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ABSTRACT 

 

 Routine ambient measurements of PM2.5 mass and chemical composition collected in the 

San Francisco Bay Area (SFBA) were analyzed for source contributions using the Chemical 

Mass Balance (CMB) model and the Positive Matrix Factorization (PMF) model.  CMB source 

contributions appear plausible, with high contributions from biomass burning sources during 

winter months, and more consistent contributions from other sources throughout the year (slight 

attenuation due to seasonal changes in atmospheric mixing).  Diesel engines, food cooking, 

gasoline engines, road dust, and brake wear are predicted to be the most significant sources of 

PM2.5 in addition to biomass burning.  PMF source contributions suffered from lack of unique 

molecular markers and/or unique elements consistently above detection limits.  Primary source 

contributions from biomass and road dust were resolved by PMF, but a single factor was 

predicted for diesel engines, gasoline engines, brake wear, and cooking.  It is uncertain if this 

combined PMF factor can be deconvoluted given the available measurement data. At present, the 

CMB source contributions appear to provide a reasonable comparison point for predicted source 

contributions to PM2.5 produced by chemical transport model.  

Wood smoke contributions predicted by UCD/CIT model with the emissions inventory 

prepared by the BAAQMD are significantly lower than contributions predicted using the 

emissions inventory prepared by CARB.  CMB predictions for wood smoke contributions do not 

entirely agree with estimates produced by either emissions inventory, but results do suggest that 

the BAAQMD emissions inventory may slightly under predict wood smoke contributions at the 

monitoring sites considered. Gasoline contributions predicted by the UCD/CIT model using the 

BAAQMD 2012 inventory and the ARB 2010 inventory are 0.09 µg/m3 and 0.14 µg/m3 at 

Livermore, 0.15 µg/m3 and 0.37 µg/m3 at West Oakland, 0.12 µg/m3 and 0.14 µg/m3 at Vallejo, 

0.16 µg/m3 and 0.33 µg/m3 at San Jose, and 0.02 µg/m3 and 0.01µg/m3 at Point Reyes, 

respectively. Diesel contributions predicted by the UCD/CIT model using the BAAQMD 2012 

inventory and the ARB 2010 inventory are 0.16 µg/m3 and 0.42 µg/m3 at Livermore, 1.87 

µg/m3 and 1.42 µg/m3 at West Oakland, 0.13 µg/m3 and 0.18 µg/m3 at Vallejo, 0.41 µg/m3 and 

0.72 µg/m3 at San Jose, and 0.02 µg/m3 and 0.02µg/m3 at Point Reyes, respectively.  This 

reflects the shift of heavy duty diesel emissions on some transportation corridors in the 

BAAQMD inventory and the daily variability in the CARB inventory. The predicted response of 

PM2.5 concentrations to emissions controls applied to different pollutants (NOx, VOC, SOx, 

NH3, PM) was similar for CMAQ and the UCD/CIT model.  Changes to primary PM2.5 

emissions were predicted to have the greatest effect on ambient PM2.5 concentrations in the Bay 

Area.  PM2.5 improvement from reduction of gas pollutants such as NOx, VOC, NH3 and SOx 

was very limited in the Bay Area. 
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EXECUTIVE SUMMARY 

 

The San Francisco Bay Area (SFBA) experiences exceedances of the 24-hour PM2.5 (particles 

with aerodynamic particle diameters below 2.5µm) National Ambient Air Quality Standard 

(NAAQS) during winter months. The objectives of this study are to conduct data analysis and 

modeling in the SFBA, compare results with analysis performed by the Bay Area Air Quality 

Management District (BAAQMD), and make recommendations on using modeling and analysis 

tools for air quality decision making. This is the Final Draft and the modeling results are in this 

report.  

Routine PM2.5 mass and chemical species measurement data from 2012 were analyzed at 5 

sampling locations in the SFBA: Livermore, West Oakland, San Jose, Vallejo, and Point Reyes. 

CMB modeling (EPA CMB8.2) and Positive Matrix Factorization (EPA PMF 5.0) modeling was 

carried out using standard methods. CMB source contributions appear plausible, with high 

contributions from biomass burning sources during winter months, and more consistent 

contributions from other sources throughout the year (slight attenuation due to seasonal changes 

in atmospheric mixing).  Diesel engines, food cooking, gasoline engines, road dust, and brake 

wear are predicted to be the most significant sources of PM2.5 in addition to biomass burning.  

PMF source contributions suffered from lack of unique molecular markers and/or unique 

elements consistently above detection limits.  Primary source contributions from biomass and 

road dust were resolved by PMF, but a single factor was predicted for diesel engines, gasoline 

engines, brake wear, and cooking.  It is uncertain if this combined PMF factor can be 

deconvoluted given the available measurement data.  

Predictions of PM2.5 species (total mass, OC, EC, sulfate, nitrate) from the CMAQ model using 

the BAAQMD 2012 emissions inventory, the UCD/CIT model with ARB 2010 emission 

inventory and the UCD/CIT model with BAAQMD 2012 emission inventory are in general 

agreement.  Predictions from all models have MFBs within ±0.5 and MFE less than 0.80 for 

PM2.5 total mass and PM2.5 OC, indicating good agreement between predictions and 

measurement. All models generally under predicted nitrate concentrations.  The UCD/CIT model 

consistently overestimated sulfate concentration, while the CMAQ model slightly under-

predicted high concentrations of sulfate and overestimated low concentrations of sulfate.  

Despite the limitations in predicting secondary species, the general agreement between the 

predicted and observed concentrations at 5 locations for PM2.5 species builds confidence that the 

major chemical, physical and transport processes are reasonably represented by the model 

simulation so that the results are suitable for further PM2.5 source contribution analysis and 

control strategies evaluations. 

Source contributions predicted by the UCD/CIT air quality model with ARB 2010 inventory and 

BAAQMD 2012 inventory were compared to receptor-oriented source apportionment results 

produced by the Chemical Mass Balance (CMB) model at 5 sites in the Bay Area. Wood smoke 
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contributions predicted by UCD/CIT model with the BAAQMD 2012 inventory were 

significantly lower than wood smoke contributions predicted with the ARB 2010 inventory.  

Gasoline and diesel contributions from the UCD/CIT model with the BAAQMD 2012 inventory 

and with the ARB 2010 inventory differ by as much as ~70%.  All of these trends can be 

explained by the modifications to the emissions inventory carried out by BAAQMD staff, and 

the current results provide feedback that will focus efforts for further work in this area. 

The PM2.5 concentration response to emissions controls for different pollutants, i.e. NOx, VOC, 

SOx, PM, NH3 predicted by the UCD/CIT model generally matches the predicted response from 

the CMAQ model. Ambient PM2.5 concentrations in the Bay Area respond most strongly to 

controls on primary PM2.5 emissions, with more subtle effects from controls on gas phase 

emissions.  
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1. Introduction 

The San Francisco Bay Area (SFBA) experiences exceedances of the 24-hour PM2.5 (particles 

with aerodynamic particle diameters below 2.5µm) National Ambient Air Quality 

Standard(NAAQS) during winter months. Even though the region began meeting both the 24-

hour and annual average PM2.5 NAAQS in recent years, PM2.5 still significantly impacts public 

health in the region. Epidemiological and toxicological studies show that PM2.5 poses a threat to 

public health (see for example[1-7]).  

To reduce ambient PM2.5 levels, the Bay Area Air Quality Management District (BAAQMD) 

continually evaluates existing emission reduction programs and adopts new ones based on 

information from on-going PM2.5 modeling and analysis. 

The District has been collecting PM2.5 data from fifteen air monitoring stations-five of which 

include speciation (Table 1); developed a modeling emissions inventory; performed statistical 

cluster analyses of relationships among meteorology, emissions and air quality; performed 

chemical mass balance (source apportionment) analyses; applied MM5/CMAQ and 

WRF/CMAQ couples; conducted model sensitivity simulations; and estimated the health impacts 

of PM2.5. 
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Table 1 Bay Area PM2.5 air monitoring stations 

 

The objectives of this study are to conduct data analysis and modeling in SFBA, compare data 

analysis and modeling results with District's, and make recommendations on using modeling and 

analysis tools for air quality decision making.  The specific tasks used to achieve these objectives 

were: 

1) Obtain meteorological model outputs and emissions inventory for 2012 from the District. 

2) Adopt a modeling domain for the UCD/CIT model and conduct the same set of base case 

and sensitivity simulations as the District. 

3) Evaluate the UCD/CIT model. Compare the model‟s performance and response to 

changes in emissions to those of CMAQ. 

4) Conduct CMB and PMF analysis for PM source apportionment. 

5) Corroborate primary  and secondary PM2.5 data analysis and CMAQ results using 

UCD/CIT source apportionment; identify contribution of mobile sources to PM2.5. 
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6) Evaluate overall BAAQMD modeling and analysis of speciated PM2.5 data to determine 

model and emissions fidelity. Recommend improvements if any. 
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2. Methods 

2.1 Ambient PM2.5 measurements 

In this study, ambient data were used from the four District monitoring sites where requisite data 

were available, Livermore, West Oakland, San Jose, and Vallejo, and from a non-District site, 

Point Reyes. Point Reyes is part of the IMPROVE network that operates in National Parks. 

These sampling locations span the variability in PM2.5 composition throughout the Bay Area. 

The West Oakland, Vallejo, Livermore and San Jose sites are located in different sub-regions of 

the highly urbanized Bay Area and are four urban sites. Point Reyes is a remote coastal location, 

presumably sampling near-background pollution levels. Time-integrated 24-hour PM2.5 samples 

were collected once every six days from 1/1/2012 to 12/29/2012 in Livermore, West Oakland 

and Vallejo and once every three days San Jose and Point Reyes. For each site, the set of 

chemical species measured included higher atomic weight elements; various ions including 

nitrate, sulfate, ammonium, chloride, sodium, and potassium; and elemental and organic carbon 

(EC and OC). Species chosen for CMB and PMF analysis were limited to those with a 

substantial fraction of concentrations greater than the estimated measurement uncertainty (that is, 

the standard deviation of the measurement error). 

2.2 CMB and PMF model analysis 

CMB modeling estimates source contributions to ambient PM concentrations. The CMB model 

searches for a fit that explains measured concentrations for a range of chemical components 

using a liner combination of measured source profiles.  For each ambient sample, the CMB 

model finds the mix of chemical component sources profiles that best combine to match the 
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measured concentrations. In this study, CMB modeling (EPA CMB8.2) was performed on the 

PM2.5 samples collected during the year 2012.The profiles used in the CMB model were 

obtained from the EPA Speciate [8] databases, and BAAQMD databases that had been used in a 

previous study [9].  The source profiles utilized in the current study included  new and aged 

marine air, geological dust, residential woodsmoke, wildfire smoke, meat cooking, diesel 

emissions, gasoline emissions, tire/brake wear, and fireworks. Ammonium nitrate and 

ammonium sulfate were also included.  

Positive Matrix Factorization (EPA PMF 5.0) also was used to analyze PM2.5 data at the five 

measurement sites. PMF assumes that concentrations at receptor sites are the sum of a linear 

combinations of source emissions.  Source emissions factors are derived by the model rather than 

provided as model inputs. In this work, measurement uncertainties were used for the error 

estimates of the measured values; missing data were replaced by the annual geometric mean of 

the corresponding species and four times the annual geometric mean was taken as the error 

estimate.  

2.3 CTM Model Description 

The air quality model employed in the current study is the Eulerian source-oriented University of 

California, Davis/California Institute of Technology (UCD/CIT) chemical transport model [10-

26]. The details of the standard algorithms used in the UCD/CIT models are provided in previous 

studies and therefore only a summary is presented here. The formulation of advection and 

diffusion scheme is described by Kleeman and Cass [17], the dry deposition scheme is described 

by Kleeman et al. [19], the vertical advection scheme is described by Hu et al. [16], the wet 

deposition scheme is described by Mahmud et al [20]. Concentration fields from model 
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calculation in the coarse-resolution parent domain for every source type are saved in the 

boundary grid cells of the finer-resolution nested domains, and then are used as the boundary 

conditions for the model calculation in the nested domains. The UCD/CIT model was configured 

with 16 vertical layers up to a height of 5 km above ground level in all the mother and nested 

domains, with 10 layers in the first 1 km. Note that the use of relatively shallow vertical domains 

is only appropriate in regions with well-defined air basins and would not be appropriate for 

locations in the eastern USA or other regions with moderate topography. Particulate composition, 

number and mass concentrations are represented in 15 size bins, ranging from 0.01 to 10 μm in 

diameter. Primary particles are assumed to be internally mixed, i.e., all particles within a size bin 

have the same composition. Previous studies [24] have shown that this assumptions provides 

adequate predictions for total PM concentrations relative to source-oriented mixing treatments in 

California when feedbacks to meteorology are not considered [27]. 

2.4.1 Meteorological Fields  

The Meteorological fields used in this study were provided by the Bay Area Air Quality 

Management District. Hourly meteorological fields were simulated with the Weather Research 

and Forecasting (WRF) model version 3.4. The modeling domain uses a nested grid setting with 

36, 12 and 4 km horizontal resolutions. All three grids employ 50 vertical layers. WRF fields 

have been reformatted as inputs to the UCD/CIT air quality model using established 

preprocessing software at UC Davis.  
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2.4.2 Emissions 

Two different emission inventories for the San Francisco Bay Area were used in this study as a 

sensitivity analysis. The first set of emissions was developed by the BAAQMD for the year 2012 

based on the regulatory inventory provided by the California Air Resources Board for that same 

year. The BAAQMD updated the wood smoke emissions based on wintertime surveys for the 

past 10+ years to determine trends in wood burning activities and their characteristics. The recent 

surveys yielded information on the amounts of fuel (wood) burned by zip code, among other 

metrics. BAAQMD staff estimated annual total emissions based upon this information and 

developed spatial allocation surrogates from this information in combination with detailed 

Census data on home heating fuel and number of households. Staff further adjusted the surrogate 

for San Francisco County to account for new multi-family construction since the Census was 

taken. The end results of these modifications were that emissions were greatly reduced compared 

to previous estimates and emissions were moved away from densely populated urban core areas.  

BAAQMD staff also modified the mobile emissions inventory to exclude heavy duty trucks from 

I-580 from Foothill Blvd. in San Leandro to Grand Ave. in Oakland per the restrictions on these 

vehicles, and modified the spatial allocation of shipping emissions near the Port of San Francisco.  

The inventory was provided in an IDA format and processed using the SMOKEv3.7 software 

package provided by US EPA.  SMOKE was configured to separately tag emissions from on-

road gasoline vehicles, off-road gasoline vehicles, on-road diesel vehicles, off-road diesel 

vehicles, food cooking, biomass burning, natural gas, and all other sources.  Mobile and non-

road source sectors were treated as area sources for simplicity. VOCs within each of these source 

types were specified based on the native VOC profiles in the SMOKE system for the 

SAPRC99/SAPRC07/SAPRC11 chemical mechanism.  PM profiles for each source type were 
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specified as weighted averages from each of the detailed sources within each broad category as 

summarized in Table 2 below. 

 

 

Table 2 PM source profile averaging used with BAAQMD emissions 

Source Type PM Source Profile 

On-road gasoline vehicles 10% Non-catalyst vehicle + 90% Catalyst 

Vehicle 

Off-road gasoline vehicles 100% Non-catalyst vehicle 

On-road diesel vehicles 100% On-road diesel vehicle 

Off-road diesel vehicles 90% 1970‟s diesel vehicle + 7% 1980‟s diesel 

vehicle + 3% on-road diesel vehicle 

Food Cooking 85% meat frying + 15% charbroiling 

Biomass burning 95% residential wood smoke + 5% waste 

burning  

Natural gas combustion 100% natural gas combustion 

Other 70% construction & demolition + 10% paved 

road travel + 4% farming ops + 3% brake wear 

+ 2% cattle feedlot + 2% mining ops + 1% 

process heaters + 1% cement manufacturing + 

3% wood processing + 1% solid waste disposal 

+ 2% mineral processing + 1% asphalt 

production + 1% organic solvent  

  

The second emissions inventory was provided by the California Air Resources Board (CARB) 

for the year 2010 in support of the CalNex field project.  The inventory was provided in MEDS 

format that was processed with individual EIC codes assigned to appropriate source profiles.  

VOC source profiles were obtained from CARB for the SAPRC chemical mechanism, while PM 
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source profiles were based on the library maintained at UC Davis. Biogenic emissions for all 

simulations were calculated using the latest version of the MEGAN model. 

3. Results 

3.1 Source apportionment of PM2.5 using PMF model 

To identify the potential sources of PM2.5 in the Bay Area, the chemical composition and its 

uncertainty were used as input to the EPA PMF5.0 model. The data set included 24 variables 

(PM2.5 total mass, Cl
-
,  NO3

-
, SO4

=
, NH4

+
, Na+, K

+
, OC1, OC2, OC3, OC4, OPTR, OC, EC1, 

EC2, EC, TC, Si, S, Cl, K, Ca, Fe, Cu) at Livermore, West Oakland, Vallejo sites and 18 

variables (missing OC and EC fractions) at San Jose and Point Reyes. All these variable have 

nomenclature Signal-to-Noise Ratio (S/N ratio) larger than 0.4. When the S/N ratio of the 

variable is larger than 1.0, we categorize it as “Strong”, when the S/N ratio is smaller than 1.0 

and larger than 0.4, we categorize is as "Weak". The PM2.5 total mass is categorized as "Weak" 

since it should not have a large influence on the solution. Random seed number was chose for 

every site and the  results for the run with the lowest Objective Function (Q) (robust) are chosen. 

Five different random seed values were tested and similar results were obtained. The seed value 

was eventually set at 89, 76, 87, 74, 86 at Livermore, West Oakland, Vallejo, San Jose and Point 

Reyes, respectively. Bootstrapping on the base solution reported stable results, with > 80 out of 

100 bootstrap factors mapped with those in the base run for all the sites. In this study, PMF was 

able to resolve seven factors for the four urban sites (Livermore, West Oakland, Vallejo and San 

Jose) and four factors for the remote rural site (Point Reyes). PMF factors were identified as 
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mobile, ammonium sulfate (AmSul), ammonium nitrate (AmNit), biomass burning (Bioburning), 

Transport/Background, road dust (Roaddust) and marine.  

Figure 1 shows annual averaged source contributions (%) to PM2.5 mass at the 5 measurement 

sites. Mobile and wood burning are the two major primary sources at urban sites. The former 

contributes 7-23% and  the latter contributes 16-20% . The contribution from 

transport/background also plays an important role at both urban and rural sites. This factor 

mainly contains sulfate, nitrate, OC and aged sea salt. It may reflect the atmospheric transporting,  

mixing and condensation of oxidized compounds.  PMF results represent aged sea salt mixing 

with ship emission or other secondary pollutants transported from outside California. Other 

results vary between sites. Road dust contributes 2-7% and marine contributes 7-13%. At the 

Point Reyes background site, marine dominates, representing 51% of total PM2.5. Nitrate and 

sulfate are major secondary source factors at both urban and rural sites. 
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Figure 1. Annual averaged source contributions (%) to PM2.5 mass calculated using PMF, by 

site. 

  

3.2 Source apportionment of PM2.5 using CMB model 

Figure 2 shows annual average source contributions from 9 categories to PM2.5 concentrations 

at the 5 sampling sites. Table 3 shows the percentages for each site and the averaged percentages 

at the four urban sites. In general, the major categories among 4 urban sites are direct, 

combustion-related, largely carbonaceous sources – Biomass burning and fossil fuel (diesel and 

gasoline); and secondary, combustion-related sources – ammonium nitrate and ammonium 

sulfate. Biomass burning and ammonium nitrate are the two largest contributors at every urban 

site, averaging 25% and 23% of the total, respectively; marine air dominates at the Point Reyes 

background site, representing 48% of its total. Among all the anthropogenic sources, ammonium 

sulfate is the third greatest urban source category, representing 13% of the total. Diesel is next at 

14%, followed by cooking (10%) and Gasoline (4%). Road dust contributions averaged 2%, and 

brake contributions averaged 2% at urban sites.  
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 Figure 2. Annual averages of concentrations for 9 source categories estimated using CMB.  

 

Table 3 Annual source category contribution percentages, by site. 

 

 

Figures 3-7 show CMB results by season for each site. PM2.5 concentrations are highest in 

November-Feb. We defined this period as the winter season. Other seasons are defined as 

follows: spring as March-April, summer as May-August, fall as September-October. At every 

site, ammonium nitrate and biomass burning are much higher in the winter season due to the low 

temperature which increases emissions of NOx associated with heating and encourages the 

partitioning of nitrate to the particle phase. Diesel and gasoline are also highest in winter due in 

part to greater atmospheric stability in the winter. Marine is lowest in winter, peaking in summer. 

This may be related to the seasonal wind pattern in the Bay Area. Easterly winds are common in 

Diesel Gasoline Cooking BioBurning Brake AmSul AmNit Marine Roaddust

San Jose 15% 5% 10% 25% 2% 13% 23% 5% 2%

West Oakland 15% 3% 9% 18% 3% 15% 23% 11% 3%

Livermore 14% 3% 10% 24% 2% 12% 27% 6% 2%

Vallejo 11% 3% 11% 32% 2% 13% 17% 8% 2%

4 Site Ave 14% 4% 10% 25% 2% 13% 23% 8% 2%

Point Reyes 7% 1% 5% 8% 0% 14% 16% 48% 2%
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winter months, with westerly wind carrying marine air from the Pacific Ocean more typical 

during the rest of the year. Ammonium sulfate and cooking are less variable from season to 

season.  

 

Figure 3 PM2.5 source contributions by season, San Jose, 2012.  

 

 

 

Figure 4. PM2.5 source contributions by season, West Oakland, 2012.  
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Figure 5. PM2.5 source contributions by season, Livermore, 2012.  

 

Figure 6. PM2.5 source contributions by season, Vallejo, 2012.  
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Figure 7. PM2.5 source contributions by season, Point Reyes, 2012.  

 

3.3 Comparison of the PMF and CMB results 

Figure 8 shows annual averaged source contributions (%) to PM2.5 mass estimated by PMF and 

CMB at each sampling site. Mobile source contributions are not split into diesel and gasoline in 

PMF model due to lack of unique element signatures for these different sources in the 

measurement dataset. The Transport /Background factor in the PMF results and the unresolved 

residual in CMB results are also excluded from the comparison in Figure 8 since they are not 

present in both sets of model results. 

Both CMB and PMF identify ammonium sulfate and ammonium nitrate as major secondary 

sources at both urban sites and rural sites.  Good agreement is found between CMB and PMF 

model results for the Marine source. The differences in estimated contributions from mobile 

sources and other sources (mostly primary) may be attributed to several issues. Resolved source 

profiles “as determined” in PMF have more processed (or aged) characteristics resulting in part 
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from atmospheric mixing and condensation of oxidized compounds, whereas source profiles 

used “as input” in CMB are obtained from measurements of emission sources with minimum 

atmospheric processing. The omission of possible known or unknown sources due to lack of 

specific measurements for unique elements or molecular „„marker‟‟ species may also cause the 

differences between CMB and PMF estimates. 

 

 

Figure 8.  Annual averaged source contributions (%) to PM2.5 mass estimated by PMF and 

CMB at different sites in the Bay Area.  

 

3.4 Performance evaluation of CMAQ and UCD/CIT model 

In this study, 6 model periods in 2012 corresponding to periods simulated by BAAQMD were 

selected for further analysis: Jan 1-31 (winter stagnation);  Mar 1-15 (spring convection); May 1-

15 (early summer); August 1-15 (mid summer); Oct 1-15 (fall convection); December 1-31 

(winter stagnation). Statistical measures of mean fractional bias (MFB) and mean fractional error 

(MFE) were calculated to evaluate the accuracy of model predictions in this study. 
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Concentration-dependent MFB and MFE performance goals and criteria were proposed by 

Boylan and Russell [28] to account for the fact that lower concentrations are more difficult to 

accurately predict. The performance goals are the level of accuracy close to the best that a model 

can be expected to achieve, while performance criteria are the level of accuracy acceptable for 

standard modeling applications. 

Figure 9 shows the MFB and MFE values of particulate species of PM2.5 total mass, EC, OC, 

nitrate, and sulfate using daily averages across all measurement sites during the entire modeled 

period. In this report, the 'CMAQ' case refers to results generated by BAAQMD staff using the 

CMAQ model; the 'BA2012' case refers to results from the UCD/CIT model based on the 

BAAQMD 2012 emission inventory; and the 'ARB2012' case refers to results also from 

UCD/CIT model but based on ARB 2010 emission inventory. All cases use 2012 meteorology.  

The difference between the CMAQ case and the BA2012 case represents the impact from using 

different air quality models. The difference between the BA2012 case and the ARB2012 case 

quantifies the change caused by different emission years and different version of the emission 

inventory.   
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Figure 9 Mean fractional bias and mean fractional errors of PM species calculated using daily 

averages. 

 

EC and PM2.5 have MFBs within ±0.4 and MFE less than 0.80 for all three cases, indicating 

general agreement between predictions and measurement. Nitrate has MFBs of -0.56, -0.50, -

0.71, with MFEs of 1.01, 0.76, 1.11 for ARB2012, BA2012 and CMAQ case, respectively. The 

large negative bias combined with large error indicates that the daily nitrate concentrations are 
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consistently underestimated for both the CMAQ model and the UCD/CIT model using both 

emissions inventories. OC has MFB of 0.48 0.23,-0.05 with MFE of 0.66, 0.56 and 0.62 for 

ARB2012, CMAQ and BA2012 cases, respectively. These statistics indicate acceptable 

agreement between predicted OC and observed OC for the two cases that employed the 

BAAQMD emissions inventory. All simulations used identical secondary organic aerosol (SOA) 

models and treated primary organic aerosol (POA) as non-volatile.  POA dominates the total 

predicted organic aerosol in the Bay Area during the current simulations, but SOA makes 

increasingly larger contributions to total organic aerosol at locations farther inland (Figure 10). 

Sulfate has MFB of 0.75 and 0.65 with MFE of 0.77 and 0.69 for ARB2012 and BA2012 cases 

indicating that the UCD/CIT model consistently overestimated sulfate concentration. Sulfate has 

MFB of -0.09 and MFE of 0.44 in the CMAQ case indicating that high concentration sulfate is 

slightly under-predicted and low concentration sulfate is slightly overestimated.  Both the 

UCD/CIT model and the CMAQ model obtained boundary conditions for sulfate from 

MOZART simulations and both models had similar shipping emissions.  The UCD/CIT model 

includes an online sea salt emissions module that includes sea salt sulfate which may produce 

higher predicted sulfate concentrations. 
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(a) BAAQMD2012 Emissions Case (b) ARB2012 Emissions Case 

  

Figure 10: Ratio of primary organic aerosol (POA) to total organic aerosol mass using (a) the 

BA2012 emissions case and (b) the ARB2012 emissions case averaged over all 2012 simulation 

days.  Organic matter in marine aerosol is counted as POA.  

 

Figures 11 shows the predicted and measured daily average PM2.5 total mass and major PM2.5 

species EC, OC, sulfate and nitrate at Livermore, Oakland, San Jose, Point Reyes and Vallejo. 

The results in Fig 11 illustrate spatial and temporal variations of predicted and measured PM2.5 

species. At four urban sites, Livermore, Oakland, Vallejo and San Jose, seasonal trends in 

observation of PM2.5 species (PM2.5 total mass, OC, EC, nitrate) are generally captured with 

high concentrations in the winter and low concentrations in the summer, but model results do not 

exactly match measured values, especially for nitrate.  At the upwind Point Reyes site, both 

simulated and observed concentrations of PM2.5 OC, EC and nitrate are higher during the winter 

season and relatively lower in the summer, but total PM2.5 mass does not follow this trend. This 

discrepancy may be due to sea salt which is a major component of PM2.5 at Point Reyes site.   
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Figure 11 Predicted  vs. observed daily average (a) PM2.5 total mass, (b) PM2.5 EC,(c) OC , (d) 

Nitrate, and (e) Sulfate at Livermore, West Oakland, San Jose, Point Reyes and Vallejo in Bay 

Area. Dark box represents observation and uncertainty; light blue diamond represents predicted 

results from CMAQ model; dark blue cross represents predicted results from UCD/CIT model 

based on ARB2010 emission inventory; and red cross represents predicted results from 

UCD/CIT model based on BAAQMD 2012 emission inventory. 

 

3.5 PM2.5 source appointment results estimated by UCT/CIT model 

Figure 12 compares the average source contributions to primary PM2.5 mass predicted by the 

CMB receptor model, the UCD/CIT model with ARB 2010 emission (ARB2012), the UCT/CIT 
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model with BAAQMD 2012 emission and CMAQ model with BAAQMD 2012 emission at four 

urban site (Livermore, West Oakland, Vallejo and San Jose) and a rural site (Point Reyes) in the 

Bay Area of California during the 2012 simulation period. Dust sources were excluded from the 

relative source contribution calculation due to previously identified problems with the raw 

fugitive dust emission inventory [29]. The source contribution predictions from the UCD/CIT 

model with ARB 2010 emission (ARB2012) for wood burning, diesel, gasoline vehicles and 

cooking, generally fall into the uncertainty range of the CMB model at the Livermore site. The 

ARB2012 case predicts higher contribution from food cooking (1.85 µg m
-3

) than the CMB 

model (0.74±0.46 µg m
-3

) at the Oakland site, and much higher contribution from wood smoke 

(8.13 µg m
-3

) than CMB model (3.97±1.59 µg m
-3

) at the San Jose site. The predictions based on 

the ARB2012 case are in excellent agreement with predictions from the CMB model for wood 

smoke at the Oakland site and cooking at the San Jose site. The ARB2012 case predicts much 

lower contributions than the CMB model from all the sources at Vallejo and Point Reyes. The 

UCT/CIT model with BAAQMD 2012 emissions (BA2012) generally predicts much lower 

contributions from wood smoke sources than the CMB model at all the monitoring sites. The 

BA2012 case also predicts lower contribution from diesel, gasoline and cooking than the CMB 

model at Vallejo and Point Reyes.  However, the predictions from BA2012 for diesel 

contributions are higher than CMB model at Oakland. In general, the source contribution 

predictions from the UCD/CIT model with ARB 2010 emission inventory are higher than 

predictions from the UCD/CIT model with BAAQMD 2012 emission, especially for wood 

smoke. 
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Figure 12 Averaged source contributions to primary PM2.5 concentrations calculated by CMB 

and UCD/CIT model based on ARB emission inventory and BAAQMD emission inventory, 

respectively. 

 

The daily averaged source contributions during the 2012 simulation period predicted by the 

CMB model, the UCD/CIT model with ARB 2010 emissions and the UCD/CIT model with 

BAAQMD 2012 emissions at Livermore, Oakland, Vallejo, San Jose and Point Reyes sites are 

shown in Figure 13-17, respectively. At every site, UCD/CIT predictions for wood smoke 

contributions are much higher during the winter season than during the summer season which 

matches trends predicted by the CMB model.  During the winter season, the predictions of wood 

smoke contributions from the UCD/CIT model with BAAQMD 2012 emissions are lower than 

CMB predictions at the Livermore, Vallejo and Point Reyes sites.  The predictions of wood 

smoke contributions from the UCD/CIT model with ARB2012 emissions agree well with CMB 

model predictions at Livermore, Oakland, Vallejo and Point Reyes during most of the simulation 
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days, but are higher than CMB model predictions at the San Jose site. During seasons other than 

winter, the UCD/CIT predictions for wood smoke contributions using both ARB2012 and 

BA2012 emissions are much lower than CMB model predictions for wood smoke. The 

predictions of gasoline and diesel contribution from ARB2012 and BA2012 are also higher 

during the winter season and lower during the summer season.  Predictions for cooking 

contributions to PM2.5 do not follow a clear seasonal pattern, with variability apparent 

throughout the year at many of the monitoring sites.   



 37 

 

 

Figure 13 Source contributions to primary PM2.5 mass concentrations in Livermore 
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Figure 14 Source contributions to primary PM2.5 mass concentrations in West Oakland 
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Figure 15 Source contributions to primary PM2.5 mass concentrations in Vallejo  



 40 

 

 

Figure 16 Source contributions to primary PM2.5 mass concentrations in San Jose 
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Figure 17 Source contributions to primary PM2.5 mass concentrations in Point Reyes. 
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The fraction of PM2.5 attributed to traffic sources at each of the monitoring sites is shown in 

Figure 18 and summarized in Table 3.  CMB estimates for the traffic fraction of PM2.5 mass 

vary between 11-17% at inland sites, while UCD/CIT calculations range between 4-12% using 

the ARB2012 case and 5-30% for the BA2012 case.  The UCD/CIT predictions for traffic 

contributions to PM2.5 mass were lower than CMB estimates at all sites except for the West 

Oakland site with the BA2012 emissions case.   

 

Figure 18 Fraction of total PM2.5 mass attributed to primary PM from traffic sources during 

2012.   

 

Table 4 Fraction of total PM2.5 mass attributed to primary PM from traffic sources during 2012. 
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The fraction of PM2.5 attributed to traffic sources across the entire model domain is shown in 

Figure 19 using the BA2012 case and the ARB2012 case.  As expected, the fraction of PM2.5 

mass attributed to traffic sources is highest over major urban areas and transportation corridors.  

Predicted maximum traffic contributions are 37% over West Oakland using the BA2012 case.  

These estimates are significantly higher than CMB estimates (see Figure 18 and Table 4).  

Predicted maximum traffic contributions are 13% over West Oakland using the ARB2012 case.  

These predictions are more comparable to CMB estimates but regionally they fall below CMB 

estimates.  These results generally suggest that the magnitude and spatial distribution of traffic 

emissions in the SFBA could benefit from additional research. 
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(a) BAAQMD2012 Emissions Case (b) ARB2012 Emissions Case 

  

Figure 19: Fraction of total PM2.5 mass attributed to primary PM from traffic sources during 

2012.    
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3.6 Response of PM2.5 mass concentration to the emission reduction 

from different pollution precursors in Bay Area 

To assess the effectiveness of hypothetical control strategies for major pollution precursors in the 

Bay Area, 5 individual emission reduction scenarios were designed for NOx, VOC, SOx, NH3, 

and PM alone.  A 6
th

 combined emission reduction scenario was also considered for NOx, VOC, 

SOx, NH3 and PM together. The reduction rate in all scenarios was fixed at 20%. January 2-15, 

May 2-15, August 2-15 and October 2-15 are selected for study corresponding to periods 

simulated by BAAQMD. Figures 20-23 show the spatial distribution of PM2.5 mass 

concentration from UCD/CIT with BAAQMD 2012 emission in base case (center panel) and 

PM2.5 changes (base case minus control case) during selected simulation periods, respectively.  

Reductions in primary PM2.5 emissions have the greatest impact on predicted ambient PM2.5 

concentrations across all model episodes. The control of gaseous pollutant emissions has limited 

impact on predicted PM2.5 concentrations in the Bay Area.  
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Figure 20 Spatial distribution of average PM2.5 in base case (center) and PM2.5 changes (base 

case - scenario case) under the six scenarios, during January 2-15. 
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Figure 21 Spatial distribution of average PM2.5 in base case (center) and PM2.5 changes (base 

case - scenario case) under the six scenarios, during May 2-15. 
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Figure 22 Spatial distribution of average PM2.5 in base case (center) and PM2.5 changes (base 

case -scenario case) under the six scenarios, during August 2-15. 
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Figure 23 Spatial distribution of average PM2.5 in base case (center) and PM2.5 changes (base 

case -scenario case) under the six scenarios, during Oct 2-15. 
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4. Conclusions 

CMB calculations carried out on ambient measurements of PM2.5 at 5 sites in the Bay Area are 

able to predict plausible primary source contributions from diesel tailpipe, gasoline tailpipe, 

brake wear, road dust, cooking, and biomass burning, as well as generic secondary source 

contributions from ammonium sulfate, ammonium nitrate, and marine. A successful comparison 

of these results to independent predictions from regional chemical transport models will build 

confidence in the results from both CMB and the CTM.    

The PMF calculations carried out on the same ambient measurements were only able to resolve 

primary source contributions from mobile (=diesel+gasoline tailpipe), road dust, biomass 

burning, and generic secondary source contributions from ammonium sulfate, ammonium nitrate, 

and marine.  A comparison between the common sources in both models shows reasonable 

agreement for biomass burning, but less agreement for the sum of CMB gasoline+diesel vs. PMF 

mobile.  It seems likely the PMF “mobile” factor is the combination of gasoline, diesel, brake 

wear, and cooking sources.  Additional work is needed to split this profile into these contributing 

sources. 

Predictions of PM2.5 species (total mass, OC, EC, sulfate, nitrate) from the CMAQ model using 

the BAAQMD 2012 emissions inventory, the UCD/CIT model with ARB 2010 emission 

inventory and the UCD/CIT model with BAAQMD 2012 emission inventory are in general 

agreement.  Predictions from all models have MFBs within ±0.5 and MFE less than 0.80 for 

PM2.5 total mass and PM2.5 OC, indicating good agreement between predictions and 

measurement. All models generally under predicted nitrate concentrations.  The UCD/CIT model 

consistently overestimated sulfate concentration, while the CMAQ model slightly under-

predicted high concentrations of sulfate and overestimated low concentrations of sulfate. 

Source contributions predicted by the UCD/CIT air quality model with ARB 2010 inventory and 

BAAQMD 2012 inventory were compared to receptor-oriented source apportionment results 

produced by the Chemical Mass Balance (CMB) model at 5 sites in the Bay Area. Wood smoke 

contributions predicted by UCD/CIT model with the BAAQMD 2012 inventory were 

significantly lower than wood smoke contributions predicted with the ARB 2010 inventory.  

Gasoline and diesel contributions from UCD/CIT model with BAAQMD 2012 inventory and 

with ARB 2010 inventory are moderately different.  All of these trends can be explained by the 

modifications to the emissions inventory carried out by BAAQMD staff, and the current results 

provide feedback for further work in this area. Comparison between predicted wood smoke 

contributions calculated using the CMB model and the UCD/CIT model with the BAAQMD 

emissions suggests that the BAAQMD emissions inventory may slightly under predict wood 

smoke contributions at the monitoring sites considered.  The BAAQMD should carefully review 

estimated wood smoke emissions in the Bay Area. 
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The PM2.5 concentration response to emissions controls for different pollutants, i.e. NOx, VOC, 

SOx, PM, NH3 predicted by the UCD/CIT model with BAAQMD 2012 emission inventory 

generally matches the predicted response from the CMAQ model. Ambient PM2.5 

concentrations in the Bay Area respond most strongly to controls on primary PM2.5 emissions, 

with more subtle effects from controls on gas phase emissions.   
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