

COORDINATING RESEARCH COUNCIL, INC.
5755 NORTH POINT PARKWAY ● SUITE 265 ● ALPHARETTA, GA 30022

CRC Report No. A-110

SCOPING STUDY FOR REWRITE OF
MOVES FOR EFFICIENCY

Final Report

August 2017

The Coordinating Research Council, Inc. (CRC) is a non-profit

corporation supported by the petroleum and automotive

equipment industries. CRC operates through the committees

made up of technical experts from industry and government

who voluntarily participate. The four main areas of research

within CRC are: air pollution (atmospheric and engineering

studies); aviation fuels, lubricants, and equipment performance,

heavy-duty vehicle fuels, lubricants, and equipment

performance (e.g., diesel trucks); and light-duty vehicle fuels,

lubricants, and equipment performance (e.g., passenger cars).

CRC’s function is to provide the mechanism for joint research

conducted by the two industries that will help in determining the

optimum combination of petroleum products and automotive

equipment. CRC’s work is limited to research that is mutually

beneficial to the two industries involved. The final results of the

research conducted by, or under the auspices of, CRC are

available to the public.

CRC makes no warranty expressed or implied on the

application of information contained in this report. In

formulating and approving reports, the appropriate committee

of the Coordinating Research Council, Inc. has not investigated

or considered patents which may apply to the subject matter.

Prospective users of the report are responsible for protecting

themselves against liability for infringement of patents.

Scoping Study for
Rewrite of MOVES for
Efficiency

FINAL REPORT (Version 2)

Prepared for:

Coordinating Research Council

Prepared by:

Eastern Research Group, Inc.

August 31, 2017

ERG Project No.: 4082.00.001.001

Scoping Study for Rewrite of MOVES for Efficiency

FINAL REPORT (Version 2)

Prepared for:

Coordinating Research Council

Prepared by:

Doug Jackson

Wes Faler (Fluid & Reason LLC)

John Koupal

Scott Fincher

Eastern Research Group, Inc.

3508 Far West Blvd., Suite 210

Austin, TX 78731

August 31, 2017

i

Table of Contents

1.0 Introduction ... 4

2.0 Task 1: Evaluate Recoding for Maximum Processing Speed ... 5

2.1 Task 1 measurements .. 9

2.2 Task 1 discussion .. 15

2.3 Task 1 recommended design changes ... 17

3.0 Task 2: Evaluate Optimizing Multiprocessing: Smart Cloud Interface 18

3.1 Overview of AWS... 19

3.2 Current process for deploying MOVES on AWS ... 20

3.3 Proposed utilities ... 21

3.4 Runspec Execution Utility .. 25

3.5 Runspec Creation Utility... 27

3.6 Example scenario using Runspec Creation and Execution Utilities 30

3.7 Worker Cloud Gateway .. 31

4.0 Task 3: Eliminating Redundancies ... 32

5.0 Task 4: Effort Required .. 37

5.1 Task 1 subtasks ... 37

5.2 Task 2 subtasks ... 37

5.3 Task 3 effort estimates .. 38

Tables

Table 2-1. Representative MOVES scenario run specifications ... 10

Table 2-2. BundleTracking output from representative MOVES scenario 11

Table 2-3. Distribution of time spent on the Master and Worker in representative MOVES

scenario ... 12

Table 2-4. Time breakdown by category in representative MOVES scenario 12

ii

Table 2-5. Time breakdown by Loopable Type in representative MOVES scenario 12

Table 2-6. MySQL slow query output for representative SQL statements................................... 15

Table 2-7. MySQL slow query output: Time spent by category .. 15

Table 2-8. Speedup by category .. 16

Table 2-9. Speedup by category with 50% speedup of distributed processing 16

Table 4-1. MOVES test run specifications ... 34

Table 4-2. Input tables for two bottleneck generators .. 36

Table 5-1. Task 1 subtasks .. 37

Table 5-2. Task 2 Runspec Execution Utility subtasks .. 38

Table 5-3. Task 2 Runspec Creation Utility subtasks ... 38

Table 5-4. Task 2 Worker Cloud Gateway subtasks ... 38

Table 5-5. Task 3 subtasks .. 38

Figures

Figure 3-1. High-level overview of AWS components .. 20

Figure 3-2. Conceptual diagram of AWS Runspec Execution Utility .. 23

Figure 3-3. Conceptual diagram of Runspec Creation Utility .. 24

Figure 3-4. Mock-up of GUI for Runspec Execution Utility .. 25

Figure 3-5. Mock-up of GUI for Runspec Creation Utility .. 29

Figure 3-6. Mock-up of Worker Cloud Gateway utility ... 32

Figure 4-1. Contribution to runtime, example run .. 34

Figure 4-2. Runtime by generator ... 35

3

Acronyms and terms

AMI Amazon Machine Image providing an operating system and programs for

a cloud computer

AWS Amazon Web Services cloud platform

bucket a storage location in S3, similar to a hard drive for an AWS cloud

computer

CDB MOVES county database

CMIT MOVES Core Model Input Table

CPU central processing unit

disk I/O input/output: transfer of data to and from a hard drive

EC2 Amazon Elastic Cloud Compute providing virtual computers in the AWS

cloud

Go a programming language created by Google

GUI Graphical User Interface: an application window with buttons, menus, etc.

to interface with a computer program

instance a single virtual computer running in the cloud

JAR Java ARchive file used to store Java code in a single, sharable file

multithreading parallel/simultaneous execution of multiple calculations, possible on

modern computers with multiple processors/cores

MySQL An open source database management system developed by Oracle

Corporation

parallelization running computer processes simultaneously, as opposed to in series, to

reduce execution time (clock time)

RAM Random Access Memory: high speed, short-term memory used to store a

computer's active programs and data

runspec a MOVES configuration file containing all of the settings for a single

MOVES run

S3 Simple Store Service providing storage space for AWS cloud computers

SDK Software Development Kit: a set of software tools to create programs for

specific applications, e.g., to interface with AWS

SIP State Implementation Plan

SQL Structured Query Language used for programming database operations

and calculations

SQS Simple Queue Service used to send messages to and from an instance in

the AWS cloud

VMT Vehicle Miles Traveled

VSP Vehicle Specific Power

Scoping Study of Rewrite of MOVES for Efficiency Final Report

4

1.0 Introduction

This report documents the CRC-sponsored Scoping Study for Rewrite of MOVES for Efficiency

performed by ERG in collaboration Wes Faler, president and founder of Fluid & Reason LLC.

We describe our evaluation and plan for implementing three separate approaches to improving

the efficiency of the U.S. EPA's MOtor Vehicle Emission Simulator (MOVES): 1) recoding the

model; 2) taking advantage of cloud resources to a larger degree while making user interaction

with the cloud simple and direct; and 3) automating application of advanced performance

features that already exist in MOVES.

Our approach for this project is to consider how to improve the speed of MOVES at the national

or county scale without sacrificing functionality (runtime is less of an issue for project scale).

MOVES is designed with flexibility to allow users to customize inputs based on local data.

While MOVES has default information to enable modeling for the entire U.S., including

meteorology, fuel properties, I/M program parameters, and vehicle activity, EPA modeling

guidance for state implementation plans (SIP) and transportation conformity recommends use of

local data where available. To maintain this feature of MOVES, performance improvement

cannot come at the expense of model functionality. For example, approaches which pre-generate

MOVES emissions rates into lookup tables and couple these with VMT estimates can produce

mass emission estimates very quickly, but only for the specific set of inputs used to generate the

rates. Any change in fuel properties, I/M program parameters, etc. could not be accommodated

without first regenerating emission rates, thus negating the performance improvements of a rate

lookup table approach. Our approach seeks similar reductions in runtime from a rate lookup

approach, while retaining MOVES’ flexibility to accept alternate user inputs.

This project consisted of four tasks, structured around the three approaches listed above plus

development of a scoping plan. Under Task 1, Mr. Faler led an evaluation of the potential to

recode the model. Under Task 2, ERG and Mr. Faler describe a Runspec Execution Utility that

could be used to execute any arbitrary MOVES runspec(s) in the cloud and a Runspec Creation

Utility that would facilitate the batch creation of runspecs. Task 2 also includes a Worker Cloud

Gateway that, with some changes to the MOVES architecture, would enable the deployment of

large numbers of workers in the cloud to process bundles generated by a local master. Under

Task 3, we evaluate the potential for automated application of Advanced Performance Features

to eliminate redundant processing through storage and re-use of common intermediate and “core

model input” tables (CMITs). Finally, Task 4 is a scoping document which includes the results

of Tasks 1-3 along with a scoping plan and projected budget for each element.

By design, each of the elements developed in Tasks 1-3 can be pursued independently of the

others. For short term improvements, Tasks (2) and (3) could be pursued without changes to the

current MOVES 2014a model, with the exception of the Worker Cloud Gateway (meant to

optimize cloud application of a MOVES version that adopted the recoding recommendations of

Task 1). This approach provides more flexibility for EPA and the user community to begin

implementing performance improvements that do not immediately require the EPA to modify the

code. Ultimately, our vision is that all three approaches could be implemented in parallel to

maximize the speed of the model.

The improvements identified in Task 1, including converting key generators and calculators to

the Go language and speeding up distributed processing by 50%, are estimated to provide an

Scoping Study of Rewrite of MOVES for Efficiency Final Report

5

87% reduction in MOVES runtime; assuming the theoretical limit of completely eliminating

distributed processing would result in a 92% reduction. The cloud interface utilities described in

Task 2 would reduce clock time in proportion to the number of Amazon AWS instances

available to the user – on the order of hundreds of virtual machines – with some overhead

required to transfer data to and from the cloud. Cloud-based utilities would also entail some cost

for renting AWS computing resources, though these costs would be relatively small in the

context of a typical MOVES project. Bypassing key generators for a typical MOVES 2014a run,

as described in Task 3, would reduce total runtime by up to 45%. These are not completely

compounding – for example, Task 1 recoding would obviate most if not all of the Task 3

reduction, which is based on inefficiencies in the current code. However, if taken together we

think it is plausible to reduce current MOVES runtime by over 95 percent.

Details on the three approaches are provided in Section 2.0 (recoding), Section 3.0 (cloud) and

Section 4.0 (eliminating redundancy). Section 5.0 provides a broad scope for the work required

to implement these options.

2.0 Task 1: Evaluate Recoding for Maximum Processing Speed

Disk operations to transfer data are several thousand times slower than in-memory computations.

MOVES is slow primarily because it has too much disk input/output (I/O). While an appropriate

design choice at the inception of MOVES, modern computing demands a different approach.

It is important to realize how MOVES uses its Java and MySQL components. The Java

components do almost no computation. There is a persistent and common misconception that

MOVES uses Java to calculate results. Instead, Java is used to build and coordinate the execution

of MySQL statements, meaning that MOVES uses MySQL to perform its computations, not just

to store inputs and results. Most smart watches have more computing power than is needed to

execute the Java elements of MOVES.

Thinking of an equation as a series of steps, MOVES’ use of MySQL to perform computation

means all pollutant calculations must go through each step before any can go through a

subsequent step. The problem is that the large number of pollution records cannot fit into

memory, so they must be streamed from disk, to memory, perform a single calculation step, then

written back to disk. This is repeated for each step, with tremendous disk I/O overhead. Further,

as disk I/O is so slow relative to central processing unit (CPU) speed, increasing the number

CPU cores available to perform a step does not improve performance because the disk is the

bottleneck.

Contrast the disk approach to a CPU-centric one. A CPU-centric approach creates a pollution

record in memory and then performs most, if not all, computation steps on the record before

writing it to disk for storage. As simple as it seems, the difficulty comes with the need to know

emission factors, fuel adjustments, temperature coefficients, and myriad other equation terms

that must be available to complete the calculations. Pulling this data from disk on demand would

defeat the CPU benefits. Rather, this data must be kept in memory in an efficient data structure.

Recent widespread availability of gigabyte-class computers enables in-memory storage of these

factors, finally allowing the MOVES architecture to be changed from the initial design structure

that dates back to the early 2000s. A CPU-centric approach performs no more CPU instructions

Scoping Study of Rewrite of MOVES for Efficiency Final Report

6

on a pollution record than the disk approach while performing an order of magnitude fewer disk

operations, making the CPU-centric approach inherently faster.

EPA has already begun converting slow disk-centric portions of code into CPU-centric modules.

These have included both calculators, run on workers, and generators, which are run on the

master nodes. EPA selected the Go language for these modules. A trade study was performed,

recreating a bottleneck module in Go, C++, Java, and several versions of Python. All used

multithreading to make maximum use of CPU resources. C++ had the best performance at 20

times faster than MySQL, required the most effort to create, and had the highest expected cost of

ownership. Java and Python offered similar performance, roughly 5 times faster than the MySQL

computations, with Python having low creation effort and the lowest cost of ownership. The Go

language module, popularized by Google and used extensively in Silicon Valley, had

performance within a few percent of C++, the same low effort as Python, and midrange cost of

ownership.

The rapid pace of technology adoption means a closer look at the economics of the Go

programming language is in order. From a study of computing language popularity on the

Internet, especially among open source projects, we find Go declared “Programming Language

of the Year”:

Source: http://www.zdnet.com/article/googles-go-beats-java-c-python-to-programming-

language-of-the-year-crown/

http://www.zdnet.com/article/googles-go-beats-java-c-python-to-programming-language-of-the-year-crown/
http://www.zdnet.com/article/googles-go-beats-java-c-python-to-programming-language-of-the-year-crown/

Scoping Study of Rewrite of MOVES for Efficiency Final Report

7

MOVES’ Java language continues to be the most popular language, 3 times more popular than

C++. From EPA’s actual testing, multithreaded Java can perform calculations 5 times faster than

the current SQL-based algorithms. Python remains quite popular. EPA’s actual measurements of

multithreaded Python showed it performing on par with multithreaded Java, about 5 times faster

than SQL.

The Go language is now more popular than Swift, which is used for iPhone apps, and Visual

Basic, which is incredibly common for corporate software developers. The rising popularity

reduces concerns about technology lock-in. It is common to perceive Java and C++ staff

availability as equal, despite C++ being only 1/3 as popular as Java. With this new data, it is now

more true to say that C++ and Go are closer in popularity than C++ and Java.

The only language more popular than Go that is faster than Java is C++. EPA’s actual

measurements showed multithreaded C++ running 20 times faster than SQL, about 4 times faster

than Java or Python. This is certainly within the speedup range desired for any rewrite of

MOVES.

Multithreaded Go’s measured performance is within a few percent of C++’s, 20 times faster than

SQL and in the desired speedup range. Level of effort, including time to debug multithreaded

systems, differentiates Go from C++. Level of effort for code creation depends greatly upon

program length. C++ and Java required about the same number of lines of code in the EPA

study. Python and Go required only 1/3 this number.

With a Go developer salary average of $97,500/year (https://remoteok.io/remote-golang-jobs)

and a C++ average salary of $115,575/year (https://www.indeed.com/salaries/C++-Developer-

Salaries), we can expect a C++ MOVES module to cost 3.6 times more than a Go module (3x

lines of code * C++ salary/Go salary). Go has equivalent measured performance (for MOVES’

purposes), lower cost of ownership, and rapidly rising popularity in the labor pool.

As part of this pilot study, many chained calculators were rewritten in Go, moving the bottleneck

from workers to the master node. Generators on the critical path are being rewritten as well. A

nondisclosure agreement prevents release of further details. EPA may release a version of

MOVES with most, if not all, calculators and critical-path generators rewritten in Go.

Commercial database systems, such as Microsoft’s SQL Server, use multiple threads to service a

single SQL command. MySQL, however, is single threaded. A single SQL command in MySQL

will fully occupy exactly one thread, and a full CPU core when not disk I/O limited. The

traditional MOVES framework views generators and calculators as long sequences of SQL

statements, with generators having some Java code used only for decision making and no actual

computations. As such, the traditional framework confines each generator and calculator to a

single thread.

The models within MOVES’s generators cause dependencies that nearly eliminate the potential

to execute multiple generators concurrently. Thus, the MOVES Master is essentially single

threaded as all of the SQL commands it issues are done sequentially and MySQL uses but a

single CPU core to service each.

A MOVES Worker performs all the SQL statements for multiple calculators, but all the SQL

statements for the calculators are done in a flat sequential list without concurrency. To get

https://remoteok.io/remote-golang-jobs
https://www.indeed.com/salaries/C++-Developer-Salaries
https://www.indeed.com/salaries/C++-Developer-Salaries

Scoping Study of Rewrite of MOVES for Efficiency Final Report

8

concurrency, multiple worker instances can be run on the same computer. This practice will

consume more of the available CPU resources only until the machine’s disk I/O bandwidth is

reached. At that point, adding additional worker instances no longer increases CPU usage.

Instead, CPU usage plummets as I/O latency climbs in the oversubscribed disk system. The

tipping point is often at 4 workers, making the total combination of a master and 4 workers

consume roughly half the CPU resources of a single quad core processor (i.e. a typical i5 or i7

CPU found on modern desktop computers).

Designed specifically to get past this limit, generators and calculators written in Go are

aggressively multithreaded and routinely consume 100% of CPU clock cycles even for multi-

processor, multi-core machines. The Go-based calculators and generators have been tested on 32

core, quad processor computers (each computer with 4 processors, each processor with 4

hyperthreaded cores (i.e. 2 logical cores per physical core), totaling 32 CPU cores on a single

computer). The Go code has a pipeline design that completely eliminates disk I/O between any

step in the calculation of a pollutant or generation of activity data. Both calculator and generator

Go frameworks have pipeline designs. The design allowed a single program instance to consume

the full resources of all CPU cores. The implementation has sufficient in-memory buffering to

eliminate the disk write bottleneck by performing disk writes in optimally sized segments. A

separate study was performed to find the optimal amount of data to write to disk in each disk I/O

event.

However, the release could still be improved upon. Improvement will come from integrating

multiple generators and even calculators into a single CPU-centric program, completely

eliminating disk storage of intermediate results. The new Go-based generators, while

multithreaded and pipelined to avoid disk I/O between generators, still must store their results to

disk for later access by pollution calculators, themselves multithreaded and pipelined. To get

maximum performance, the activity information created by generator algorithms must be

accessible by pollution calculations without intermediate disk operations. This must occur

regardless of the use of local or distributed processing. Where there are now two separate Go-

based programs, one for generators and one for calculators, a single program doing both in a

single instance would eliminate the disk operations bottleneck between the two.

In the extreme, the nature of MOVES’ bundles will be changed, moving all generators to the

workers along with the calculators. In this circumstance, the notion of “bundle” would

degenerate to a short high-level description of place and time along with a list of modules to be

evaluated. Such a short notion of bundle lends itself very well to entirely local processing. It

could also lend itself well to distributed computing (either via a local network or via the cloud).

Integration of generators and calculators is made tractable because of the modular method in

which the EPA Go code is written, itself a mandate of the MOVES design team. Calculation

steps are linked together in memory using Go’s “channels”, a unique language feature that

drastically simplifies multithreading, while driving modularity and decreasing expensive

common multithreading code defects. The released modules can be connected in a new channel

pipeline that maximizes computation and minimizes disk I/O. This makes the rewrite much more

of an administrative coding task, subject to much less risk and testing costs than a wholesale

model rewrite but with similar benefits. Changes to MOVES’ MasterLoop Java class will be

required to iterate using the new bundling scheme. Again, this is more administrative than

scientific and lends itself well to unit tests to verify functionality.

Scoping Study of Rewrite of MOVES for Efficiency Final Report

9

To summarize:

 MOVES is slow because it does too much disk I/O. Measurements (see below) will

dictate how much disk I/O is due to master/worker distributed computing and how much

is due to SQL-based computations.

 Running multiple instances of traditional MOVES masters and workers on a single

computer rapidly hits the computer’s disk I/O bandwidth limit, underutilizing the

computer’s CPU and memory resources.

 No amount of reduction in scope of runspecs or other schemes to eliminate

master/worker distributed work or eliminate network file shares can get around this limit.

It is simply a consequence of the MySQL-based nature of computations that prevents

CPU-based streaming of calculations.

 MOVES’ generators and calculators should be multithreaded and should perform

computations using CPU-centric streaming/pipelining logic outside of SQL systems. The

evidence of why they “should” is simply that they already have been converted and the

results have been dramatic improvements in speed.

 The improved calculators and generators fully consume the CPU resources of large

systems (32 core, 4 processor systems). Thus, multiple instances of the new software

should not be run on a typical single computer (pending direct evidence to the contrary

since hardware system tuning permits many optimizations).

 MOVES’ remaining generators and calculators not already converted to CPU-centric

algorithms should be converted and likely will be converted by EPA independent of CRC

funding.

 The next major improvement will come by integrating generators and calculators into a

single multithreaded CPU-centric program. This will also simplify the use of MOVES on

large clusters as it could eliminate the master/worker paradigm.

In the following, we describe the results of a bottleneck analysis used to identify further

opportunities to improve the performance of MOVES. Based on this analysis, we recommend a

variety of design changes.

2.1 Task 1 measurements

A representative MOVES scenario was simulated. Its performance was categorized to gain

insight into the potential for improvement. The code and database version used are the latest

EPA internal version and not yet publicly released. This version includes several recent

improvements implemented by EPA and already results in several hours of time savings over the

publicly available version.

Scoping Study of Rewrite of MOVES for Efficiency Final Report

10

The scope of the scenario is shown in the table below. This run is a typical daily run similar to

what might be used for SIP modeling, and is comparable to the test run used in Task 3, so was

considered a good example run. The performance improvements may vary depending on the

scope of the run.

RunSpec CRC IO Test

Output/Run crciotest RunID=1

National

Geography Washtenaw County, Michigan

Year 1

Month 1

Daytype 2

Hours 24

Source/Fuel Types All (30)

Road Types 3 (Off network, 2 Urban types)

Pollutants 27

Processes 7 (Running, Starts, Evap x3, Ext

Idle, Aux Power)

Table 2-1. Representative MOVES scenario run specifications

Scoping Study of Rewrite of MOVES for Efficiency Final Report

11

The scenario needed 5,968 seconds to complete. Data from the scenario’s BundleTracking output

table follows. 5,734 seconds are accounted for in this table. “M” or “W” refer to whether the

operating is occurring on Master or Worker.

loopableClassName hostType seconds category loopableType

TOGSpeciationCalculator W 1,395 Core calc

RatesOperatingModeDistributionGenerator M 1,132 Core gen

EvaporativePermeationCalculator W 833 Core calc

AirToxicsCalculator W 714 Core calc

OutputAggregation W 380 Dist agg

TankVaporVentingCalculator W 217 Core calc

GeneralAggregation W 194 IO agg

TankTemperatureGenerator M 168 Core gen

BaseRateGenerator M 120 Core gen

StartOperatingModeDistributionGenerator M 95 Core gen

ExternalCalcRun W 63 Core calc

LiquidLeakingCalculator W 55 Core calc

BundleResults W 50 Dist agg

HCSpeciationCalculator W 48 Core calc

ExternalCalcReadResults W 43 Dist calc

Other W 33 Core agg

BaseRateCalculator W 31 Core calc

SourceBinDistributionGenerator M 31 Core gen

SulfatePMCalculator W 29 Core calc

FuelEffectsGenerator M 22 Core gen

BaseRateCalculator M 19 Dist calc

ActivityAggregation W 19 Core agg

TotalActivityGenerator M 12 Core gen

TankVaporVentingCalculator M 9 Dist calc

EvaporativeEmissionsOperatingMode

DistributionGenerator

M 5 Core gen

DistanceCalculator W 4 Core calc

LiquidLeakingCalculator M 3 Dist calc

ExternalCalcWriteInput W 3 Dist calc

EvaporativePermeationCalculator M 2 Dist calc

TankFuelGenerator M 2 Core gen

MeteorologyGenerator M 1 Core gen

DistanceCalculator M 1 Dist calc

NonroadAggregation W 0 Core agg

Table 2-2. BundleTracking output from representative MOVES scenario

Scoping Study of Rewrite of MOVES for Efficiency Final Report

12

The distribution of time spent on the Master and Worker is:

Location Total Seconds % of total time

Master 1,623 27%

Worker 4,111 69%

Other 234 4%

Total 5,968 100%

Table 2-3. Distribution of time spent on the Master and Worker in representative MOVES scenario

Bundle Tracking entries are assigned a “Category,” one of:

 Core – computations and data movement essential to calculation of pollution and activity.

 Dist – operations related to MOVES’ distributed computing architecture. Examples

include calculator time that occurs on the master computer as well as aggregation of

intermediate results for each bundle.

 IO – disk I/O or SQL-related overhead likely better served with code-centric in-memory

operations. From bundle tracking, only the General Aggregation entry is sufficiently

narrow that it can be said to be the IO category.

The time breakdown by Category is:

Category Total

Seconds

% of total time

Core 5,030 84%

Dist 510 9%

IO 194 3%

Other 234 4%

Total 5,968 100%

Table 2-4. Time breakdown by category in representative MOVES scenario

Bundle Tracking entries were also assigned a “Loopable Type” designation, one of:

 Agg – consolidation of data, reducing record count, equivalent to the SQL GROUP BY

clause.

 Calc – operations related to MOVES’ calculator modules.

 Gen – operations related to MOVES’ generator modules.

The time breakdown by Loopable Type is:

Loopable Type Total Seconds % of total time

Agg 676 11%

Calc 3,470 58%

Gen 1,588 27%

Other 234 4%

Total 5,968 100%

Table 2-5. Time breakdown by Loopable Type in representative MOVES scenario

Scoping Study of Rewrite of MOVES for Efficiency Final Report

13

During the run, MySQL’s slow query feature was used. This feature records all SQL statements

that require more than 1 second to complete. MOVES’ slow query analyzer code was used to

consolidate the MySQL output. Representative SQL statements are shown below. The complete

list is omitted for brevity.

Total Seconds Calls Total Records Category SQL

453.3 12 41,419,530 Core insert into togTemp

(MOVESRunID,iterationI

D,yearID,monthID,dayID,
hourID,stateID,countyID,

zoneID,linkID,pollutantI

D,
processID,sourceTypeID,r

egClassID,fuelTypeID,mo

delYearID,roadTypeID,S
CC,emissionQuant,emissi

onRate,engTechID,sectorI

D,hpID) select

a.MOVESRunID,a.iterati

onID,a.yearID,a.monthID,

a.dayID,a.hourID,a.stateI
D,a.countyID,a.zoneID,a.l

inkID, b.outPollutantID as

pollutantID,
a.processID,a.sourceType

ID,a.regClassID,a.fuelTyp

eID,a.modelYearID,a.roa
dTypeID,a.SCC,

emissionQuant*factor as

emissionQuant,
emissionRate*factor as

emissionRate,

a.engTechID,a.sectorID,a.
hpID from

TOGWorkerOutputIntegr

ated a inner join

togSpeciationCountyYear

b on (a.mechanismID =

b.mechanismID and
a.integratedSpeciesSetID

=

b.integratedSpeciesSetID
and a.countyID =

b.countyID and

a.monthID = b.monthID
and a.yearID = b.yearID

and a.processID =

b.inProcessID and
a.pollutantID =

b.inPollutantID and
a.fuelTypeID =

b.fuelTypeID and

a.modelYearID >=
b.minModelYearID and

a.modelYearID <=

b.maxModelYearID and
(a.regClassID =

b.regClassID or

b.regClassID=0));

337.8 12 42,941,679 Dist INSERT INTO
WorkerOutputTemp (

MOVESRunID,

iterationID, yearID,
monthID, dayID, hourID,

pollutantID, stateID,

countyID, zoneID, linkID,
roadTypeID, processID,

Scoping Study of Rewrite of MOVES for Efficiency Final Report

14

fuelTypeID,

fuelSubTypeID,
modelYearID,

sourceTypeID,

regClassID, SCC,
engTechID, sectorID,

hpID, emissionQuant,

emissionRate) SELECT
MOVESRunID,

iterationID, yearID,

monthID, dayID, hourID,
pollutantID, stateID,

countyID, null as zoneID,

null as linkID,
roadTypeID, processID,

fuelTypeID, null as

fuelSubTypeID,
modelYearID,

sourceTypeID, null as

regClassID, null as SCC,

null as engTechID, null as

sectorID, null as hpID,

SUM(emissionQuant*(cas
e dayID when 2 then 0.5

when 5 then 0.2 else 1

end)) AS emissionQuant,
SUM(emissionRate*(case

dayID when 2 then 0.5

when 5 then 0.2 else 1
end)) AS emissionRate

FROM

MOVESWorkerOutput
GROUP BY

MOVESRunID,

iterationID, yearID,
monthID, dayID, hourID,

pollutantID, stateID,

countyID, roadTypeID,
processID, fuelTypeID,

modelYearID,

sourceTypeID;

15.4 1 0 Dist LOAD DATA INFILE

'C:\\EPA\\MOVES\\MOV

ESGHGSource\\MOVES
Temporary\\DONEProces

sing\\BaseRateOutput.tbl'

INTO TABLE
tempBaseRateOutput;

Scoping Study of Rewrite of MOVES for Efficiency Final Report

15

621.2 38 1,178 IO INSERT INTO

TemperatureAdjustByOp
Mode (zoneID, monthID,

hourDayID,

tankTemperatureGroupID
, opModeID,

polProcessID,

fuelTypeID,
temperatureAdjustByOp

Mode, modelYearID)

SELECT zoneID,
monthID, hourDayID,

tankTemperatureGroupID

, opModeID,
polProcessID,

fuelTypeID,

tempAdjustTermA*EXP(t
empAdjustTermB*averag

eTankTemperature) AS

temperatureAdjustByOp

Mode, modelYearID

FROM

AverageTankTemperature
INNER JOIN

TemperatureAdjustment

INNER JOIN ModelYear
my on (modelYearID

between

minModelYearID and
maxModelYearID);

Table 2-6. MySQL slow query output for representative SQL statements

From the slow SQL queries, the time spent in each category is:

Category Total Seconds % of total time

Core 1,799 30%

Dist 822 14%

IO 1,561 26%

Other 1,785 30%

Total 5,968 100%

Table 2-7. MySQL slow query output: Time spent by category

A full 30% of MOVES’ execution time consists of fast SQL statements and/or non-SQL

operations.

Calculators converted to Go typically are 95% faster, executing in only 5% of the time required

of the SQL-based version. This has been consistent with the comparisons done when comparing

Go, C++, and other languages. From a categorization standpoint, we can view unconverted

calculators as 5% “Core” and 95% “I/O”. The I/O category is easiest to spot in slow SQL

statements, though they only account for 30% of the runtime.

2.2 Task 1 discussion

Division of time by Master and Worker sheds little light on redesign opportunities.

Examining Bundle Tracking data shows that the combination of TOGSpeciationCalculator,

RatesOperatingModeDistributionGenerator, and EvaporativePermeationCalculator accounts for

56% of MOVES’ runtime.

Scoping Study of Rewrite of MOVES for Efficiency Final Report

16

TOGSpeciationCalculator is presently still using SQL scripts. Based upon experience converting

the BaseRateCalculator (the previous slowest calculator) to Go, TOG speciation would likely be

much faster when converted to Go. Being the slowest calculator in MOVES, this is likely to be

converted by EPA.

RatesOperatingModeDistributionGenerator has already been partially converted to Go in the

internal MOVES version that was tested. Its performance is strongly affected by rulemaking-

related tables and is the subject of ongoing optimizations.

EvaporativePermeationCalculator uses SQL scripts, accounting for 14% of runtime. It too should

be significantly faster after conversion to Go.

For design purposes, we can presume that calculators and generators can and will be converted to

Go, achieving 95% speedup of each. This will have the same speedup on the I/O category. When

the categorized time is examined under this presumption, we see that runtime is reduced 83%

and that distributed processing overhead dominates:

Category Total Seconds Speedup New Seconds %

Core 5,030 95% 251 25%

Dist 510 0% 510 51%

IO 194 95% 10 1%

Other 234 0% 234 23%

Total 5,968 83% 1,005

Table 2-8. Speedup by category

Distributed processing arose in initial MOVES design as a way to reduce time-on-the-wall

required (clock time) for a scenario. Distributed processing overhead is eliminated in a single

computer, single program solution. This solution has no data sharing between multiple programs.

Naturally, it extends the time required to arrive at a solution. However, it is likely that there

exists a cross over point at which distributed processing provides benefit.

Distributed processing overhead is mostly disk I/O and only improves by performing less of it,

ideally only invoking the overhead when doing so has a net benefit. In the improved scenario

above, distributed processing is roughly 2:1 the Core time. So, distributing ½ of the bundles to a

separate worker computer would break even. Revising the speedup chart to include a 50%

speedup (via reduction in usage) of distributed processing gives these timings:

Category Total Seconds Speedup New Seconds %

Core 5,030 95% 251 25%

Dist 510 50% 255 25%

IO 194 95% 10 1%

Other 234 0% 234 23%

Total 5,968 87% 750

Table 2-9. Speedup by category with 50% speedup of distributed processing

The total runtime improves a little to 87% reduction. Taking the distributed overhead to zero (i.e.

a 100% reduction) would give a total time of 495 seconds, a 92% reduction.

Scoping Study of Rewrite of MOVES for Efficiency Final Report

17

2.3 Task 1 recommended design changes

The bulk of improvements happen when converting calculators and generators from SQL and

Java to Go. To maximize this benefit, calculators and generators need to execute in the same

multithreaded program without storing data to disk between the two. This is a major departure

from MOVES’ design roots. MOVES has always presumed that computation results are slower

to obtain than looking them up from a disk file. Recent tests show that modern CPUs perform far

faster than their disks. It may be desirable to accept redundant computations rather than disk

access.

With recoding to a completely CPU-centric approach, it is possible to completely eliminate the

Master/Worker paradigm and eliminate distributed processing from MOVES. This should not be

done lightly, however, as the computation burden may still be large enough to benefit from

multiple computers, not just multiple processors and cores. Rather, we propose that MOVES

should retain the option of Master/Worker processing, and that users determine whether the

performance benefit of a Master/Worker paradigm outweighs the cost of data transfer. A long

term goal would be to automate the measurement of Master/Worker overhead, maximizing the

benefit to the majority of MOVES’ users that have little IT background.

One function of Master/Worker approach is to compile and store output data from multiple

processing threads in a database program, for ready manipulation. Though a fully CPU-centric

approach provides the most performance benefit, it sacrifices this centralized data compilation

function, and it is unclear if MOVES users would embrace the chore of manually assembling

output from many new-MOVES instances. Most users lack the computer science scripting skills

needed for this task, instead focusing on environmental concerns and data quality. These users

seem well served by continuing the MOVES “master” paradigm in that, from the user’s

perspective, they interact with a single instance of a computer program and that program

maximizes the utilization of their computing resources. However, sophisticated users should

have the option of configuring their computing system as they see fit and should be able to

manually choose the use of distributed computing or single-instance runs.

The design changes required are:

 Unify the Go-based external generator and external calculator code into a single program,

called “gencalc” in the rest of this document. Continue to make use of Go’s “channels” so

as to achieve good modularity in the code despite the external appearance of

combination.

 Update gencalc to perform the RatesOperatingModeDistributionGenerator,

BaseRateGenerator, BaseRateCalculator, and any chained calculators in a single

invocation.

 Update gencalc to read and write from the database directly. This mode is needed for

local execution. This is a network operation and should not involve disk I/O. The

generator code already operates this way and the calculator code needs to be updated.

Scoping Study of Rewrite of MOVES for Efficiency Final Report

18

 Update gencalc to also accept data files instead of the database. This mode is needed for

distributed execution. The calculator code already operates this way and the generator

code needs to be updated.

 Update the Java-based MasterLoop to use lazy invocation, invoking any calculator

predecessor generators only on demand when a calculator is needed. Knowledge of the

predecessors can come from gencalc itself or a database table. Generators that are

inherent to gencalc can be merely marked as complete and not invoked directly.

 Compute the utility of making a distributed bundle.

 If bundling is called for, create bundles but do not load bundled table files into a database

nor retrieve gencalc results from a database. Doing so adds unwanted disk I/O. Rather,

gencalc will read the files directly and write its results into a file suitable for use by the

master.

 When a bundle is not called for, do not create a bundle file or otherwise do unnecessary

disk I/O. Invoking gencalc locally does not require disk I/O since it operates directly

from the execution database.

3.0 Task 2: Evaluate Optimizing Multiprocessing: Smart Cloud Interface

As discussed under Task 1, the current MOVES design provides the option for distributed

processing to allow calculation of many individual bundles in parallel. Cloud computing is a way

to significantly increase the number of processers that can be brought to bear on parallel

operations. We have considered how cloud computing could be used for the current

configuration, and for updates proposed under Task 1, which would change how multiple

parallel processers could best be used to reduce runtime. This provides options for using the

cloud to speed up runtime significantly for users of MOVES2014a, and then using cloud

capability to further enhance the performance improvements if recoding recommendations made

under Task 1 are pursued.

Amazon Web Services (AWS) is a cloud computing platform which provides on-demand,

simultaneous access to hundreds or thousands of virtual computers. AWS opens up a tremendous

opportunity for speeding up resource-intensive simulation tasks through massive parallelization

without the costs associated with setting up and maintaining in-house hardware.

MOVES is well-suited to being deployed on AWS, since many MOVES projects are

embarrassingly1 parallel (separable into individual tasks with little effort) and thus can be readily

broken up into individual runs that can be executed independently on separate computers. The

potential benefit of this approach has already been demonstrated in practice: for the U.S. EPA,

ERG ran the Mexico version of MOVES in AWS to produce annual emission inventories for

1 Editor note: I’m assured by the author this is a real term

Scoping Study of Rewrite of MOVES for Efficiency Final Report

19

approximately 2,500 municipios (akin to counties) in the clock time required for a single county

run.

Despite the potential power of AWS for speeding up MOVES runs, this approach has been

underutilized to date because of the difficulty involved in setting up, launching, and harvesting

results from MOVES runs in AWS. A substantial amount of groundwork has already been done

to enable AWS deployment of MOVES, but configuring and launching AWS runs currently

requires numerous Perl scripts and batch files that must be custom configured and run from the

command line, a complex and daunting process that is accessible only to those with fairly

advanced programming and computer skills – far beyond the skills required to run MOVES

itself.

The tremendous potential of AWS for MOVES modeling, coupled with the prohibitive

complexity currently involved in exploiting this resource, presents a compelling case for the

development of user-friendly utilities to bridge the gap between MOVES and AWS.

In the following, we provide a high-level overview of how MOVES runs are currently deployed

to AWS. Then, we outline three proposed utilities.

3.1 Overview of AWS

For the purposes of MOVES modeling, AWS can be envisioned as three primary components

that together make up the cloud computing platform: Elastic Compute Cloud (EC2), Simple

Storage Service (S3), and Simple Queue Service (SQS).

The EC2 component can be thought of as providing a virtual computer for the operating system

(e.g., Windows) and MOVES code to run on, including the central processing units (CPUs) and

the memory required to store and execute the operating system and MOVES.

When a virtual computer is created by EC2, it is a blank slate, with no associated operating

system or programs. Therefore, the user must provide what is called an Amazon Machine Image

(AMI), which essentially contains a copy of the operating system and any programs that the user

has installed and configured. This AMI can be used as a template to create and launch any

number of identical virtual computers, each of which is called an instance.

The S3 component is like a hard drive, and is used to store input and output data that an instance

may need or generate during execution. For example, the MOVES code itself, county databases

(CDBs), and MOVES outputs can be stored in S3. A storage location in S3 is called a bucket.

SQS is used to transfer messages for communication with the instances. Under typical operation,

the user does not interact directly with an instance using a mouse, keyboard, and screen; instead,

each instance automatically boots itself, launches whatever programs are scheduled to launch

automatically on boot-up, and then polls the SQS queue for tasks to execute.

Scoping Study of Rewrite of MOVES for Efficiency Final Report

20

Figure 3-1. High-level overview of AWS components

3.2 Current process for deploying MOVES on AWS

Before MOVES can be deployed on AWS, a number of preparatory steps must be completed,

such as obtaining an AWS account, configuring various AWS account settings, and obtaining

access to an AMI configured to run MOVES. These are one-time tasks, and therefore are not the

focus of this project, as automating them would not provide a substantial usability benefit. For

the following description, we assume that these preparatory tasks have already been completed.

Currently, deploying MOVES on AWS requires a series of steps, some of which are carried out

manually through the AWS web interface, and some of which are accomplished by

writing/modifying and launching scripts.

1. Manually store MOVES default database in an S3 bucket using the AWS web

interface

2. Manually store MOVES code in an S3 bucket using the AWS web interface

3. Manually create an S3 bucket to store MOVES jobs and results using the AWS web

interface

4. Write/modify and launch scripts to generate MOVES runspecs for each required

MOVES run, including all of the appropriate references to the various input databases

required for each run

5. Write/modify and launch scripts to bundle and compress files required for MOVES

jobs (runspecs, input databases, etc.) in preparation for uploading to AWS

6. Write/modify and launch scripts to upload jobs to S3 bucket

7. Write/modify and launch scripts to add jobs to the SQS queue

8. Manually configure and launch multiple EC2 instances using the AWS web interface

9. Monitor the instances for completion using the AWS web interface

10. When the instances have successfully completed all of the scheduled jobs,

write/modify and launch a script to download the MOVES output databases from the

S3 bucket to the local computer

Scoping Study of Rewrite of MOVES for Efficiency Final Report

21

11. Write/modify and launch a script to uncompress and rename all of the downloaded

results and import them into local MySQL databases

As can be seen from this list, there are a number of manual steps required, each one of which

encapsulates a large amount of complexity, and each one of which can fail due to any number of

subtle details.

3.3 Proposed utilities

Looking closely at the steps listed in Section 3.2, they can be broken into two categories: step 4,

which is the MOVES-specific step of generating the runspecs and their associated CDBs and/or

user input databases; and all the other steps, which are AWS-specific tasks required to load the

jobs into S3, schedule the jobs using SQS, prepare and launch the EC2 instances, and download

the results to the local computer.

Much of the user-facing complexity involved in deploying MOVES to AWS is due to the latter

category – the AWS-specific tasks. Fortunately, these are also the tasks that are most amenable

to complete automation, as there are existing software development kits (SDKs) that enable

software to interface directly with AWS. For example, the Python Boto 3 SDK, which ERG

already uses for automating other AWS-based software tools, enables the programmatic creation

and control of EC2 instances, S3 buckets, and SQS queues. These tasks are also conceptually

simpler because the MOVES runspecs, once they are created, contain almost all of the

information required to completely specify the components of a MOVES run. Determining the

input databases to upload, the name of the output database, etc., is simply a matter of parsing the

runspec, a relatively trivial programming task.

The MOVES-specific task of creating the runspecs is potentially more challenging, as it involves

translating the user's project goals into concrete run specifications. For example, if a user wishes

to perform county-scale runs for every county in the U.S., applying one age distribution to states

bordering Mexico and a different age distribution to non-border states, two different types of

runspecs would have to be generated: one set referencing the input database with the border state

age distribution, and another set referencing the input database with the non-border state age

distribution. While this scenario may not seem terribly complicated, complexity can rapidly

increase as more combinations and variations are required, as is typical in most real-world

projects. Currently, all of these combinations must be specified using custom variations of the

Perl scripts used to construct the runspecs, a requirement that can add substantially to the time

and difficulty of setting up and executing a project.

Considering the above, there is an opportunity for two different levels of automation. The first

level would involve a utility that automates all of the tasks required to execute a MOVES

runspec using AWS (Figure 3-2 and Figure 3-4). Provided one or more runspecs and all of the

input databases referenced by the runspecs, the utility would automatically handle the bundling

of the runspecs and databases; transferring them to an S3 bucket; creating, launching, and

monitoring the EC2 instances; and downloading the output databases onto the local machine and

importing them into MySQL.

The second level of automation would assist with the creation of large numbers of runspecs

(Figure 3-3 and Figure 3-5).

Scoping Study of Rewrite of MOVES for Efficiency Final Report

22

Further detail related to how these utilities might work is provided in Sections 3.4 and 3.5.

In addition to these utilities, which automate running both the masters and workers in the cloud,

under some worker-bound scenarios it may be beneficial to use the cloud simply to provide

additional workers upon demand. This Worker Cloud Gateway utility is described in Section 3.7

Scoping Study of Rewrite of MOVES for Efficiency Final Report

23

Figure 3-2. Conceptual diagram of AWS Runspec Execution Utility

Scoping Study of Rewrite of MOVES for Efficiency Final Report

24

Figure 3-3. Conceptual diagram of Runspec Creation Utility

Scoping Study of Rewrite of MOVES for Efficiency Final Report

25

3.4 Runspec Execution Utility

The Runspec Execution Utility would automate the execution of MOVES runspecs in the cloud,

allowing users to set up, deploy, and download results using a simple GUI interface such as the

mock-up shown in Figure 3-4.

Figure 3-4. Mock-up of GUI for Runspec Execution Utility

As mentioned previously, use of this utility would require a one-time setup of an AWS account,

including credentials files that would be stored on the user's local machine and automatically

used by the utility to access the appropriate AWS account. In addition, an AWS machine image

(AMI) pre-configured to run MOVES on AWS would have to be available, perhaps developed

by the EPA for use by the community of MOVES users. The MOVES code and default database

would also need to be uploaded to S3 buckets; these would also likely be obtained from a central

provider, e.g., the EPA.

With this one-time setup complete, users would then create the runspecs and input databases for

their MOVES runs, either using the MOVES GUI to create individual runspecs or using the

Runspec Creation Utility to create a batch of runspecs. These runspecs would be saved in a

single folder so they could be deployed using the Runspec Execution Utility.

After creating the runspecs, the user would use the Setup pane in the GUI to specify a project

name, which could be used to keep track of the total AWS resources used for a particular set of

MOVES runs, identify log files created by the utility, etc. Next, they would specify the folder

containing the MOVES runspecs. Names for the project's S3 bucket (used to store the input and

output databases) and SQS queue would be entered. The name of the pre-configured AMI would

then be entered, and the S3 buckets containing the MOVES code and default database would be

Scoping Study of Rewrite of MOVES for Efficiency Final Report

26

chosen from a drop-down menu that the utility would have populated with all available buckets

associated with the user's AWS account.

After the setup is complete, the user could click the "Verify setup" button to run a series of

checks to ensure that the AWS account is accessible and configured correctly; that the AMI

exists; and that the MOVES code and default database buckets exist.

The Deploy pane would be used to actually schedule, launch, and harvest the results of the

MOVES runs. First, the user would select the type of instance that they want to use from the

available options. A variety of AWS instances are available with different numbers of virtual

CPUs (vCPUs), different processor speeds, and varying amounts of RAM. The number of

instances to run concurrently would be selected next. The maximum number of instances for a

given user is determined by Amazon. The number of MOVES workers to run on the primary

instance would then be chosen from a dropdown menu.

In some cases, MOVES runs are worker bound, meaning that the total runtime is largely

determined by the number of MOVES workers. If so, it may be beneficial to launch additional

instances to run more MOVES workers than could be executed on a single machine. This would

be similar to the sort of master machine/worker machines setup that can be used with a shared

folder on a local network except the machines and the shared folder would all exist in the cloud.

Behind the scenes, the utility would handle setting up a shared folder in an S3 bucket for the

master instance and the worker instances to use for posting tasks and processed jobs. The user

would specify the number of additional worker instances to launch for every primary (master)

instance as well as the number of workers to run on each of these additional instances.

For publicly released versions of MOVES, Master/Worker is not enabled in the cloud. There is no

file sharing between Amazon computers in current configurations. Nothing in MOVES prevents this,

but setting up file shares via cloud scripts would require additional time and expense that would not

pay off. This is because multithreading performance in the cloud has the same issues highlighted

in Task 1. The current public versions of MOVES are limited by I/O bandwidth, not by the

number of CPU cores on a single machine; adding workers via the cloud does not solve this

problem After the changes from Task 1, MOVES will be CPU limited and will likely not benefit

much from the master/worker paradigm. This updated version of MOVES would have a single

master/worker instance on each cloud machine and no dedicated worker cloud machines. In this

case, adding CPU instances in the cloud would directly benefit MOVES runtime.

After configuring the instances, the user would click the "Upload databases" button to transfer all

of the input databases, including any CDBs, to the project's S3 bucket. The progress indicator

would show the percentage of the data uploaded to AWS. After all of the input data are

uploaded, the user could then proceed to add the jobs to the SQS queue and launch the instances.

The Monitor pane would be used to monitor the state of the AWS resources, including the

number of running instances, the number of jobs pending, the number of jobs completed, and the

overall progress. The cumulative CPU hours and storage use are important, as they determine the

total cost for the AWS runs, so these would also be displayed in the GUI.

Scoping Study of Rewrite of MOVES for Efficiency Final Report

27

At any point during execution, the user could click the "Download results" button to download

results from any completed MOVES runs and load them into the local MySQL server.

Buttons for aborting all runs and clearing the S3 buckets and SQS queues would also be

provided.

3.5 Runspec Creation Utility

For simplicity, the Runspec Creation Utility could rely on the assumption that all runspecs within

a batch share the same pollutants, processes, vehicles, and other run settings, i.e., the only

differences between individual runspecs would be their geographic locations, time periods, and

input databases. With this restriction, the utility could use an existing MOVES runspec as a

template. The user would then specify the geographic locations and time periods, either via a

GUI or a batch file. Then, for the locations specified, the user would select one or more input

databases that would be incorporated into the runspecs. Again, this could be done either via a

GUI or a batch file.

The use of a runspec template would allow the Runspec Creation Utility to be much simpler than

it would be otherwise. It could rely on the MOVES GUI to specify most of the settings in the

runspec template, highlighted in blue in the following example runspec. The utility would only

need to alter the sections highlighted in orange in order to generate runspecs for the individual

runs.

<runspec version='MOVES2014a-20151201'>

 <description><![CDATA[EPA MOVES Mexico Runspec]]></description>

 <models>

 <model value='ONROAD'/>

 </models>

 <modelscale value='Inv'/>

 <modeldomain value='NATIONAL'/>

 <geographicselections>

 <geographicselection type='COUNTY' key='1001' description='Autauga County'/>

 <geographicselections>

 <timespan>

 <year key='2028'/>

 <month id='1'/>

 <month id='7'/>

 <day id='2'/>

 <day id='5'/>

 <beginhour id='1'/>

 <endhour id='24'/>

 <aggregateBy key='24-Hour Day'/>

 </timespan>

 <onroadvehicleselections>

 <onroadvehicleselection fueltypeid='1' fueltypedesc='Gasoline' sourcetypeid='61'

sourcetypename='Combination Short-haul Truck'/>

 <onroadvehicleselection fueltypeid='1' fueltypedesc='Gasoline' sourcetypeid='32'

sourcetypename='Light Commercial Truck'/>

 <onroadvehicleselection fueltypeid='1' fueltypedesc='Gasoline' sourcetypeid='11'

sourcetypename='Motorcycle'/>

 <onroadvehicleselection fueltypeid='1' fueltypedesc='Gasoline' sourcetypeid='21'

sourcetypename='Passenger Car'/>

 <onroadvehicleselection fueltypeid='1' fueltypedesc='Gasoline' sourcetypeid='31'

sourcetypename='Passenger Truck'/>

 <onroadvehicleselection fueltypeid='1' fueltypedesc='Gasoline' sourcetypeid='53'

sourcetypename='Single Unit Long-haul Truck'/>

 <onroadvehicleselection fueltypeid='1' fueltypedesc='Gasoline' sourcetypeid='52'

sourcetypename='Single Unit Short-haul Truck'/>

 <onroadvehicleselection fueltypeid='1' fueltypedesc='Gasoline' sourcetypeid='42'

sourcetypename='Transit Bus'/>

 </onroadvehicleselections>

Scoping Study of Rewrite of MOVES for Efficiency Final Report

28

 <offroadvehicleselections>

 </offroadvehicleselections>

 <offroadvehiclesccs>

 </offroadvehiclesccs>

 <roadtypes separateramps='false'>

 <roadtype roadtypeid='1' roadtypename='Off-Network' modelCombination='M1'/>

 <roadtype roadtypeid='2' roadtypename='Rural Restricted Access' modelCombination='M1'/>

 <roadtype roadtypeid='3' roadtypename='Rural Unrestricted Access' modelCombination='M1'/>

 <roadtype roadtypeid='4' roadtypename='Urban Restricted Access' modelCombination='M1'/>

 <roadtype roadtypeid='5' roadtypename='Urban Unrestricted Access' modelCombination='M1'/>

 </roadtypes>

 <pollutantprocessassociations>

 <pollutantprocessassociation pollutantkey='2' pollutantname='Carbon Monoxide (CO)'

processkey='1' processname='Running Exhaust'/>

 <pollutantprocessassociation pollutantkey='2' pollutantname='Carbon Monoxide (CO)'

processkey='15' processname='Crankcase Running Exhaust'/>

 <pollutantprocessassociation pollutantkey='3' pollutantname='Oxides of Nitrogen (NOx)'

processkey='1' processname='Running Exhaust'/>

 <pollutantprocessassociation pollutantkey='3' pollutantname='Oxides of Nitrogen (NOx)'

processkey='15' processname='Crankcase Running Exhaust'/>

 </pollutantprocessassociations>

 <databaseselections>

 <databaseselection servername='' databasename='borderAgeDistribution' description=''/>

 <databaseselection servername='' databasename='borderFuels' description=''/>

 </databaseselections>

 <internalcontrolstrategies>

 <internalcontrolstrategy

classname='gov.epa.otaq.moves.master.implementation.ghg.internalcontrolstrategies.

rateofprogress.RateOfProgressStrategy'><![CDATA[

 useParameters No

]]></internalcontrolstrategy>

 </internalcontrolstrategies>

 <inputdatabase servername='' databasename='' description=''/>

 <uncertaintyparameters uncertaintymodeenabled='false' numberofrunspersimulation='0'

numberofsimulations='0'/>

 <geographicoutputdetail description='COUNTY'/>

 <outputemissionsbreakdownselection>

 <modelyear selected='false'/>

 <fueltype selected='true'/>

 <fuelsubtype selected='false'/>

 <emissionprocess selected='true'/>

 <onroadoffroad selected='true'/>

 <roadtype selected='true'/>

 <sourceusetype selected='true'/>

 <movesvehicletype selected='false'/>

 <onroadscc selected='true'/>

 <estimateuncertainty selected='false' numberOfIterations='2' keepSampledData='false'

keepIterations='false'/>

 <sector selected='false'/>

 <engtechid selected='false'/>

 <hpclass selected='false'/>

 <regclassid selected='false'/>

 </outputemissionsbreakdownselection>

 <outputdatabase servername="" databasename="borderSweep_12jun17" description=""/>

 <outputtimestep value='24-Hour Day'/>

 <outputvmtdata value='true'/>

 <outputsho value='true'/>

 <outputsh value='true'/>

 <outputshp value='true'/>

 <outputshidling value='true'/>

 <outputstarts value='true'/>

 <outputpopulation value='true'/>

 <scaleinputdatabase servername='' databasename='' description=''/>

 <pmsize value='0'/>

 <outputfactors>

 <timefactors selected='true' units='Days'/>

 <distancefactors selected='true' units='Miles'/>

 <massfactors selected='true' units='Grams' energyunits='Joules'/>

 </outputfactors>

 <savedata>

Scoping Study of Rewrite of MOVES for Efficiency Final Report

29

 </savedata>

 <donotexecute>

 </donotexecute>

 <generatordatabase shouldsave='false' servername='' databasename='' description=''/>

 <donotperformfinalaggregation selected='false'/>

 <lookuptableflags scenarioid='' truncateoutput='true' truncateactivity='true'

truncatebaserates='true'/>

</runspec>

A mock-up of the Runspec Creation Utility GUI is shown in Figure 3-5. Using this GUI, the user

would specify a project name, with a project being a group of batches. Each batch would be a

group of runspecs that share a common configuration, including the time period (years, months,

days, and hours), the input databases, and the geographic bounds. All of the batches would use

the same runspec template, and all of the generated runspecs would be saved to a common output

folder so they could be launched together using the Runspec Execution Utility. County-specific

data could be provided by county databases (CDBs) adhering to the naming convention specified

in the GUI. The MOVES output databases generated by the runs would adhere to a naming

convention specified in the project settings, e.g., borderSweep_countyID_12jun17 in the GUI

mock-up, with countyID indicating a placeholder that would be replaced by each MOVES run's

actual countyID.

Figure 3-5. Mock-up of GUI for Runspec Creation Utility

At a minimum, the utility could generate individual runspecs for each unique year/county

combination. However, it may be possible to build in some logic to adaptively split and/or

combine runspecs. For example, if very few pollutants are chosen, it may be better to combine

multiple years into a single runspec, as this would reduce the number of AWS instances that

Scoping Study of Rewrite of MOVES for Efficiency Final Report

30

would have to be launched – potentially saving costs, as Amazon charges for CPU time in one

hour increments, so each additional instance costs at least one hour of CPU time.

3.6 Example scenario using Runspec Creation and Execution Utilities

In the following, we describe an example scenario to illustrate the potential time savings

achievable using the cloud. To be as realistic as possible, this example describes a setup similar

to one already implemented by ERG, allowing for relatively precise estimates of runtime.

The example scenario is as follows: generate annual emissions inventories for all 3,228 counties

in the U.S.; two calendar years; all months, day types, and hours; all gasoline and diesel source

types; and all road types. All pollutants should be included except petroleum energy

consumption; fossil fuel energy consumption; CO2 equivalent; metals; and dioxins and furans.

Both evaporative and non-evaporative processes should be modeled.

For efficiency, the evaporative and non-evaporative processes can be modeled using separate

runs, as that allows the non-evaporative processes to use a daily time aggregation level instead of

the hourly time aggregation required for evaporative processes. With this approach, the

evaporative runs only need to include the gasoline source types, while the non-evaporative runs

include both gasoline and diesel source types.

The computational resources to run this scenario on a single computer would be prohibitive. On

a typical desktop computer with a single worker, executing the MOVES runs for a single county

and year would require approximately 5 hours (approximately 270 minutes for the evaporative

run and 30 minutes for the non-evaporative run). Scaling up to all 3,228 counties and both years

would require 3,228×2×5 = 32,280 hours, or 3.7 years.

Deploying these runs in the cloud would make this impractical scenario feasible. Assuming that

400 instances are available to the AWS account (the default limit is lower, but Amazon will

increase this limit upon request, as they have for ERG), and assuming that each instance executes

a single evaporative run (5 hours of CPU time) or non-evaporative run (1 hour of CPU time) for

a single county and year, the clock time required to execute the runs will be [(3,228×2×5) +

(3,228×2×1)]÷400 = 97 hours, or 4 days.

In addition to the execution time, the cloud runs would entail a certain amount of overhead to

transfer the input databases to the cloud and download the results. This would depend on the

local network speed, but even if these were to add an additional day to the clock time (probably a

conservative estimate), the entire inventory could be completed in a week's time instead of taking

years – or, more likely, not being possible at all.

Although the scenario as outlined above demonstrates a dramatic reduction in the clock time

required to generate the hypothetical inventory, it probably underestimates the potential increase

in efficiency, as it assumes that no additional MOVES workers are used. It is probable that these

runs would be worker bound to at least some extent, so launching additional workers, either on

the primary (master) instance or using additional worker instances, could provide another

substantial improvement in runtime.

The cost to execute these runs in the AWS cloud would depend on the details, e.g., the total size

of the input databases and the exact runtime. However, it can be approximated using the hours

Scoping Study of Rewrite of MOVES for Efficiency Final Report

31

estimated above and a total rate of $0.13/CPU hour, which is roughly what ERG has historically

paid for CPU time and typical storage and transfer fees. With these assumptions, the total cost

would be approximately [(3,228×2×5) + (3,228×2×1)]×$0.13, or $5,036.

The procedure for executing this scenario using the proposed runspec creation and runspec

execution utilities would be as follows: First, the user would use the standard MOVES GUI to

generate one runspec template for the evaporative processes and one runspec template for the

non-evaporative processes. Then, using the Runspec Creation Utility, the user would create two

batches – one for the evaporative runs, and one for the non-evaporative runs. The user would use

the GUI to specify the two scenario years, as well as the time ranges and geographic bounds.

They would also specify any input databases, including any CDBs containing county-specific

input data. The utility would use these inputs to create 3,228×2 = 6,456 runspecs for each batch,

for a total of 12,912 runspecs. These would be saved to a single output folder for use by the

Runspec Execution Utility.

Launching these runspecs with the Runspec Execution Utility would be a simple matter of using

the GUI to specify the location of the runspecs and then executing the steps required to specify

the AWS instances; load the input databases to AWS; launch and monitor the instances; and then

download the results to the local MySQL database.

3.7 Worker Cloud Gateway

Another potential way to leverage AWS to speed up worker-bound MOVES runs would be to

deploy just MOVES workers in the cloud, keeping the MOVES master on a local machine.

Deploying just the workers would be simpler, as the MOVES default database and input

databases would not need to be transferred to the cloud, obviating the need to create S3 buckets

to store these data. This approach would be facilitated by changes to the MOVES architecture, as

described below. Changing the MOVES architecture to move some part of the generators to the

workers, as discussed in Section 2.0, would also increase the value of deploying a large number

of workers for a single master; while running workers in the cloud could provide some benefit

for MOVES 2014a, its greatest benefit would be realized after the Task 1 changes are

implemented.

This streamlined approach would enable the creation of a Worker Cloud Gateway utility (Figure

3-6). This utility would allow the cloud to be treated as simply another collection of worker

machines, with the number of machines easily scalable as required for the particular MOVES

run. The user would simply launch the Worker Cloud Gateway and specify the number of

workers to request. In the background, the utility would handle the tasks required to launch

instance types appropriate for an individual worker or small number of workers (selection of an

optimal instance type would be determined during development of the utility).

The utility would poll the MOVES SharedWork folder for available bundles to process, sending

them to an S3 bucket shared by the workers and placing messages on SQS notifying the workers

that TODO bundles are available to process. The SQS message would contain the name of the

file to be fetched from S3, the master ID, and the master code version. The master's code itself

would be stored in a Java ARchive (JAR) file in the SharedWork folder; this file would serve as

both the master's heartbeat file and as a way to ensure that any worker processing bundles

Scoping Study of Rewrite of MOVES for Efficiency Final Report

32

associated with that master's ID would also have access to the correct code required to process

the bundles.

After a worker finishes processing a bundle, it would place the DONE bundle in S3 and post an

SQS message informing the Worker Cloud Gateway utility that a bundle is ready to download.

The DONE bundle would also contain the master's ID number so the Worker Cloud Gateway

would know which local folder to place the downloaded bundle in. Once the final master bundle

is detected, the worker instances could be automatically triggered to shut down.

Figure 3-6. Mock-up of Worker Cloud Gateway utility

4.0 Task 3: Eliminating Redundancies

Task 3 focuses on what users could do to improve performance of the current version of

MOVES. As noted under Task 1, the recoding would eliminate the bottlenecks and redundancies

highlighted in this section.

The original design concept of MOVES was to create core calculation functionality around

activity and emissions rates defined by unique modes of vehicle operation. For example, running

emissions, the core MOVES “calculator” design uses load-based (vehicle specific power, VSP)

operating modes, with emission rates expressed per time spent in each operating mode. Because

activity data available to the user takes different forms (e.g. VMT, average speed), the MOVES

design added “generators” to convert readily-available data to the core data needed by

calculators. Generators were designed separately from calculators to provide flexibility for users

to alter key inputs and have the model adapt “on-the-fly”; a prime example is the Operating

Mode Distribution Generator, which was developed to allow users to enter alternative drive

cycles into MOVES, and have the model adapt emission rates based on the inherent distribution

of VSP-based operating modes.

Redundant calculations are most likely to occur, and easiest to isolate, in “generators” which

convert intermediate data to the core data needed by the model to directly calculation emissions

rates and inventory. If users do not change inputs to generators, the generators will produce the

same core model inputs every time the model is run. This creates unnecessary redundancy; in

Scoping Study of Rewrite of MOVES for Efficiency Final Report

33

these cases, core model inputs could be provided directly to the model MOVES calculators,

without the need for generators to run. This would reduce runtime to the degree generators are

contributing to overall execution time.

Scoping Study of Rewrite of MOVES for Efficiency Final Report

34

To demonstrate the contribution of generators to a typical run, and to isolate which generators

are the biggest bottlenecks, a test run with following specifications was run on the current

publicly available version of MOVES, MOVES2014a. This run is a typical daily run similar to

what might be used for SIP modeling, so was considered a good example run. The performance

improvements may vary depending on the scope of the run.

RunSpec ACELA_ZMVM

Output/Run ACELA_Newblends RunID=15

National

Geography State Aggregation / 2 States

Year 1

Month 1

Daytype 1

Hours 24

Source/Fuel Types 8

Road Types All

Pollutants 12

Processes All

Table 4-1. MOVES test run specifications

In the MOVES output database, the table BundleTracker logs the run duration for all generators,

calculations and aggregation steps. Figure 4-1 shows the general breakdown between these three

groups:

Figure 4-1. Contribution to runtime, example run

Scoping Study of Rewrite of MOVES for Efficiency Final Report

35

As shown, generators account for about ½ of total run time. A further breakdown of individual

run time generators is shown in Figure 4-2.

Figure 4-2. Runtime by generator

As shown, the RatesOperatingModeDistribution and BaseRate generators accounts for the

majority of total generator run time – 884 seconds, which is 87 percent of total generator

runtime, and 44 percent of overall runtime. Bypassing these two generators would therefore

reduce runtime considerably for this run. This example is illustrative only; the amount of benefit

would vary with changes in the scope of the runspec, for example the number of source types,

road types, months, days or hours.

Scoping Study of Rewrite of MOVES for Efficiency Final Report

36

Generators can be considered redundant if users are not likely to change data used as input to the

generator. Table 4-2 shows the input tables used by each generate to produce the core data

needed by MOVES calculators.

Generator Input Tables User

Likely

to

Change?

RatesOperatingModeDistributionGenerator

AvgSpeedBin No

DriveSchedule No

DriveScheduleAssoc No

DriveScheduleSecond No

hotellingActivityDistribution No

OMDGPolProcessRepresented No

OperatingMode No

OpModePolProcAssoc No

PollutantProcessAssoc No

RoadOpmodeDistribution No

RoadType No

SourceTypePolProcess No

BaseRateGenerator dioxinemissionrate No

EmissionRate No

EmissionRateByAge No

FullACAdjustment No

hotellingActivityDistribution No

metalemissionrate No

ModelYearGroup No

PollutantProcessAssoc No

PollutantProcessModelYear No

SourceBin No

SourceBinDistribution No

SourceTypeModelYear No

Table 4-2. Input tables for two bottleneck generators

As shown in Table 4-2, it is very unlikely users would change the input tables used by these

generators. Our assessment is based on broad experience running MOVES, including support for

clients setting up MOVES runs at the local, state, regional and national levels. None of the tables

listed above are addressed in EPA’s technical guidance for running MOVES for SIP and

Conformity purposes, and none are included within the primary set accessed via the County Data

Manager. These generators are prime candidates to bypass, but would require providing a pre-

generated core model input table (CMIT) to MOVES. Only BaseRateGenerator produces a

CMIT, but based on output from the RatesOpModeDistribution generator. This table,

RatesOpModeDistribution, contained about 2.6 million records for this run. This is the

combination of each source type (8), road type (5), pollutant (5), process (2), average speed bin

(16) and hour/day (48) used in the run; the size of this table will vary based on the selections of

these parameters. The Core Model Input Table produced by the BaseRateGenerator, is

BaseRateByAge. This is a combination of source type, regulatory class, fuel type, road type,

pollutant, process, average speed bin, resulting in about 0.5 million records. As mentioned,

BaseRateByAge encompasses RateOpModeDistribution, so both generators could be bypassed if

only the BaseRateByAge table is pregenerated. For the test run, bypassing the generators would

reduce total runtime by up to 45 percent in MOVES2014a.

https://www.epa.gov/moves/moves-algorithms#tableavgspeedbin
https://www.epa.gov/moves/moves-algorithms#tabledriveschedule
https://www.epa.gov/moves/moves-algorithms#tabledrivescheduleassoc
https://www.epa.gov/moves/moves-algorithms#tabledriveschedulesecond
https://www.epa.gov/moves/moves-algorithms#tablehotellingactivitydistribution
https://www.epa.gov/moves/moves-algorithms#tableomdgpolprocessrepresented
https://www.epa.gov/moves/moves-algorithms#tableoperatingmode
https://www.epa.gov/moves/moves-algorithms#tableopmodepolprocassoc
https://www.epa.gov/moves/moves-algorithms#tablepollutantprocessassoc
https://www.epa.gov/moves/moves-algorithms#tableroadopmodedistribution
https://www.epa.gov/moves/moves-algorithms#tableroadtype
https://www.epa.gov/moves/moves-algorithms#tablesourcetypepolprocess
https://www.epa.gov/moves/moves-algorithms#tabledioxinemissionrate
https://www.epa.gov/moves/moves-algorithms#tableemissionrate
https://www.epa.gov/moves/moves-algorithms#tableemissionratebyage
https://www.epa.gov/moves/moves-algorithms#tablefullacadjustment
https://www.epa.gov/moves/moves-algorithms#tablehotellingactivitydistribution
https://www.epa.gov/moves/moves-algorithms#tablemetalemissionrate
https://www.epa.gov/moves/moves-algorithms#tablemodelyeargroup
https://www.epa.gov/moves/moves-algorithms#tablepollutantprocessassoc
https://www.epa.gov/moves/moves-algorithms#tablepollutantprocessmodelyear
https://www.epa.gov/moves/moves-algorithms#tablesourcebin
https://www.epa.gov/moves/moves-algorithms#tablesourcebindistribution
https://www.epa.gov/moves/moves-algorithms#tablesourcetypemodelyear

Scoping Study of Rewrite of MOVES for Efficiency Final Report

37

A pre-generated BaseRateByAge table could be provided by EPA based on national defaults. In

general, EPA may consider providing default CMITs for all generators, so a “calculator only”

version of the model could be run if no inputs are changed.

MOVES2014a has functionality in Advanced Performance Features GUI pane to turn off

generators and calculators. Unfortunately, this has not been extended to

RatesOperatingModeDistribution or BaseRate generators. Code update would therefore be

required to allow bypass of these generators when a pre-generated CMIT is available, in order to

realize the performance improvements. As part of this update, the model could be programmed

to detect if a) relevant inputs have not been changed and b) pre-generated CMITs are populated,

and automatically bypass the generators if these conditions are met. The hour and cost estimates

detailed in Section 5 include this feature.

5.0 Task 4: Effort Required

This section lists the individual subtasks required to enact the recommendations listed under

Task 1-3, to serve as a qualitative estimate of effort for work to accomplish Tasks 1-3. Specific

hours for each subtask are not shown, as these would only be provided as CBI for a specific bid.

To meet the requirements of the RFP, a supplemental cost estimate has been provided to CRC.

5.1 Task 1 subtasks

Subtasks needed for the recommended architecture changes are shown below:

Task 1: Recode

Create gencalc program from generator and calculator programs

Modify gencalc generators to have file-based mode

Modify gencalc calculators to have database mode

Update gencalc to chain generators and calculators

Compute benefit from a distributed bundle

Invoke a local bundle

Invoke a distributed bundle

Updates to MasterLoop

Testing and validation

Architecture documentation updates

Contingency

Table 5-1. Task 1 subtasks

5.2 Task 2 subtasks

Subtasks for Task 2 are shows for each runspec utility, and for the Worker Cloud Gateway

Task 2: Runspec Execution Utility

Develop scripts to create S3 buckets; create SQS queues; transfer data to and from S3 buckets;

and transfer messages to instances via SQS

Develop scripts to configure, launch, monitor, and manage instances

Develop scripts to download and process MOVES outputs and load them to the local MySQL

server

Design the GUI and develop the underlying code to manage the backend scripts

Testing and validation

Documentation

Scoping Study of Rewrite of MOVES for Efficiency Final Report

38

Table 5-2. Task 2 Runspec Execution Utility subtasks

Task 2: Runspec Creation Utility

Develop scripts to parse runspec templates and develop runspecs for batches

Design the GUI and develop the underlying code to manage the backend scripts

Testing and validation

Documentation

Table 5-3. Task 2 Runspec Creation Utility subtasks

Task 2: Worker Cloud Gateway

MOVES architectures changes: bundling MOVES code in a JAR file and using it as the heartbeat

file; modifying workers to use bundled MOVES code

Configure AMI, EC2 instances, and worker code to implement workers on AWS

Develop scripts to create S3 buckets; create SQS queues; transfer data to and from S3 buckets;

and transfer messages to instances via SQS

Develop scripts to configure, launch, monitor, and manage instances

Develop scripts to manage bundles on AWS and local machine

Design the GUI and develop the underlying code to manage the backend scripts

Testing and validation

Documentation

Table 5-4. Task 2 Worker Cloud Gateway subtasks

5.3 Task 3 effort estimates

Task

Pre-generate default BaseRatebyAge CMIT

Allow bypass of RatesOperatingModeDistribution and BaseRate generators , inc. automatic

bypass if relevant input tables are not changed, and CMITs populated

Provide guidance on re-generating CMIT in case any inputs are changed (e.g. driving schedules)

Table 5-5. Task 3 subtasks

