model [188,189,173,190], NGAS [188], and SWAP-ANIMO 

[191]. A recent review paper summarizes the structure and attributes of these and other N2O 

simulation models [192]. However, for the purposes of this report, we focus on the 

CENTURY/DAYCENT modeling approach, as this is utilized by EPA and USDA in 

determining GHG emissions inventories associated with agricultural activities in the U.S. 

4.4.2.1 Development of DAYCENT 

One of the most widely used process models for simulating C and N fluxes was developed in the 

early 1990‘s and is called CENTURY. This ecosystem model provides annual output predictions 

of crop yield on a monthly time step [193,194]. Such low temporal resolution is sufficient for 

simulating the long-term changes (~100 years; hence the name CENTURY) in SOM, plant 

productivity, and other agricultural parameters in response to changes in climate, land use, and 

atmospheric CO2 concentrations. However, to accurately simulate trace gas fluxes (such as N2O) 

in soils requires much finer time resolution, since large changes in these fluxes result from short-

time events (hours – days) such as precipitation and snow melt. As an illustration of this, Figure 

4-13 shows actual field measurements of N2O from agricultural soil on an 8-hour basis. Clearly, 

a model with a monthly time step would be unable to represent the highly variable N2O flux 

shown in this figure. 
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To provide improved temporal resolution, a daily time-stamp version of the CENTURY Model 

was developed. This daily model, called DAYCENT, has sufficient specificity to enable 

modeling of N2O production and emissions from soils [195,196]. DAYCENT contains sub-

models for plant productivity, decomposition of dead plant material and SOM, soil water and 

temperature dynamics, and trace gas fluxes – including N2O [184,195]. The N sub-model 

simulates N2O, NOx, and N2 gaseous emissions from soils resulting from nitrification and 

denitrification processes [197,198]. 

DAYCENT assumes that releases of these nitrogen-containing gases from soils due to 

nitrification are proportional to the nitrification rates. These rates are controlled by soil NH4
+
 

concentration, water content, temperature, pH, and soil texture [197,199]. Additional parameters 

and assumptions regarding DAYCENT‘s treatment of nitrification are given in Scheme 4-13. 

The denitrification sub-model of DAYCENT first calculates total N gas flux from denitrification 

(N2 + N2O) and then uses a N2/N2O ratio function to infer separate N2 and N2O emissions 

[184,198,199]. Denitrification is controlled by labile soil carbon availability, soil NO3
-
 

concentration, and O2 availability. Additional parameters and assumptions regarding 

DAYCENT‘s treatment of denitrification are given in Scheme 4-13. 

 

The DAYCENT model predicts that O2 is readily available, and that little denitrification can 

occur in coarse-textured soils unless WFPS exceeds about 80%. However, in finer-textured soils 

(having lower gas diffusivity), denitrification can occur at WFPS values as low as 60%. Also, 

some N2O produced by denitrification can undergo further reduction to N2 before diffusing from 

Scheme 4-13 

DAYCENT N Gas Sub-Model Parameters and Assumptions 

Nitrification Process: 

 Nitrification rate increases with soil temperature (Tsoil) until Tsoil reaches the average high 
temperature for the warmest month of the year. 

 Nitrification is limited by moisture stress on microbial activity when the water-filled pore space 
(WFPS) is low. 

 Nitrification is limited by O2 availability when WFPS is high. 

 Peak nitrification rates typically occur when soil water content is ~50% WFPS; with finer-textured 
soils, peak nitrification rates occur at higher WFPS.  

Denitrification Process: 

 Modeled soil heterotrophic respiration is used as a proxy for labile soil C availability. 

 O2 availability is a function of WFPS and O2 demand. 

 O2 demand is a function of simulated heterotrophic CO2 respiration and soil diffusivity. 

 Gas diffusivity is a function of soil WFPS, bulk density, and field capacity. 
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the soil surface. DAYCENT utilizes a soil gas diffusivity function to determine the residence 

time of N2O in the soil, and hence the fraction that is converted to N2 before diffusing out.  

DAYCENT model inputs include daily maximum and minimum air temperatures, daily 

precipitation, soil texture class, vegetation type, cultivation schedules, amount and timing of 

nutrient amendments, and others. The model then computes N2O and N2 emissions from 

nitrification and denitrification in each of several soil layers on a daily time step basis. Simulated 

daily values of soil NH4
+
, NO3

-
, CO2, water content, and temperature are used in this 

computation. The computed N gas values are then summed over all soil layers to determine the 

total N2O and N2 emissions for the soil profile.  

NOx emissions from soils are computed as a function of total N2O emissions. The NOx/N2O 

ratio is low (~1) when gas diffusivity (and hence O2 availability) is low; but this ratio increases 

to a maximum of 20 as gas diffusivity increases. (With highly aerated soils, nitrification 

dominates over denitrification.) The computed base NOx emission rate is then modified by a 

―pulse multiplier‖ to account for periodic bursts of NOx resulting from precipitation events (as 

illustrated in Figure 4-13). A pulse multiplier sub-model is used to account for the amount of 

precipitation and the number of days since the previous precipitation event [184,200]. 

4.4.2.2 Validation of DAYCENT 

Numerous field experiments have been conducted to develop and improve inputs to parameterize 

the DAYCENT model, and to validate the model‘s performance. Much of this model validation 

work has been conducted and/or coordinated by groups of scientists from USDA and Colorado 

State University (CSU) [201,202,203,183,184,204]. CSU also maintains a website that offers 

descriptions of DAYCENT‘s development and usage, provides downloads for running the 

model, and lists literature references for more information [62].  

Another recent report by Jarecki et al. showed that DAYCENT simulations of N2O emissions 

from a corn field in Iowa agreed reasonably well with daily flux measurements when integrated 

over a year, although significant differences were observed on individual days [205]. Other 

comparisons of DAYCENT and IPCC estimates of N2O emissions in specific cases are provided 

in later sections of this report.  

4.4.3 U.S. APPROACH FOR AGRICULTURAL N2O EMISSIONS INVENTORIES 

USDA and EPA are the two primary U.S. agencies involved in determining and updating GHG 

emissions from agricultural activities. Recent reports from both agencies outline and document 

the methods by which agricultural-related N2O emissions are estimated [13,206,114].  

The U.S. has adopted an IPCC Tier 3 approach to N2O inventories, using the DAYCENT 

process-based model for direct N2O from soils, while utilizing simpler emission factor (EF) 

estimates in other parts of the inventory process. Specifically, DAYCENT is used to simulate 

fluxes of N2O between mineral agricultural soils and the atmosphere for major crop types – 

including corn, soybeans, wheat, alfalfa, cotton, and sorghum. (These crops represent 
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approximately 86% of total cropland in the U.S.) The IPCC Tier 1 methodology is used to 

estimate direct N2O emissions from non-major crops on mineral soils (barley, oats, tobacco, 

sugarcane, sugar beets, sunflower, rice, peanuts, and others) as well as direct emissions from 

cultivation of organic cropland soils (histosols).  

The underlying model data for the DAYCENT emissions estimates include global data sets of 

weather, soils, cropland area, and native vegetation. Daily weather data (precipitation, maximum 

temperature, and minimum temperature) are obtained from the National Oceanic and 

Atmospheric Administration (NOAA) National Center for Environmental Prediction (NCEP). 

Soils data include texture percentages of clay, sand, and silt as determined from national soil 

surveys [207]. Land management data (e.g. timing of planting, harvesting, and intensity of 

cultivation) are obtained from the Agricultural Sector Model (ASM) [208]. Cropland area data 

are obtained from the USDA‘s National Agriculture Statistics Service NASS [209]. 

DAYCENT simulations are conducted for each major crop at the county scale throughout the 

U.S. These simulated direct N2O emissions cannot be partitioned into the IPCC-recommended 

categories (i.e. synthetic fertilizer, organic fertilizer, sewage sludge, and crop residues) because 

in DAYCENT, once nitrogen enters the plant/soil system, the model cannot distinguish the 

original source of the nitrogen from which the N2O emissions are derived. To approximate 

emissions by IPCC activity categories, the total simulated amount of N2O emissions are simply 

apportioned according to the amount of N added to the soil from each source. However, this 

approach is quite uncertain because it assumes that all N made available in soil has an equal 

probability of being released as N2O, regardless of its source, which is unlikely to be the case 

[210]. 

Nitrogen losses from soils due to volatilization and leaching/runoff are calculated within 

DAYCENT for all major crops. However, the model does not simulate the transport and 

subsequent off-site conversion of these nitrogen species to N2O. Consequently, the amount of 

indirect N2O resulting from re-deposition of volatilized N is determined using the IPCC-2006 

default emission factor (EF4; 1.0% of N volatilized). Similarly, the amount of indirect N2O 

resulting from leaching/runoff of NO3
-
 is determined using the IPCC-2006 default factor (EF5; 

0.75% of N leached/runoff). For minor crops, both the amount of N volatilized or leached/runoff, 

and the fraction of this N that is converted to N2O are determined using the IPCC-2006 Tier 1 

method. As with IPCC, the U.S. approach assigns all indirect N2O emissions to the original 

source of the nitrogen, regardless of the final location where N2O occurs.  

4.4.4 COMPARISON OF DAYCENT AND IPCC N2O ESTIMATES 

In their description of the U.S. GHG inventory process, EPA presented a comparison of direct 

N2O emission estimates provided by DAYCENT and the IPCC-2006 Tier 1 approach [13]. 

Published field measurement studies from 12 North American sites were considered (11 in the 

U.S.; 1 in Canada). These represented numerous combinations of crop type, fertilizer treatment, 

and cultivation practices. All N2O emission values were expressed on a common basis of g N2O-
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N/ha-day. The results are shown in Figure 4-14, which is taken directly from the EPA document. 

This figure shows that in nearly every case, the DAYCENT estimates were closer to measured 

values than were the IPCC estimates. It was pointed out that in general, the IPCC Tier 1 

methodology tends to over-estimate emissions when the observed values are low, and under-

estimate emissions when the observed values are high. In comparison, the DAYCENT estimates 

are less biased. The improved performance of DAYCENT is expected, because this model 

accounts for site-specific factors (such as weather, soil type, and crop type) that influence N2O 

emissions, while the IPCC methodology does not. 

 

Figure 4-14: Comparison of direct soil N2O emission estimates from DAYCENT and IPCC (2006). (Taken from 

U.S.EPA [13]) 

 

A detailed comparison of DAYCENT and IPCC-1997 estimates of N2O emissions under 

different cropping conditions and geographic locations within the U.S. was published by Del 

Grosso et al. in 2005 [183]. Both direct soil N2O and indirect N2O (from volatilization/deposition 

and leaching) were estimated by the two methodologies. Major results from this study are 

represented graphically in Figure 4-15. At the national scale, DAYCENT simulation of total N2O 

emissions was about 25% lower than estimates derived using the IPCC-1997 method. Both 

methods computed highest N2O emissions in the central region, followed by northwest, 

southwest, southeast, and northeast. This ordering followed the relative sizes of these regions, as 

measured by cultivated acres. Within each of the five geographic regions, DAYCENT simulated 

lower direct N2O emissions and higher indirect emissions. Due to the dominance of the direct 

fraction, total N2O emissions were lower with DAYCENT compared to IPCC-1997. [Note: this 

difference between the DAYCENT and IPCC values would be smaller if the most recent IPCC 

method were used (IPCC-2006), due to reduction of the EF1 default emission factor from 1.25% 

to 1.00%.] 
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N2O Emissions by Agricultural Region N2O Emissions by Crop Type 

  

Figure 4-15:Comparison of DAYCENT and IPCC (1997) estimates of N2O emissions from major crops and 

agricultural regions in the U.S. Results are 10-year mean and standard deviation in units of CO2-Ceq. (Taken 

from Del Grosso et al. [183]. Used by permission of Elsevier.) 

 

Figure 4-15 also compares DAYCENT- and IPCC-predicted N2O emissions by crop type. These 

results highlight certain differences in the methodologies. For example, direct N2O emissions 

estimates are in close agreement for corn, cotton, and wheat; but not for the two nitrogen-fixing 

crops: alfalfa and soybeans. (These and other similar experimental data are reasons why the 

IPCC-2006 methodology eliminated atmospheric nitrogen fixation as a direct source of N2O.) On 

the other hand, estimated indirect N2O emissions are higher with DAYCENT, especially for 

soybeans. In part, this is due to assumed leaching of fixed nitrogen in DAYCENT, while this 

component is not included in IPCC-1997. 
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4.5 EFFECTS OF N2O EMISSIONS ON LIFE-CYCLE GHG EMISSIONS 

OF BIOFUELS 

As described in earlier sections of this report, life-cycle assessments (LCAs) are commonly 

employed to estimate and compare the carbon intensity (CI) of various biofuel pathways. Due to 

the importance of agricultural activities in producing feedstocks for 1
st
 generation biofuels 

(ethanol and biodiesel), accurate assessments of N2O emissions and their impacts are critical 

(See Figure 2-1).  

4.5.1 CARB/ GREET APPROACH 

In their recent assessment of life-cycle GHG emissions for biofuels, the California Air Resources 

Board (CARB) utilized the GREET model, developed by Argonne National Laboratory. (A 

California modification, called Ca-GREET, was actually used by CARB.) This model accounts 

for agricultural N2O emissions (both direct and indirect) using simple, default emission factors as 

recommended in the IPCC-2006 Tier 1 approach. The total default N2O emission factor used in 

GREET is 0.0133 kg N2O-N/kg applied N. This factor represents the sum of three separate 

factors, as shown in Table 4-4.  

Table 4-4: Default N2O Emission Factors used in GREET 

N2O Emissions Component 
Factor, 

kg N2O-N/kg soil-N inputs 

Uncertainty, 

kg N2O-N/kg soil-N inputs 

Direct N2O from soil 0.0100 0.0030 – 0.0300 

Indirect N2O from volatilized and re-deposited N 0.0010 0.0001 – 0.0055 

Indirect N2O from nitrate leaching and runoff 0.0023 0.0004 – 0.0088 

Total 0.0133 0.0058 – 0.0348 * 

*Total estimated range is derived assuming the individual IPCC ranges are log normal. Standard propagation of error 

routines are applied to lower and upper standard deviations[181]. 

The GREET methodology considers only direct N2O from managed mineral soils, not N2O from 

high organic histosol soils or from animal waste deposited on grazed pastures, range, and 

paddock.  In other words, GREET only utilizes the first of three terms shown in Scheme 4-9 for 

computing N2O-Ndirect emissions.  Also, under the direct N2O-NN-inputs term, GREET includes 

nitrogen from application of synthetic fertilizer (FSN) and nitrogen from crop residue (FCR), but 

not nitrogen from organic fertilizer (FON) or nitrogen from mineralization of organic matter 

(FSOM) (see Scheme 4-10).[211] 

For indirect N2O emissions resulting from volatilization and re-deposition, GREET considers 

only synthetic fertilizers with an assumed volatilization fraction of 10%.  Other terms involving 

organic fertilizers and animal wastes are not included (see Scheme 4-11).  

For indirect N2O emissions resulting from leaching and runoff, the GREET approach is not 

entirely clear.  Again, only nitrogen inputs from synthetic fertilizer are included—not organic 
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fertilizers, animal waste, or soil organic mineralization.  However, simple application of the 

IPCC default leaching fraction of 0.3 and the default leaching emission factor of 0.0075 would 

provide a total factor of 0.0025.  The slightly reduced factor of 0.0023 shown in Table 4-4 

suggests that at least in some applications, GREET may use slightly different factors. 

The estimated contribution of N2O emissions to the total life-cycle GHG impacts of a biofuel can 

be very significant. For example, in the CARB pathway for corn ethanol produced in a dry mill 

process, the total life-cycle GHG carbon intensity (CI) value is 67.6 g CO2,eqMJ
-1

[81]. Of this 

total, 15.9 g CO2,eqMJ 
-1

(23.5%) is attributed to agricultural N2O emissions.This is shown in 

Figure 4-16 along with similar assessments of N2O‘s contribution to the CI of sugarcane ethanol 

and soy biodiesel. 

 

Figure 4-16: CARB’s assessment of N2O’s contribution to direct CI of biofuels. [81,82,79] 

4.5.2 EPA’S APPROACH IN THE RFS2 

In their assessment of N2O emissions from adoption of RFS2, EPA combines estimates from 

FASOM for the U.S. and FAPRI for international emissions. FASOM emissions are based the 

DAYCENT model with regionally specific detail for crop type, moisture conditions, and other 

parameters.  International emissions are based on the FAPRI analysis of crops and FAO 

estimates of fertilizer inputs. The treatment is similar to GREET although the parameters for 

fertilizer application and crop residue are likely different.   

Figure 4-17shows EPA‘s estimates of N2O emissions from various feedstocks as presented in the 

regulatory impact analysis. [2]  These estimates are generated from the FASOM model which 

uses DAYCENT estimates of N2O emissions. Note the differences among feedstocks between 

the portion of emissions associated with fertilizer and crop residue. Crops such as switchgrass, 

which are largely removed from the field are assumed to leave no residue, while corn and 

soybeans leave more significant residues.  The level of N2O emissions are consistent with a 
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paper by Colorado State University, developers of DAYCENT, which show N2O emissions 

ranging from 1,000 to 2,000 g CO2,eq ha
-1

. [212] 

 

 

Figure 4-17: Annual N2O emission rates from the RFS2 Analysis. [2] 

 

4.5.3 JRC/ BIOGRACE APPROACH IN EU- RENEWABLE ENERGY DIRECTIVE 

The JRC report on the life cycle of fuels serves as a scientific evaluation of the range of fuel 

options and examines a range of inputs and allocation procedures. To model N2O emissions from 

agriculture, the study used results from a database-calculation model developed from a project 

estimating GHG emissions for all of Europe by the Soils and Waste Unit at the Institute for 

Environment and Sustainability at EC‘s Joint Research Center at Ispra. [19]GHG emissions for 

Europe were calculated day-by-day using the soil chemistry model and data segregated by crop 

type to give EU-averaged N2O emissions for each crop. The model was built on the soil 

chemistry model DNDC (DeNitrification DeComposition) [213] JRC uses daily weather data, 

manure rates, fertilizer rates from crop and soils characteristics, and country-based correction 

factor inputs.However, the IPCC default emission factor  approach for indirect emissions from 

leached Nitrogen was used.   

The BioGrace model was developed for certification under the Renewable Energy Directive 

(RED).[214]  The tool was used to provide default values for 22 fuel pathways in the Annex V of 

the RED, and is used by fuel developers to perform LCA analysis for certification. [215]The 

model follows the approach laid out in the JRC report.  BioGrace is configured with a series of 
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workbooks for many feedstocks and fuel pathways. The N2O emissions produced in the field are 

represented as inputs (default values) in kg/ha. The origin of the BioGrace defaults is the JRC 

analysis, so they are also based on the same nitrogen model approach.  

4.5.4 COMPARISON OF N2O ESTIMATES FROM DIFFERENT MODELING 

SYSTEMS 

The N2O estimates from different modeling systems can be compared using several metrics.  

However, comparing N2O contributions on a g/MJ of fuel basis is challenging because some 

modeling systems (such as FAPRI) incorporate yield improvements into the total demand for 

crops to create a biofuel feedstock.   

Figure 4-18 compares the overall N2O emissions from different studies on a g CO2,eq acre
-1

 basis.  

Results from GREET are computed using fertilizer and crop residue values with default 

conversion factors.  The RFS2 results are from the domestic analysis using FASOM as reported 

in the RIA [2] and shown in Figure 4-17. Additionally, results from the JRC (Joint Research 

Center) and the Biograce model are shown. Note that version of the JRC study and Biograce that 

were examined do not have an analysis for corn ethanol. 

The figure illustrates some significant differences between the model approaches. The N2O 

emissions from all of the crops vary over a significant range (except for rapeseed). The 

differences may be due in part to assumed fertilizer application rates for corn. In the case of 

soybeans, the effects of nitrogen fixation and crop residues are significant. Atmospheric nitrogen 

fixation in soybeans is an important process, resulting in over 100 pounds of nitrogen per acre 

(around 230 kg CO2,eq acre
-1

 as shown by the orange bar in Figure 4-17). Much of the fixed 

nitrogen is absorbed in the soybean crop itself, and thus is accounted for as part of the 

component of crop residue.  However, other nitrogen may be incorporated directly into the soil, 

not in the plant itself.  GREET does not include a term for this nitrogen fixation process, while 

FASOM (through the DAYCENT model) does.  The potential for N2O generation (both direct 

and indirect) from this fixed soil nitrogen is significant and uncertain.  

Since the default inputs for the Biograce model are based on the JRC study, not surprisingly, the 

N2O emissions from wheat and rapeseed are similar. 
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Figure 4-18: Comparison of Annual N2O emissions from LCA modeling systems. 

4.5.5 OTHER CONSIDERATIONS 

Adler et al. utilized an LCA approach to evaluate GHG impact of several bioenergy cropping 

systems [216]. The DAYCENT model was used to assess biomass yields and GHG fluxes for 

corn, soybeans, alfalfa, hybrid poplar, reed canarygrass, and switchgrass as bioenergy crops in 

Pennsylvania. All cropping systems provided net GHG sinks, mainly due to displaced fossil fuel 

by the biofuels produced from these biosources. N2O emissions (both direct and indirect) were 

the largest GHG sources in all cropping systems. Compared to the other crops, switchgrass and 

hybrid poplar had the lowest N2O emissions (mainly due to low fertilizer inputs), and 

consequently, provided the greatest GHG benefits.  

Reijnders and Huijbregts investigated LCA of biodiesel fuel produced from European rapeseed 

and Brazilian soybeans [217]. They concluded that total GHG emissions were higher in the 

biofuel cases than with conventional fossil diesel. A significant contributor to this was the 

assumed high N2O emissions from agricultural activities. Based on the reports by Crutzen et al. 

[30], these authors assumed a wide range of 1.5-5.0% conversion of applied N to N2O. The 

overall high uncertainty in their GHG assessments (10-30%) was driven mainly by this large 

range of N2O emission factors. 

In the report by Crutzen et al., the effects of N2O on GWP of three biofuels were estimated: (1) 

biodiesel from rapeseed, (2) ethanol from corn, and (3) ethanol from sugar cane. This work did 

not involve a formal LCA study. Instead the nitrogen content within the biomass feedstocks 

themselves was used as a proxy for the amount of nitrogen that must eventually be replenished in 

the soil. Thus, crops containing higher N content (such as rapeseed) require more nitrogen inputs 

– and hence are assumed to be responsible for more N2O emissions – than crops with low 

nitrogen content (such as sugar cane). Using the high range of N2O conversion factors (3-5%) 

determined by their top-down inventory method, Crutzen et al. then computed the N2O emissions 
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resulting from each of these three biofuels. The increase in GWP resulting from these emissions 

were compared to the GWP decrease resulting from displacement of fossil fuels with biofuels 

using a factor called ―relative warming.‖ (This factor is the ratio between ―climate warming‖ 

from N2O and ―climate cooling‖ from displaced fossil fuels.) For ethanol from sugar cane, the 

computed relative warming values are 0.5-0.9, meaning that GWP benefits are realized over the 

range of N2O emission factors used. For biodiesel from rapeseed, the relative warming values are 

1.0-1.7, meaning that GWP dis-benefits are realized over the range of N2O emission factors. 

Ethanol from corn had intermediate relative warming values of 0.9-1.5.  

Crutzen et al. suggested that greater GWP benefits would result from use of low-nitrogen 

containing perennial grass biofuel feedstocks such as switchgrass and miscanthus. (In fact, Davis 

et al. recently reported use of DAYCENT modeling to show significantly reduced N2O emissions 

from these grasses as compared to corn [218].) Crutzen also assumed a global nitrogen fertilizer 

uptake efficiency of 40%, and showed that increasing this efficiency to 60% would substantially 

improve the GWP benefits of biofuels. Other assumptions and simplifications by Crutzen are 

discussed by Mortimer et al. who offer this assessment of the approach: ―All-in-all, one layer of 

dubious assumptions is added on top of further layers of assumptions and combined with 

unreliable data to form firm and radical conclusions about the potential of biofuels to reduce 

GHG emissions‖ [181]. 

In a more thorough study, Smeets et al. investigated the contribution of N2O to life-cycle GHG 

impacts of 1
st
 generation biofuels from various sources [219]. In particular, ethanol from corn, 

wheat, sugar cane, and sugar beets was considered; as well as biodiesel from soybeans, rapeseed, 

and palm oil. Two levels of crop management were considered: (1) conventional management as 

of the year 2000, and (2) optimized management, which included higher crop yields, optimized 

fertilizer and water regimes, and use of nitrification inhibitors to reduce N2O emissions. N2O 

emission rates for each crop/fuel system were based upon a modified IPCC-2006 Tier 1 approach 

for the geographic regions of interest. In most scenarios investigated, optimized agricultural 

management reduced N2O emissions/mass of crop by 20-80%. LCA modeling results showed 

that the impact of N2O emissions on total GHG varied widely among different crops, regions, 

and land reference systems chosen. A good summary of the results from several scenarios is 

presented in Figure 4-19, which shows both N2O mass emissions and the percent change in total 

GHGs compared to fossil fuel usage. On both bases, the benefit of optimized management (OM) 

compared to conventional management (CM) can be seen. The authors concluded that N2O 

emissions typically contribute between 10% and 80% of the total life-cycle GHG emissions due 

to biofuels; and that the crop type, climate, and choice of reference land use system are key 

factors when calculating N2O emissions due to crop production. While the overall GHG benefits 

of some scenarios were uncertain, clear benefits were seen in nearly all cases involving ethanol 

from sugar cane, ethanol from sugar beets, and biodiesel from palm oil.  
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Figure 4-19: Impact of crop management system on emissions of N2O per unit crop and on the change in 

GHG emissions compared with fossil fuels. OM is optimized management, CM is conventional management. 

(Taken from Smeets et al. [219]. Used by permission of publisher) 

 

4.6 MITIGATION OF N2O EMISSIONS 

It has been recognized for some time that specific agricultural management practices can be 

employed to reduce N2O emissions from soils. Wagner-Riddle and Thurtell reported that the 

spring thaw N2O burst from cropland soils in Ontario, Canada was exacerbated by manure 

application or alfalfa incorporation in the fall, but was reduced by use of over-wintering 

crops[148].   

McSwiney and Robertson demonstrated a non-linear relationship between fertilizer nitrogen 

application and N2O emissions from corn fields in Michigan [220]. Linear N2O increases were 

observed until a threshold fertilizer level was reached, after which the increase in N2O was much 

higher. These authors suggested that avoiding excessive fertilizer application would be an 

effective N2O mitigation measure. DeAngelo et al. reported that avoidance of excessive fertilizer 

use could be the most cost-effective  agricultural N2O mitigation measure [221]. 
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Drury et al. demonstrated the effects of rotational cropping on N2O emissions from fields in 

Ontario, Canada [222]. They pointed out that the crop residue being decomposed and supplying 

nutrients to the soil is usually from a different crop than what is currently being grown. 

Monoculture of corn was found to give much higher annualized N2O emissions than 

monoculture of wheat or soybeans. This was due both to the higher fertilizer requirements for the 

corn being grown, and retention of high-N corn residue from the previous years in the soil. 

Rotational cropping of wheat or soybeans with corn substantially reduced the overall N2O 

emissions. Similar N2O reduction benefits of corn rotational cropping practices have been 

reported in other studies [169,223]. 

The type of fertilizer being used also has been shown to affect N2O emissions. Venterea et al. 

demonstrated reduced N2O from Minnesota corn cropping systems when using urea as compared 

to anhydrous ammonia [169]. There has also been considerable interest in use of fertilizer 

formulations that include nitrification inhibitors to reduce N2O emissions [224,225,226]. In 

addition, application of time-release fertilizers – and application of smaller but more frequent 

dosages of fertilizer – have been shown to reduce N2O emissions [114]. 

No-till cultivation has received considerable attention as a possible means of reducing overall 

GHG emissions from agricultural activities – mainly due to lower CO2 emissions. However, the 

effects of no-till upon N2O are less clear, and vary considerably from case-to-case. Several 

studies have reported increased N2O emissions from application of no-till cultivation 

[227,157,228]; others have reported decreases [184,204,229,223]; and some report no effect. Six 

at al. recently evaluated numerous published studies regarding the effect of no-till upon total 

GHG emissions [230]. They determined that N2O fluxes increased during the first 10-years of 

no-till cultivation, but eventually decreased after many years. 

Another potential mitigation measure involves application of biochar to soils [231]. It is 

postulated that both biological and soil physical mechanisms could be responsible for the 

reductions in N2O observed following application of biochar. Others have suggested that the 

copper-based de-nitrification enzyme responsible for reducing N2O to N2 in soils could be 

manipulated to promote greater conversion of N2O, thereby reducing its emissions from soil 

[232]. Broader discussions of a range of N2O mitigation measures from agricultural management 

strategies are provided by Snyder et al. [126], IPCC [233], and the Technical Working Group on 

Agricultural Greenhouse Gases (T-AGG) [234].  

 



122 

 

5 SUMMARY AND RECOMMENDATIONS 

Life cycle assessments are being used in policy as a method to determine the relative GHG 

benefits of alternative fuels as compared to conventional petroleum fuels.  However, there are 

still several aspects of biofuel LCA that contain large uncertainties, particularly agricultural 

emissions of N2O and GHG emissions arising from indirect land use changes.  In this work, we 

have investigated approaches taken to modeling these two controversial areas of LCA. 

5.1 INDIRECT LAND USE CHANGES 

Modeling ILUC is complex and is outside the scope of a conventional LCA model.  The 

determination of ILUC requires linking agro-economic models, which determine the amount and 

type of land use changes occurring in response to increased biofuel use, to emission factor 

databases, which contain carbon-stock data to calculate the resulting GHG flux from converting 

these lands.  Because of the complexity and lack of means for verification, the issue of ILUC is 

highly uncertain. Assessments of a carbon intensity of ILUC range from 18 to 106 g CO2,eq MJ
-1

 

fuel for corn ethanol over a 30 year period. [5,1] Regardless, policies are adopting ILUC into 

LCA calculations so as not to ignore such a potentially significant impact.   

It is therefore important to understand how ILUC is modeled, which assumptions introduce the 

most uncertainties, and which carry the most impact.  The primary influences in ILUC are the 

determination of the amount, location and type of land converted, and the emission factors 

applied to the land.  In this work, we have compared the modeling approaches used in policy 

such as the EPA‘s Renewable Fuel Standard (RFS2) and California‘s Low Carbon Fuel Standard 

(LCFS), with other significant studies such as Searchinger [1,6] and Tyner [5].  

Comparisons of the differences from the overall LCA results, the results from the agro-economic 

models, and the emission factor databases are highlighted below. 

Discussion of Overall LCA results 

 Searchinger was one of the first to introduce the potentially significant impacts of ILUC 

to GHG of biofuels, and has predicted some of the highest carbon intensity values. [1] 

His work was based on land use modeling by FAPRI-CARD [91], and linked to the 

Woods Hole emission factor database.  Since then, agro-economic models have utilized 

updated databases to better predict the LUC response to biofuels policy, and overall 

estimates of LUC-induced GHG emissions have decreased. [57,60,64,90] 

 Many studies have relied on the Woods Hole database to determine the GHG emission 

factors resulting from LUC predicted by agro-economic models. [3,5].  This database is 

coarse, breaking down the world into only 10 regions.  The EPA has applied a more 

spatially explicit approach, and has applied the Winrock database, which has carbon 

stock data for over 750 regions worldwide. [2,73] We attempted to compare these 

databases to determine which data and assumptions have the largest influence on results.  
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However, the databases are not directly comparabledue to differences in methodologies 

and application, as well as differences in spatial data.  Comparison of the databases 

would be possible through further manipulation of the Winrock data into corresponding 

regions of the Woods Hole database.  

 In all LCA studies investigated, predicted GHG emissions are larger for soy biodiesel 

than corn-ethanol.  Low yields of soy oil and high demands for vegetable oils which must 

be replaced require more land extension, particularly in Latin America and Southeast 

Asia 

Discussion of Land Use Change Results from Agro-economic models  

LUC results are not consistent between reports, or even within reports.  The major differences in 

LUC results are due to differences in agro-economic models used.  CARB uses the GTAP 

model, while EPA uses two different models: FASOM is used to predict domestic LUC while 

FAPRI is used to predict international LUC. Different models predict different amounts of land 

use change in different locations, as well as different types of land conversion.  

 The GTAP model predicts land conversion between forests, pasture and cropland for 19 

different world regions. Both Tynerand CARB use the GTAP model.[3,5] However, 

recent publications from Tyner include major revisions to the GTAP model which 

improve the analysis of biofuels and result in lower LUC. The total land conversion 

predicted by Tyner is only half that predicted by CARB although more of the conversion 

occurs in forests (32% compared to 22%).   

 FAPRI predicts land conversion of cropland (including perennial and annual crops) and 

pasture.  A net zero land approach is taken, so the makeup of any land requirements not 

met through conversion between these categories is met through ―natural lands‖.  

Natural lands are made up of forests, shrublands, grasslands, and other land types, each 

of which has its own emission factors.  FAPRI predicts land conversions for 54 regions.  

 FASOM predicts cropland conversion withinthe U.S., calculating the LUC and resulting 

emissions endogenously.  It is therefore difficult to fully understand and evaluate the 

LUC and GHG emissions, and is not possible to compare the EFs from other databases.  

The EPA results show a FASOM prediction of negative emissions from LUC for both 

corn ethanol and soy biodiesel, although the reasons for this are not clear. 

 The total ILUC estimated in the EPA report is from expansion of cropland [2].  In the 

FAPRI analysis for international ILUC, cropland includes annual and perennial crops. 

Total LUC results from FAPRI include changes to pastureland, which are also used to 

estimate the resulting GHGs.   FASOM, however, only reports increases in cropland, so 

it is unclear how changes in pasture or other land types affect the final ILUC- GHG 

result.  However, it seems likely additional LUC not reported is used to estimate GHGs 

since results for cropland increases total 1.4 million acres, yet GHGs are reduced by 4 g 

CO2,eqMJ
-1

 in the corn ethanol case. The changes in pasture land are also used to estimate 
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other emissions in the ―direct‖ categories.  This adds additional uncertainty about double 

counting emissions.  

 In the EPA modeling approach, the boundaries between the CI values reported are not 

clear, making it difficult to understand which of the impacts are direct and which are 

indirect.  

 The CARB analysis is the least transparent.  Very coarse results are given, so it is 

difficult to compare the LUC results.  

Comparison of Emission Factor Databases. 

The methods and approaches used by CARB and EPA are not directly comparable and introduce 

further questions.   

 C-stock data in the Winrock database are given for over 750 administrative units world 

wide.  The data areused to calculate emission factors for 44 conversion and reversion 

classifications.  The EFs are then weighted into regional EFs for several different land 

conversion classifications using MODIS satellite data. A single weighted EF for each 

region in the FAPRI database is not provided. 

 The Woods Hole database provides emission factors for 10 regions.  In the CARB 

analysis, the emission factors are weighted into conversion from forest and pasture based 

on historical land use change data.  

 More spatially explicit data adds complexity, but improves reliability of results.  Most 

researchers believe the regions used in the Woods Hole database are too coarse.  CARB 

is currently developing a more spatially explicit database for use in the LCFS.  The data 

are from similar sources as Winrock (such as the World Harmonized Soils Database-

WHSD). 

 Soil carbon analysis is different between the two studies so is not directly comparable.  

The Woods Hole database provides data for the top 1 m of soil, and assumes that 25% is 

released following conversion to cropland.  The Winrock database applies the WHSD for 

the top 30 cm of soil.  The amount lost is variable by region and soil type, ranging from 

20% to 50%, and is accounted over 20 years. 

 Carbon stock for vegetation are comparable between databases in that the ranges are 

similar.  However, the Winrock database applies lower average C-stock data for above 

and below ground biomass.  The calculations for emissions from above- and below- 

ground biomass are treated differently between EPA and CARB.  EPA assumes that all 

C-stock will be lost upon conversion, although a calculation for harvested wood products 

is included (but no data are).  CARB assumes that 10% of the carbon in vegetation is not 

converted, following IPCC recommendations.  
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Additional considerations: The impacts of global biofuel policies should be modeled 

Although the EU has not yet adopted the inclusion of ILUC in its policy, it is beginning to look 

at its potential effects. [8,27,89,88] In policy-related studies, the impacts of the full policy are 

modeled, and fuels are broken out separately.  However, it is reasonable to assume that each 

individual study might project LUC on the same lands.  For example, in the EU policy, a 

mandate of 5.6% biofuel use by 2020 means that additional ethanol will have to be imported 

from Brazil. The U.S. policy requiring additional ethanol by 2020 is also projected to demand 

land in Brazil.  This might result in a ―competition‖ for the new lands from each of the policies, 

which could cause additional expansion into lower quality, more marginal lands, resulting in 

lower yields and greater GHG emissions.  

5.2 TIME ACCOUNTING 

Although there has been a general consensus among policy makers in the approach taken for 

time accounting, the topic has been heavily debated within the scientific community.  The 

annualization approach adopted by the EPA, CARB, and the was chosen primarily out of 

simplicity, since the application of complex models adds further uncertainty to a topic which is 

already highly uncertain.  Both EPA and CARB have selected a time horizon of 30 years, while 

the EU has elected to allocate over 20 years.   

Numerous other methodologies have been proposed, and calculation methods within the 

annualization methodology have been debated. Support is garnering behind the fuel warming 

potential (FWP) methodology for time accounting since it follows similar metrics to those 

already used to determine GWPs of different GHGs.  However, it is unlikely that policies will 

adopt a different method in the near term, particularly since CI values predicted using the current 

annualization methods have already been adopted into regulation.  

5.3 AGRICULTURAL EMISSIONS 

N2O is a potent GHG that contributes significantly to the total anthropogenic GWP. N2O is 

emitted directly from soils, through microbially-induced nitrification and denitrification 

processes. In addition, indirect N2O emissions result from deposition of nitrogenous species 

previously volatilized from soils, and from leaching/runoff of nitrogen from soils and into 

waterways. A complete understanding of a biofuel‘s GHG impacts requires accurate accounting 

of N2O emissions from all these pathways.  

 IPCC methodology for N2O modeling  

 IPCC methodologies have evolved over the past 15 years. Current guidance describes a 

set of three Tiers for developing N2O emissions inventories, with the choice of tier to be 

used depending upon the availability and reliability of data input sources. 

 IPCC‘s most simplified approach, called Tier 1, computes N2O emissions as the sum of 

three main components: (1) direct emissions from soils, (2) indirect emissions resulting 
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from deposition of previously volatilized soil nitrogen, and (3) indirect emissions 

resulting from leaching and/or runoff of nitrogen from soils.   

 The IPCC Tier 1 method utilizes default emission factors and default values for fraction 

of soil nitrogen that is volatilized, and fraction of soil nitrogen lost by runoff and/or 

leaching. While these values are based upon assessments of experimental data, they have 

very large uncertainty ranges.  

 IPCC Tier 2 utilizes the same methodological approach as Tier 1, but applies emissions 

and stock change factors that are based on regionally-specific data, rather than universal 

defaults. A Tier 2 N2O inventory typically has higher temporal and spatial resolution 

compared to a Tier 1 inventory.  

 IPCC Tier 3 employs process-based methodologies for determining N2O emissions 

inventories.  The current U.S. agricultural GHG inventory utilizes a Tier 3 approach for 

estimating direct N2O emissions from major crops. 

 Use of the GREET Model to estimate a biofuel‘s carbon intensity (CI) generally involves 

application of an IPCC Tier 1 approach for determining agricultural N2O emissions.  

Process-based methodology for N2O modeling 

 Process-based biogeochemical models simulate fluxes of nitrogen among the atmosphere, 

vegetation, and soil. These models represent the physical, chemical, and biological 

processes that influence N2O formation. 

 In development of the current U.S. agricultural GHG inventory, U.S. EPA and USDA 

have employed a process-based model, called DAYCENT, to estimate N2O emissions. 

 DAYCENT (and all other process-based models) require extensive data inputs to 

accurately simulate N2O emissions. These inputs include crop type, soil type, nitrogen 

input, temperature, precipitation, pH, and others. 

 Limited experimental data suggests that agricultural N2O emissions are estimated more 

accurately when using DAYCENT than when using an IPCC Tier 1 method. 

Mitigation of N2O emissions 

 Specific agricultural practices have been shown to mitigate N2O emissions. These include 

adjustments to the timing, type, and amount of fertilizer application. The impacts of no-

till cultivation upon N2O emissions are unclear. 

 An IPCC Tier 1 method for estimating N2O emissions does not account for any variations 

in agricultural practices (other than fertilizer amount). 
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5.4 RECOMMENDATIONS FOR FUTURE WORK 

1. Further understanding of the differences in assumptions and inputs of economic 

models is needed. 

The agro-economic models are used to determine key factors for estimating land use change 

emissions, including how much LUC is occurring, where it is occurring, and which types of land 

are being converted.  Further investigation of how different economic models measure and 

predict LUC is needed to understand how assumptions and inputs can affect the results.   

2. Analysis of Developing Policies 

CARB is updating its methodologies to develop more spatially explicit EF databases that can be 

used directly with the GTAP model. Additionally, it is incorporating updates to the GTAP 

model, which tend to predict lower amounts of LUC than originally estimated. [5,60] Revisions 

to ILUC modeling approaches should be completed and considered by the Board by mid-2012.  

Changes to the GTAP model and their effects on results should be understood.  Updates to the 

carbon-stock databases should be compared to those used by the EPA.   

Additionally, the EU has taken a ―wait and see‖ approach in response to ILUC.  Developments in 

international fuel policies should be monitored. 

3. Improved Transparency, Harmonization and Uncertainty Analysis 

Different modeling systems, approaches, and data sets have arisen to address different scientific 

and regulatory needs.  Given this situation, it seems unlikely that harmonization can be achieved, 

although greater consistency of certain modeling approaches and data sets is certainly desirable. 

For example, classification of land conversion types can result in significant differences to GHG 

emissions estimates from ILUC.  Additionally, carbon stock data from existing databases such as 

Woods Hole and Winrock are difficult to compare without careful manipulation of data.     

However, improved transparency should be a goal in every case.  This can be achieved by 

providing sufficient details regarding methodologies, datasets, assumptions and results.  Related 

to the transparency, a quantitative assessment of model uncertainty (including ILUC uncertainty) 

should be provided. 

4. Treatment of agricultural N2O emissions in LCA of biofuels 

Use of the GREET Model in biofuel LCA studies generally involves application of IPCC Tier 1 

recommended emission factors for agriculturally-related N2O emissions. However, derivation of 

the emission factors actually applied in GREET is generally not clearly explained, and 

distinctions between direct and indirect emissions are not always apparent. Future studies should 

more clearly explain the derivation of all factors being used. Additionally, the full uncertainty 

range of the IPCC-recommended default factors should be used in sensitivity studies to better 

understand the possible range of contributions that agricultural N2O emissions can have to a 

biofuel‘s CI value.  



128 

 

5. Application of process-based N2O emissions model 

The contribution of N2O emissions to a biofuel‘s CI value is generally estimated using simplistic 

default emission factors, which do not account for crop type, soil type, climate, cropping 

practices, or other factors known to influence N2O emissions. Efforts should be made to couple a 

process-based N2O emissions model, such as DAYCENT, with GREET, to provide more reliable 

estimates of the N2O emissions attributable to growth of feedstocks for biofuels.  In addition, 

more rigorous comparisons should be made between N2O determined by DAYCENT and 

determined by IPCC Tier 1. 
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A. APPENDIX A: REGION CORRELATION FOR WINROCK, FAPRI AND 

WOOD’S HOLE  

Winrock Country Winrock- Admin Unit Corresponding FAPRI Region Corresponding Woods Hole Region 

Afghanistan  Other Asia N. Africa/ Middle East 

Albania  Other Eastern Europe Soviet Union 

Algeria  Algeria N. Africa/ Middle East 

Andorra  Rest of World Rest of World 

Angola  Other Africa Africa 

Argentina Buenos Aires Argentina Latin America 

Argentina Catamarca Argentina Latin America 

Argentina Chaco Argentina Latin America 

Argentina Chubut Argentina Latin America 

Argentina Ciudad de Buenos Aires Argentina Latin America 

Argentina Corrientes Argentina Latin America 

Argentina Formosa Argentina Latin America 

Argentina Jujuy Argentina Latin America 

Argentina La Pampa Argentina Latin America 

Argentina La Rioja Argentina Latin America 

Argentina Mendoza Argentina Latin America 

Argentina Misiones Argentina Latin America 

Argentina Salta Argentina Latin America 

Argentina San Juan Argentina Latin America 

Argentina San Luis Argentina Latin America 

Argentina Santa Cruz Argentina Latin America 

Argentina Santa Fe Argentina Latin America 

Argentina Santiago del Estero Argentina Latin America 

Argentina Tierra del Fuego Argentina Latin America 

Argentina Cordoba Argentina Latin America 

Argentina Entre Rios Argentina Latin America 

Argentina Neuquen Argentina Latin America 

Argentina Rio Negro Argentina Latin America 

Argentina Tucuman Argentina Latin America 

Armenia  Other CIS Soviet Union 

Australia Australian Capital Territory Australia Developed Pacific 

Australia New South Wales Australia Developed Pacific 

Australia Northern Territory Australia Developed Pacific 

Australia Queensland Australia Developed Pacific 

Australia South Australia Australia Developed Pacific 

Australia Tasmania Australia Developed Pacific 

Australia Victoria Australia Developed Pacific 

Australia Western Australia Australia Developed Pacific 

Azerbaijan  Other CIS Soviet Union 

Bangladesh  Bangladesh Southeast Asia 

Belarus  Other CIS Soviet Union 

Belize  Rest of World Rest of World 

Benin  Western Africa Africa 

Bhutan  Other Asia Southeast Asia 

Bolivia  Other Latin America Latin America 

Bosnia and Herzegovina  Other Eastern Europe Soviet Union 

Botswana  Other Africa Africa 

Brazil: Amazon Biome Acre Brazil: Amazon Biome Latin America 

Brazil: Northeast Coast Alagoas Brazil: Northeast Coast Latin America 

Brazil: Amazon Biome Amapa Brazil: Amazon Biome Latin America 

Brazil: Amazon Biome Amazonas Brazil: Amazon Biome Latin America 

Brazil: North-Northeast Cerrados Bahia Brazil: North-Northeast Cerrados Latin America 

Brazil: Northeast Coast Ceara Brazil: Northeast Coast Latin America 

Brazil: Central-West Cerrados Distrito Federal Brazil: Central-West Cerrados Latin America 

Brazil: Southeast Espirito Santo Brazil: Southeast Latin America 

Brazil: Central-West Cerrados Goias Brazil: Central-West Cerrados Latin America 

Brazil: North-Northeast Cerrados Maranhao Brazil: North-Northeast Cerrados Latin America 

Brazil: Amazon Biome Mato Grosso A Brazil: Amazon Biome Latin America 

Brazil: Central-West Cerrados Mato Grosso CW Brazil: Central-West Cerrados Latin America 

Brazil: Central-West Cerrados Mato Grosso do Sul Brazil: Central-West Cerrados Latin America 

Brazil: Southeast Minas Gerais Brazil: Southeast Latin America 
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Winrock Country Winrock- Admin Unit Corresponding FAPRI Region Corresponding Woods Hole Region 

Brazil: Amazon Biome Para Brazil: Amazon Biome Latin America 

Brazil: Northeast Coast Paraiba Brazil: Northeast Coast Latin America 

Brazil: Southeast Parana SE #N/A Latin America 

Brazil: South Parana S Brazil: South Latin America 

Brazil: Northeast Coast Pernambuco Brazil: Northeast Coast Latin America 

Brazil: North-Northeast Cerrados Piaui Brazil: North-Northeast Cerrados Latin America 

Brazil: Southeast Rio de Janeiro Brazil: Southeast Latin America 

Brazil: Northeast Coast Rio Grande do Norte Brazil: Northeast Coast Latin America 

Brazil: South Rio Grande do Sul Brazil: South Latin America 

Brazil: Amazon Biome Rondonia Brazil: Amazon Biome Latin America 

Brazil: Amazon Biome Roraima Brazil: Amazon Biome Latin America 

Brazil: South Santa Catarina Brazil: South Latin America 

Brazil: Southeast Sao Paulo Brazil: Southeast Latin America 

Brazil: Northeast Coast Sergipe Brazil: Northeast Coast Latin America 

Brazil: North-Northeast Cerrados Tocantins Brazil: North-Northeast Cerrados Latin America 

Brunei Darussalam  Rest of World Rest of World 

Burkina Faso  Other Africa Africa 

Burundi  Other Africa Africa 

Cambodia  Rest of World Rest of World 

Cameroon  Other Africa Africa 

Canada Alberta Canada Canada 

Canada British Columbia Canada Canada 

Canada Manitoba Canada Canada 

Canada New Brunswick Canada Canada 

Canada Newfoundland and Labrador Canada Canada 

Canada Northwest Territories Canada Canada 

Canada Nova Scotia Canada Canada 

Canada Nunavut Canada Canada 

Canada Ontario Canada Canada 

Canada Prince Edward Island Canada Canada 

Canada Saskatchewan Canada Canada 

Canada Yukon Canada Canada 

Canada Quebec Canada Canada 

Central African Republic  Other Africa Africa 

Chad  Other Africa Africa 

Chile  Other Latin America Latin America 

China Anhui China China/ India/ Pakistan 

China Beijing China China/ India/ Pakistan 

China Chongqing China China/ India/ Pakistan 

China Fujian China China/ India/ Pakistan 

China Gansu China China/ India/ Pakistan 

China Guangdong China China/ India/ Pakistan 

China Guangxi China China/ India/ Pakistan 

China Guizhou China China/ India/ Pakistan 

China Hainan China China/ India/ Pakistan 

China Hebei China China/ India/ Pakistan 

China Heilongjiang China China/ India/ Pakistan 

China Henan China China/ India/ Pakistan 

China Hubei China China/ India/ Pakistan 

China Hunan China China/ India/ Pakistan 

China Jiangsu China China/ India/ Pakistan 

China Jiangxi China China/ India/ Pakistan 

China Jilin China China/ India/ Pakistan 

China Liaoning China China/ India/ Pakistan 

China Nei Mongol China China/ India/ Pakistan 

China Ningxia Hui China China/ India/ Pakistan 

China Qinghai China China/ India/ Pakistan 

China Shaanxi China China/ India/ Pakistan 

China Shandong China China/ India/ Pakistan 

China Shanghai China China/ India/ Pakistan 

China Shanxi China China/ India/ Pakistan 

China Sichuan China China/ India/ Pakistan 

China Tianjin China China/ India/ Pakistan 

China Xinjiang Uygur China China/ India/ Pakistan 

China Xizang China China/ India/ Pakistan 

China Yunnan China China/ India/ Pakistan 

China Zhejiang China China/ India/ Pakistan 

Colombia  Colombia Latin America 

Costa Rica  Other Latin America Latin America 

Cote d'Ivoire  Ivory Coast Africa 
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Croatia  Other Eastern Europe Soviet Union 

Cuba  Cuba Latin America 

Democratic Republic of the Congo  Other Africa Africa 

Dominican Republic  Other Latin America Latin America 

Ecuador  Other Latin America Latin America 

Egypt  Egypt N. Africa/ Middle East 

El Salvador  Other Latin America Latin America 

Equatorial Guinea  Rest of World Rest of World 

Eritrea  Rest of World Rest of World 

Ethiopia  Other Africa Africa 

EU Austria EU Europe 

EU Belgie EU Europe 

EU Bulgaria EU Europe 

EU Cyprus EU Europe 

EU Czech Republic EU Europe 

EU Denmark EU Europe 

EU Germany EU Europe 

EU Spain EU Europe 

EU Estonia EU Europe 

EU Finland EU Europe 

EU France EU Europe 

EU Greece EU Europe 

EU Hungary EU Europe 

EU Ireland EU Europe 

EU Italy EU Europe 

EU Latvia EU Europe 

EU Lithuania EU Europe 

EU Luxembourg EU Europe 

EU Netherlands EU Europe 

EU Poland EU Europe 

EU Portugal EU Europe 

EU Slovenia EU Europe 

EU Romania EU Europe 

EU Slovakia EU Europe 

EU Sweden EU Europe 

EU United Kingdom EU Europe 

Gabon  Other Africa Africa 

Gambia  Rest of World Rest of World 

Ghana  Other Africa Africa 

Guatemala  Guatemala Latin America 

Guinea  Other Africa Africa 

Guinea-Bissau  Rest of World Rest of World 

Guyana  Other Latin America Latin America 

Guyane  Rest of World Rest of World 

Haiti  Other Latin America Latin America 

Honduras  Other Latin America Latin America 

Iceland  EU Europe 

India Andaman and Nicobar India China/ India/ Pakistan 

India Andhra Pradesh India China/ India/ Pakistan 

India Arunachal Pradesh India China/ India/ Pakistan 

India Assam India China/ India/ Pakistan 

India Bihar India China/ India/ Pakistan 

India Chandigarh India China/ India/ Pakistan 

India Chhattisgarh India China/ India/ Pakistan 

India Dadra and Nagar Haveli India China/ India/ Pakistan 

India Daman and Diu India China/ India/ Pakistan 

India Delhi India China/ India/ Pakistan 

India Goa India China/ India/ Pakistan 

India Gujarat India China/ India/ Pakistan 

India Haryana India China/ India/ Pakistan 

India Himachal Pradesh India China/ India/ Pakistan 

India Jammu and Kashmir India China/ India/ Pakistan 

India Jharkhand India China/ India/ Pakistan 

India Karnataka India China/ India/ Pakistan 

India Kerala India China/ India/ Pakistan 

India Lakshadweep India China/ India/ Pakistan 

India Madhya Pradesh India China/ India/ Pakistan 

India Maharashtra India China/ India/ Pakistan 

India Manipur India China/ India/ Pakistan 

India Meghalaya India China/ India/ Pakistan 
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India Mizoram India China/ India/ Pakistan 

India Nagaland India China/ India/ Pakistan 

India Orissa India China/ India/ Pakistan 

India Puducherry India China/ India/ Pakistan 

India Punjab India China/ India/ Pakistan 

India Rajasthan India China/ India/ Pakistan 

India Sikkim India China/ India/ Pakistan 

India Tamil Nadu India China/ India/ Pakistan 

India Tripura India China/ India/ Pakistan 

India Uttar Pradesh India China/ India/ Pakistan 

India Uttaranchal India China/ India/ Pakistan 

India West Bengal India China/ India/ Pakistan 

Indonesia Aceh Indonesia Southeast Asia 

Indonesia Bali Indonesia Southeast Asia 

Indonesia Bangka-Belitung Indonesia Southeast Asia 

Indonesia Banten Indonesia Southeast Asia 

Indonesia Bengkulu Indonesia Southeast Asia 

Indonesia Gorontalo Indonesia Southeast Asia 

Indonesia Irian Jaya Barat Indonesia Southeast Asia 

Indonesia Jakarta Raya Indonesia Southeast Asia 

Indonesia Jambi Indonesia Southeast Asia 

Indonesia Jawa Barat Indonesia Southeast Asia 

Indonesia Jawa Tengah Indonesia Southeast Asia 

Indonesia Jawa Timur Indonesia Southeast Asia 

Indonesia Kalimantan Barat Indonesia Southeast Asia 

Indonesia Kalimantan Selatan Indonesia Southeast Asia 

Indonesia Kalimantan Tengah Indonesia Southeast Asia 

Indonesia Kalimantan Timur Indonesia Southeast Asia 

Indonesia Kepulauan Riau Indonesia Southeast Asia 

Indonesia Lampung Indonesia Southeast Asia 

Indonesia Maluku Indonesia Southeast Asia 

Indonesia Nusa Tenggara Barat Indonesia Southeast Asia 

Indonesia Nusa Tenggara Timur Indonesia Southeast Asia 

Indonesia Papua Indonesia Southeast Asia 

Indonesia Riau Indonesia Southeast Asia 

Indonesia Sulawesi Barat Indonesia Southeast Asia 

Indonesia Sulawesi Selatan Indonesia Southeast Asia 

Indonesia Sulawesi Tengah Indonesia Southeast Asia 

Indonesia Sulawesi Tenggara Indonesia Southeast Asia 

Indonesia Sulawesi Utara Indonesia Southeast Asia 

Indonesia Sumatera Barat Indonesia Southeast Asia 

Indonesia Sumatera Selatan Indonesia Southeast Asia 

Indonesia Sumatera Utara Indonesia Southeast Asia 

Indonesia Yogyakarta Indonesia Southeast Asia 

Iran Ardebil Iran N. Africa/ Middle East 

Iran Bushehr Iran N. Africa/ Middle East 

Iran Chahar Mahall and Bakhtiari Iran N. Africa/ Middle East 

Iran East Azarbaijan Iran N. Africa/ Middle East 

Iran Esfahan Iran N. Africa/ Middle East 

Iran Fars Iran N. Africa/ Middle East 

Iran Gilan Iran N. Africa/ Middle East 

Iran Golestan Iran N. Africa/ Middle East 

Iran Hamadan Iran N. Africa/ Middle East 

Iran Hormozgan Iran N. Africa/ Middle East 

Iran Ilam Iran N. Africa/ Middle East 

Iran Kerman Iran N. Africa/ Middle East 

Iran Kermanshah Iran N. Africa/ Middle East 

Iran Khuzestan Iran N. Africa/ Middle East 

Iran Kohgiluyeh and Buyer Ahmad Iran N. Africa/ Middle East 

Iran Kordestan Iran N. Africa/ Middle East 

Iran Lorestan Iran N. Africa/ Middle East 

Iran Markazi Iran N. Africa/ Middle East 

Iran Mazandaran Iran N. Africa/ Middle East 

Iran North Khorasan Iran N. Africa/ Middle East 

Iran Qazvin Iran N. Africa/ Middle East 

Iran Qom Iran N. Africa/ Middle East 

Iran Razavi Khorasan Iran N. Africa/ Middle East 

Iran Semnan Iran N. Africa/ Middle East 

Iran Sistan and Baluchestan Iran N. Africa/ Middle East 

Iran South Khorasan Iran N. Africa/ Middle East 
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Iran Tehran Iran N. Africa/ Middle East 

Iran West Azarbaijan Iran N. Africa/ Middle East 

Iran Yazd Iran N. Africa/ Middle East 

Iran Zanjan Iran N. Africa/ Middle East 

Iraq  Iraq N. Africa/ Middle East 

Israel  Other Middle East N. Africa/ Middle East 

Japan  Japan Southeast Asia 

Kazakhstan  Other CIS Soviet Union 

Kenya  Other Africa Africa 

Kosova  Rest of World Rest of World 

Kyrgyzstan  Other CIS Soviet Union 

Laos  Rest of World Rest of World 

Lebanon  Other Middle East N. Africa/ Middle East 

Lesotho  Other Africa Africa 

Liberia  Other Africa Africa 

Libya  Other Africa Africa 

Liechtenstein  EU Europe 

Macedonia  Other Eastern Europe Soviet Union 

Madagascar  Other Africa Africa 

Malawi  Rest of World Rest of World 

Malaysia Johor Malaysia Southeast Asia 

Malaysia Kedah Malaysia Southeast Asia 

Malaysia Kelantan Malaysia Southeast Asia 

Malaysia Melaka Malaysia Southeast Asia 

Malaysia Negeri Sembilan Malaysia Southeast Asia 

Malaysia Pahang Malaysia Southeast Asia 

Malaysia Perak Malaysia Southeast Asia 

Malaysia Perlis Malaysia Southeast Asia 

Malaysia Pulau Pinang Malaysia Southeast Asia 

Malaysia Sabah Malaysia Southeast Asia 

Malaysia Sarawak Malaysia Southeast Asia 

Malaysia Selangor Malaysia Southeast Asia 

Malaysia Trengganu Malaysia Southeast Asia 

Mali  Other Africa Africa 

Mauritania  Other Africa Africa 

Mexico Aguascalientes Mexico Latin America 

Mexico Baja California Mexico Latin America 

Mexico Baja California Sur Mexico Latin America 

Mexico Campeche Mexico Latin America 

Mexico Chiapas Mexico Latin America 

Mexico Chihuahua Mexico Latin America 

Mexico Coahuila Mexico Latin America 

Mexico Colima Mexico Latin America 

Mexico Distrito Federal Mexico Latin America 

Mexico Durango Mexico Latin America 

Mexico Guanajuato Mexico Latin America 

Mexico Guerrero Mexico Latin America 

Mexico Hidalgo Mexico Latin America 

Mexico Jalisco Mexico Latin America 

Mexico Morelos Mexico Latin America 

Mexico Nayarit Mexico Latin America 

Mexico Oaxaca Mexico Latin America 

Mexico Puebla Mexico Latin America 

Mexico Quintana Roo Mexico Latin America 

Mexico Sinaloa Mexico Latin America 

Mexico Sonora Mexico Latin America 

Mexico Tabasco Mexico Latin America 

Mexico Tamaulipas Mexico Latin America 

Mexico Tlaxcala Mexico Latin America 

Mexico Veracruz Mexico Latin America 

Mexico Zacatecas Mexico Latin America 

Mexico Michoacan Mexico Latin America 

Mexico Mexico Mexico Latin America 

Mexico Nuevo Leon Mexico Latin America 

Mexico Queretaro Mexico Latin America 

Mexico San Luis Potosi Mexico Latin America 

Mexico Yucatan Mexico Latin America 

Moldova  Other CIS Soviet Union 

Mongolia  Other Asia Southeast Asia 

Montenegro  Rest of World Rest of World 
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Morocco  Morocco N. Africa/ Middle East 

Mozambique  Other Africa Africa 

Myanmar  Myanmar Southeast Asia 

Namibia  Rest of World Rest of World 

Nepal  Other Asia Southeast Asia 

New Zealand  New Zealand Developed Pacific 

Nicaragua  Other Latin America Latin America 

Niger  Other Africa Africa 

Nigeria Abia Nigeria N. Africa/ Middle East 

Nigeria Adamawa Nigeria N. Africa/ Middle East 

Nigeria Akwa Ibom Nigeria N. Africa/ Middle East 

Nigeria Anambra Nigeria N. Africa/ Middle East 

Nigeria Bauchi Nigeria N. Africa/ Middle East 

Nigeria Bayelsa Nigeria N. Africa/ Middle East 

Nigeria Benue Nigeria N. Africa/ Middle East 

Nigeria Borno Nigeria N. Africa/ Middle East 

Nigeria Cross River Nigeria N. Africa/ Middle East 

Nigeria Delta Nigeria N. Africa/ Middle East 

Nigeria Ebonyi Nigeria N. Africa/ Middle East 

Nigeria Edo Nigeria N. Africa/ Middle East 

Nigeria Ekiti Nigeria N. Africa/ Middle East 

Nigeria Enugu Nigeria N. Africa/ Middle East 

Nigeria Federal Capital Territory Nigeria N. Africa/ Middle East 

Nigeria Gombe Nigeria N. Africa/ Middle East 

Nigeria Imo Nigeria N. Africa/ Middle East 

Nigeria Jigawa Nigeria N. Africa/ Middle East 

Nigeria Kaduna Nigeria N. Africa/ Middle East 

Nigeria Kano Nigeria N. Africa/ Middle East 

Nigeria Katsina Nigeria N. Africa/ Middle East 

Nigeria Kebbi Nigeria N. Africa/ Middle East 

Nigeria Kogi Nigeria N. Africa/ Middle East 

Nigeria Kwara Nigeria N. Africa/ Middle East 

Nigeria Lagos Nigeria N. Africa/ Middle East 

Nigeria Nassarawa Nigeria N. Africa/ Middle East 

Nigeria Niger Nigeria N. Africa/ Middle East 

Nigeria Ogun Nigeria N. Africa/ Middle East 

Nigeria Ondo Nigeria N. Africa/ Middle East 

Nigeria Osun Nigeria N. Africa/ Middle East 

Nigeria Oyo Nigeria N. Africa/ Middle East 

Nigeria Plateau Nigeria N. Africa/ Middle East 

Nigeria Rivers Nigeria N. Africa/ Middle East 

Nigeria Sokoto Nigeria N. Africa/ Middle East 

Nigeria Taraba Nigeria N. Africa/ Middle East 

Nigeria Yobe Nigeria N. Africa/ Middle East 

Nigeria Zamfara Nigeria N. Africa/ Middle East 

North Korea  Other Asia Southeast Asia 

Norway  EU Europe 

Oman  Rest of World Rest of World 

Pakistan  Pakistan China/ India/ Pakistan 

Panama  Other Latin America Latin America 

Papua New Guinea  Rest of World Rest of World 

Paraguay Neembucu Paraguay Latin America 

Paraguay Alto Paraguay Paraguay Latin America 

Paraguay Amambay Paraguay Latin America 

Paraguay Caaguaz· Paraguay Latin America 

Paraguay Canindey· Paraguay Latin America 

Paraguay Central Paraguay Latin America 

Paraguay Cordillera Paraguay Latin America 

Paraguay Itap·a Paraguay Latin America 

Paraguay Misiones Paraguay Latin America 

Paraguay Presidente Hayes Paraguay Latin America 

Paraguay San Pedro Paraguay Latin America 

Paraguay Alto Parana Paraguay Latin America 

Paraguay Asuncion Paraguay Latin America 

Paraguay Boqueron Paraguay Latin America 

Paraguay Caazapa Paraguay Latin America 

Paraguay Concepcion Paraguay Latin America 

Paraguay Guaira Paraguay Latin America 

Paraguay Paraguari Paraguay Latin America 

Peru  Peru Latin America 
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Philippines Abra Philippines Southeast Asia 

Philippines Agusan del Norte Philippines Southeast Asia 

Philippines Agusan del Sur Philippines Southeast Asia 

Philippines Aklan Philippines Southeast Asia 

Philippines Albay Philippines Southeast Asia 

Philippines Antique Philippines Southeast Asia 

Philippines Apayao Philippines Southeast Asia 

Philippines Aurora Philippines Southeast Asia 

Philippines Basilan Philippines Southeast Asia 

Philippines Bataan Philippines Southeast Asia 

Philippines Batanes Philippines Southeast Asia 

Philippines Batangas Philippines Southeast Asia 

Philippines Benguet Philippines Southeast Asia 

Philippines Biliran Philippines Southeast Asia 

Philippines Bohol Philippines Southeast Asia 

Philippines Bukidnon Philippines Southeast Asia 

Philippines Bulacan Philippines Southeast Asia 

Philippines Cagayan Philippines Southeast Asia 

Philippines Camarines Norte Philippines Southeast Asia 

Philippines Camarines Sur Philippines Southeast Asia 

Philippines Camiguin Philippines Southeast Asia 

Philippines Capiz Philippines Southeast Asia 

Philippines Catanduanes Philippines Southeast Asia 

Philippines Cavite Philippines Southeast Asia 

Philippines Cebu Philippines Southeast Asia 

Philippines Compostela Valley Philippines Southeast Asia 

Philippines Davao del Norte Philippines Southeast Asia 

Philippines Davao del Sur Philippines Southeast Asia 

Philippines Davao Oriental Philippines Southeast Asia 

Philippines Dinagat Islands Philippines Southeast Asia 

Philippines Eastern Samar Philippines Southeast Asia 

Philippines Guimaras Philippines Southeast Asia 

Philippines Ifugao Philippines Southeast Asia 

Philippines Ilocos Norte Philippines Southeast Asia 

Philippines Ilocos Sur Philippines Southeast Asia 

Philippines Iloilo Philippines Southeast Asia 

Philippines Isabela Philippines Southeast Asia 

Philippines Kalinga Philippines Southeast Asia 

Philippines La Union Philippines Southeast Asia 

Philippines Laguna Philippines Southeast Asia 

Philippines Lanao del Norte Philippines Southeast Asia 

Philippines Lanao del Sur Philippines Southeast Asia 

Philippines Leyte Philippines Southeast Asia 

Philippines Maguindanao Philippines Southeast Asia 

Philippines Marinduque Philippines Southeast Asia 

Philippines Masbate Philippines Southeast Asia 

Philippines Metropolitan Manila Philippines Southeast Asia 

Philippines Misamis Occidental Philippines Southeast Asia 

Philippines Misamis Oriental Philippines Southeast Asia 

Philippines Mountain Province Philippines Southeast Asia 

Philippines Negros Occidental Philippines Southeast Asia 

Philippines Negros Oriental Philippines Southeast Asia 

Philippines North Cotabato Philippines Southeast Asia 

Philippines Northern Samar Philippines Southeast Asia 

Philippines Nueva Ecija Philippines Southeast Asia 

Philippines Nueva Vizcaya Philippines Southeast Asia 

Philippines Occidental Mindoro Philippines Southeast Asia 

Philippines Oriental Mindoro Philippines Southeast Asia 

Philippines Palawan Philippines Southeast Asia 

Philippines Pampanga Philippines Southeast Asia 

Philippines Pangasinan Philippines Southeast Asia 

Philippines Quezon Philippines Southeast Asia 

Philippines Quirino Philippines Southeast Asia 

Philippines Rizal Philippines Southeast Asia 

Philippines Romblon Philippines Southeast Asia 

Philippines Samar Philippines Southeast Asia 

Philippines Sarangani Philippines Southeast Asia 

Philippines Shariff Kabunsuan Philippines Southeast Asia 

Philippines Siquijor Philippines Southeast Asia 

Philippines Sorsogon Philippines Southeast Asia 
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Philippines South Cotabato Philippines Southeast Asia 

Philippines Southern Leyte Philippines Southeast Asia 

Philippines Sultan Kudarat Philippines Southeast Asia 

Philippines Sulu Philippines Southeast Asia 

Philippines Surigao del Norte Philippines Southeast Asia 

Philippines Surigao del Sur Philippines Southeast Asia 

Philippines Tarlac Philippines Southeast Asia 

Philippines Tawi-Tawi Philippines Southeast Asia 

Philippines Zambales Philippines Southeast Asia 

Philippines Zamboanga del Norte Philippines Southeast Asia 

Philippines Zamboanga del Sur Philippines Southeast Asia 

Philippines Zamboanga Sibugay Philippines Southeast Asia 

Republic of Congo  Other Africa Africa 

Russia Adygey Russia Soviet Union 

Russia Aga Buryat Russia Soviet Union 

Russia Altay Russia Soviet Union 

Russia Amur Russia Soviet Union 

Russia Arkhangel'sk Russia Soviet Union 

Russia Astrakhan' Russia Soviet Union 

Russia Bashkortostan Russia Soviet Union 

Russia Belgorod Russia Soviet Union 

Russia Bryansk Russia Soviet Union 

Russia Buryat Russia Soviet Union 

Russia Chechnya Russia Soviet Union 

Russia Chelyabinsk Russia Soviet Union 

Russia Chita Russia Soviet Union 

Russia Chukot Russia Soviet Union 

Russia Chuvash Russia Soviet Union 

Russia City of St. Petersburg Russia Soviet Union 

Russia Dagestan Russia Soviet Union 

Russia Evenk Russia Soviet Union 

Russia Gorno-Altay Russia Soviet Union 

Russia Ingush Russia Soviet Union 

Russia Irkutsk Russia Soviet Union 

Russia Ivanovo Russia Soviet Union 

Russia Kabardin-Balkar Russia Soviet Union 

Russia Kaliningrad Russia Soviet Union 

Russia Kalmyk Russia Soviet Union 

Russia Kaluga Russia Soviet Union 

Russia Kamchatka Russia Soviet Union 

Russia Karachay-Cherkess Russia Soviet Union 

Russia Karelia Russia Soviet Union 

Russia Kemerovo Russia Soviet Union 

Russia Khabarovsk Russia Soviet Union 

Russia Khakass Russia Soviet Union 

Russia Khanty-Mansiy Russia Soviet Union 

Russia Kirov Russia Soviet Union 

Russia Komi Russia Soviet Union 

Russia Komi-Permyak Russia Soviet Union 

Russia Koryak Russia Soviet Union 

Russia Kostroma Russia Soviet Union 

Russia Krasnodar Russia Soviet Union 

Russia Krasnoyarsk Russia Soviet Union 

Russia Kurgan Russia Soviet Union 

Russia Kursk Russia Soviet Union 

Russia Leningrad Russia Soviet Union 

Russia Lipetsk Russia Soviet Union 

Russia Maga Buryatdan Russia Soviet Union 

Russia Mariy-El Russia Soviet Union 

Russia Mordovia Russia Soviet Union 

Russia Moskva Russia Soviet Union 

Russia Murmansk Russia Soviet Union 

Russia Nenets Russia Soviet Union 

Russia Nizhegorod Russia Soviet Union 

Russia North Ossetia Russia Soviet Union 

Russia Novgorod Russia Soviet Union 

Russia Novosibirsk Russia Soviet Union 

Russia Omsk Russia Soviet Union 

Russia Orel Russia Soviet Union 

Russia Orenburg Russia Soviet Union 
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Russia Penza Russia Soviet Union 

Russia Perm' Russia Soviet Union 

Russia Primor'ye Russia Soviet Union 

Russia Pskov Russia Soviet Union 

Russia Rostov Russia Soviet Union 

Russia Ryazan' Russia Soviet Union 

Russia Sakha Russia Soviet Union 

Russia Sakhalin Russia Soviet Union 

Russia Samara Russia Soviet Union 

Russia Saratov Russia Soviet Union 

Russia Smolensk Russia Soviet Union 

Russia Stavropol' Russia Soviet Union 

Russia Sverdlovsk Russia Soviet Union 

Russia Tambov Russia Soviet Union 

Russia Tatarstan Russia Soviet Union 

Russia Taymyr Russia Soviet Union 

Russia Tomsk Russia Soviet Union 

Russia Tula Russia Soviet Union 

Russia Tuva Russia Soviet Union 

Russia Tver' Russia Soviet Union 

Russia Tyumen' Russia Soviet Union 

Russia Udmurt Russia Soviet Union 

Russia Ul'yanovsk Russia Soviet Union 

Russia Ust-Orda Buryat Russia Soviet Union 

Russia Vladimir Russia Soviet Union 

Russia Volgograd Russia Soviet Union 

Russia Vologda Russia Soviet Union 

Russia Voronezh Russia Soviet Union 

Russia Yamal-Nenets Russia Soviet Union 

Russia Yaroslavl' Russia Soviet Union 

Russia Yevrey Russia Soviet Union 

Rwanda  Rest of World Rest of World 

Saudi Arabia  Other Middle East N. Africa/ Middle East 

Senegal  Other Africa Africa 

Serbia  Rest of World Rest of World 

Sierra Leone  Other Africa Africa 

Singapore  Other Asia Southeast Asia 

Somalia  Other Africa Africa 

South Africa Eastern Cape South Africa Africa 

South Africa Gauteng South Africa Africa 

South Africa KwaZulu-Natal South Africa Africa 

South Africa Limpopo South Africa Africa 

South Africa Mpumalanga South Africa Africa 

South Africa North West South Africa Africa 

South Africa Northern Cape South Africa Africa 

South Africa Orange Free State South Africa Africa 

South Africa Western Cape South Africa Africa 

South Korea  South Korea Southeast Asia 

Sri Lanka  Other Asia Southeast Asia 

Sudan  Other Africa Africa 

Suriname  Rest of World Rest of World 

Swaziland  Rest of World Rest of World 

Switzerland  EU Europe 

Syria  Other Middle East N. Africa/ Middle East 

Taiwan  Taiwan Southeast Asia 

Tajikistan  Other CIS Soviet Union 

Tanzania  Other Africa Africa 

Thailand Amnat Charoen Thailand Southeast Asia 

Thailand Ang Thong Thailand Southeast Asia 

Thailand Bangkok Metropolis Thailand Southeast Asia 

Thailand Buri Ram Thailand Southeast Asia 

Thailand Chachoengsao Thailand Southeast Asia 

Thailand Chai Nat Thailand Southeast Asia 

Thailand Chaiyaphum Thailand Southeast Asia 

Thailand Chanthaburi Thailand Southeast Asia 

Thailand Chiang Mai Thailand Southeast Asia 

Thailand Chiang Rai Thailand Southeast Asia 

Thailand Chon Buri Thailand Southeast Asia 

Thailand Chumphon Thailand Southeast Asia 

Thailand Kalasin Thailand Southeast Asia 
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Thailand Kamphaeng Phet Thailand Southeast Asia 

Thailand Kanchanaburi Thailand Southeast Asia 

Thailand Khon Kaen Thailand Southeast Asia 

Thailand Krabi Thailand Southeast Asia 

Thailand Lampang Thailand Southeast Asia 

Thailand Lamphun Thailand Southeast Asia 

Thailand Loei Thailand Southeast Asia 

Thailand Lop Buri Thailand Southeast Asia 

Thailand Mae Hong Son Thailand Southeast Asia 

Thailand Maha Sarakham Thailand Southeast Asia 

Thailand Mukdahan Thailand Southeast Asia 

Thailand Nakhon Nayok Thailand Southeast Asia 

Thailand Nakhon Pathom Thailand Southeast Asia 

Thailand Nakhon Phanom Thailand Southeast Asia 

Thailand Nakhon Ratchasima Thailand Southeast Asia 

Thailand Nakhon Sawan Thailand Southeast Asia 

Thailand Nakhon Si Thammarat Thailand Southeast Asia 

Thailand Nan Thailand Southeast Asia 

Thailand Narathiwat Thailand Southeast Asia 

Thailand Nong Bua Lam Phu Thailand Southeast Asia 

Thailand Nong Khai Thailand Southeast Asia 

Thailand Nonthaburi Thailand Southeast Asia 

Thailand Pathum Thani Thailand Southeast Asia 

Thailand Pattani Thailand Southeast Asia 

Thailand Phangnga Thailand Southeast Asia 

Thailand Phatthalung Thailand Southeast Asia 

Thailand Phayao Thailand Southeast Asia 

Thailand Phetchabun Thailand Southeast Asia 

Thailand Phetchaburi Thailand Southeast Asia 

Thailand Phichit Thailand Southeast Asia 

Thailand Phitsanulok Thailand Southeast Asia 

Thailand Phra Nakhon Si Ayutthaya Thailand Southeast Asia 

Thailand Phrae Thailand Southeast Asia 

Thailand Phuket Thailand Southeast Asia 

Thailand Prachin Buri Thailand Southeast Asia 

Thailand Prachuap Khiri Khan Thailand Southeast Asia 

Thailand Ranong Thailand Southeast Asia 

Thailand Ratchaburi Thailand Southeast Asia 

Thailand Rayong Thailand Southeast Asia 

Thailand Roi Et Thailand Southeast Asia 

Thailand Sa Kaeo Thailand Southeast Asia 

Thailand Sakon Nakhon Thailand Southeast Asia 

Thailand Samut Prakan Thailand Southeast Asia 

Thailand Samut Sakhon Thailand Southeast Asia 

Thailand Samut Songkhram Thailand Southeast Asia 

Thailand Saraburi Thailand Southeast Asia 

Thailand Satun Thailand Southeast Asia 

Thailand Si Sa Ket Thailand Southeast Asia 

Thailand Sing Buri Thailand Southeast Asia 

Thailand Songkhla Thailand Southeast Asia 

Thailand Sukhothai Thailand Southeast Asia 

Thailand Suphan Buri Thailand Southeast Asia 

Thailand Surat Thani Thailand Southeast Asia 

Thailand Surin Thailand Southeast Asia 

Thailand Tak Thailand Southeast Asia 

Thailand Trang Thailand Southeast Asia 

Thailand Trat Thailand Southeast Asia 

Thailand Ubon Ratchathani Thailand Southeast Asia 

Thailand Udon Thani Thailand Southeast Asia 

Thailand Uthai Thani Thailand Southeast Asia 

Thailand Uttaradit Thailand Southeast Asia 

Thailand Yala Thailand Southeast Asia 

Thailand Yasothon Thailand Southeast Asia 

Timor-Leste  Rest of World Rest of World 

Togo  Other Africa Africa 

Trinidad and Tobago  Other Latin America Latin America 

Tunisia  Tunisia Africa 

Turkey  Turkey N. Africa/ Middle East 

Turkmenistan  Other CIS Soviet Union 

Uganda  Rest of World Rest of World 
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Ukraine  Ukraine Soviet Union 

United Arab Emirates  Rest of World Rest of World 

United States Alabama US US 

United States Arizona US US 

United States Arkansas US US 

United States California US US 

United States Colorado US US 

United States Connecticut US US 

United States Delaware US US 

United States District of Columbia US US 

United States Florida US US 

United States Georgia US US 

United States Idaho US US 

United States Illinois US US 

United States Indiana US US 

United States Iowa US US 

United States Kansas US US 

United States Kentucky US US 

United States Louisiana US US 

United States Maine US US 

United States Maryland US US 

United States Massachusetts US US 

United States Michigan US US 

United States Minnesota US US 

United States Mississippi US US 

United States Missouri US US 

United States Montana US US 

United States Nebraska US US 

United States Nevada US US 

United States New Hampshire US US 

United States New Jersey US US 

United States New Mexico US US 

United States New York US US 

United States North Carolina US US 

United States North Dakota US US 

United States Ohio US US 

United States Oklahoma US US 

United States Oregon US US 

United States Pennsylvania US US 

United States Rhode Island US US 

United States South Carolina US US 

United States South Dakota US US 

United States Tennessee US US 

United States Texas US US 

United States Utah US US 

United States Vermont US US 

United States Virginia US US 

United States Washington US US 

United States West Virginia US US 

United States Wisconsin US US 

United States Wyoming US US 

Uruguay  Uruguay Latin America 

Uzbekistan  Uzbekistan Soviet Union 

Venezuela  Venezuela Latin America 

Vietnam Central Highlands Vietnam Southeast Asia 

Vietnam Mekong River Delta Vietnam Southeast Asia 

Vietnam North Central Coast Vietnam Southeast Asia 

Vietnam North East Vietnam Southeast Asia 

Vietnam North West Vietnam Southeast Asia 

Vietnam Red River Delta Vietnam Southeast Asia 

Vietnam South Central Coast Vietnam Southeast Asia 

Vietnam South East Vietnam Southeast Asia 

Yemen  Other Middle East N. Africa/ Middle East 

Zambia  Other Africa Africa 

Zimbabwe  Other Africa Africa 

 


