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Executive Summary 
 

The results of computer simulations of air pollution are usually evaluated by 
comparison with measurements near the ground and, occasionally, from aircraft and 
balloons.  Over the past decade, several satellites have been launched that measure 
atmospheric constituents over the Earth using remote sensing devices.  This report 
investigates the feasibility of using such data to evaluate air quality modeling results and 
to improve the quality of future simulations.   

 
The key findings of this study are as follows: 
 

• Validated tropospheric satellite data are commonly available only for the 
following species or physical quantity: ozone (O3), carbon monoxide (CO), 
nitrogen dioxide (NO2), sulfur dioxide (SO2), formaldehyde (HCHO) and aerosol 
optical depth (AOD).  So it is currently feasible to evaluate tropospheric air 
quality models typically for these species only.  Satellite data for other species 
such as bromine oxide (BrO), nitric acid (HNO3) and glyoxal (OCHCHO) are 
becoming available but are sometimes limited by the time period of availability. 

 
• Satellite data provide the spatial coverage needed for the boundary and initial 

conditions (of O3 and CO, for example) of regional air quality models, 
particularly, aloft and over the oceans and other areas where other data may not 
be available. 

 
• Satellite data offer significant potential for inverse modeling and data assimilation 

in air quality models for species such as NO2, HCHO and O3 to estimate 
emissions of the precursors of these species or use those data to improve the 
performance of air quality simulations for these species.  

 
• Satellite data are also useful to improve concentration maps of air pollutants such 

as O3, NO2 and particulate matter (PM) in a combined post-processing step of 
data fusion between model simulation results and measurements. 

 
We elaborate on our findings below and also highlight the limitations of satellite 

measurements. 
 
The primary organizations involved in the launch and operation of satellites used 

in the remote sensing of air pollution are the National Aeronautics and Space 
Administration (NASA), the National Oceanic and Atmospheric Administration 
(NOAA), the Canadian Space Agency, the European Space Agency, and the European 
Organization for the Exploitation of Meteorological Satellites.  Most of the satellites 
launched by these agencies orbit near the Earth’s surface at an altitude of about 800 km 
and hence offer data with high vertical and horizontal resolutions.  The sensors aboard 
these satellites detect the scattering or emission of radiation from the constituents of the 
Earth’s atmosphere such as O3 and PM.  Geophysical quantities of interest such as O3 
concentrations are then extracted from the measured radiances through a process known 
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as the “retrieval”.  The retrieval team uses a priori information from aircraft data or 
global modeling to constrain the retrieval solution.  The retrieved products are validated 
and finally released to the public. 

 
The primary location for data from NASA sensors and satellites is the NASA 

Earth Observing System Data Gateway internet site.  This site contains links to relevant 
validated data sets and also lists other locations for obtaining data such as those for 
European sensors.  Satellite data are subject to limitations such as limited temporal, 
horizontal and vertical resolutions, and the effect of clouds and ground albedo 
(reflection).  These uncertainties are typically minimized or resolved by the retrieval team 
before releasing the data. 

 
Following the download of the “retrieved data”, air quality modelers need to 

process the data to match the model temporal/spatial sampling to that of the satellite 
measurement.  They also need to match the vertical resolutions of the model and satellite 
data.  The proper way to treat these differences in vertical resolution is through the use of 
the sensor ‘averaging kernel’ which represents the way in which the vertical structure of 
the atmospheric profile is mapped into the radiances measured by the sensor.  The model 
output must be “degraded” in vertical resolution before comparison with the vertical 
profile retrieved from the satellite measurements using an equation that is a function of 
the averaging kernel and the a priori profile.  Under certain circumstances, such as in the 
vicinity of large biomass fires or large urban areas, the retrieved profile may be unduly 
influenced by the a priori profile and the model vertical profile may then be a better 
approximation to the true profile than the profile retrieved from the satellite data.  

 
After due processing, the satellite data may be used to evaluate, initialize, 

constrain and/or improve the performance of air quality models.  Satellite data provide 
two important sources of information compared to surface and aircraft monitoring data: 
more complete spatial coverage and a vertically-integrated measure of air quality. A large 
number of chemical species may be planned for retrieval during a satellite mission but 
many of these are either not retrieved due to instrument/algorithm issues or are not 
validated and quickly made available for public dissemination.  Validated tropospheric 
satellite data are commonly available for O3, CO, NO2, SO2, HCHO and AOD.  So it is 
currently feasible to evaluate tropospheric air quality models typically for these species 
only.  Data for halogens such as bromine oxide may become more widely used as 
halogen chemistry starts to be taken into account in air quality models (for example, in 
the case of atmospheric mercury deposition).  Satellite data for other species such as 
nitric acid and glyoxal are becoming available but tropospheric measurements are 
currently available only for limited time periods. 

 
Satellite data are useful for specifying boundary and initial conditions for regional 

air quality models due to their large spatial coverage particularly, aloft and over the 
oceans and other areas where data are limited.  Satellite measurements, when used as 
boundary conditions, can be used to account for the contributions of pollutants such as O3 
and CO transported over long distances, for example, from Asia over the Pacific Ocean to 
the United States. 
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Satellite data can also be used for inverse modeling and data assimilation in air 

quality models.  Emissions of nitrogen oxides (NOx) and isoprene have been estimated 
from the column densities of NO2 and HCHO, respectively, by assuming linear chemistry 
relationships between the emissions and the satellite column data.  Satellite 
measurements of CO and NO2 have also been used to estimate the contributory  
emissions by taking into account both transport and chemistry using a variational 
approach.  Assimilation of satellite data for O3, NO2 and AOD (as a surrogate for PM) 
has been shown to directly improve the performance of air quality simulations for these 
pollutants.  There are some specific areas of data assimilation where satellite data provide 
information that is not directly available from other sources.  For example, AOD 
measurements can provide valuable information on the magnitude and extent of biomass 
fires, and SO2 measurements can help characterize volcanic eruption plumes.  The use of 
satellite data, along with surface ambient air quality measurements, to improve air quality 
forecasting is being planned in the United States and Europe.  Satellite data may also be 
used to improve air concentration maps of pollutants such as O3, NO2 and PM in a post-
processing step of data fusion between modeling results and measurements.   

 
There may be several sources of error in the satellite data such as instrument 

issues, the choice of a priori constraints, etc.  Due to these errors and the other limitations 
described above, satellite data should be used as a quantitative bench mark in the 
performance evaluation of air quality models only after the satellite retrievals have been 
independently validated against other data such as those from aircraft, sondes and 
ground-based measurements.  Such validation is routinely performed by the satellite data 
retrieval teams, usually using aircraft/sonde data, before releasing the measurements to 
the public. 
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1. Introduction 
 
 

The evaluation of regional air quality models is typically conducted using ground-
level measurements. There are only a few instances where data from aircraft, helicopters, 
balloons or towers have been used to evaluate the third dimension of simulated air 
quality.  Satellite data provide two important sources of information compared to surface 
monitoring data: more complete spatial coverage and a vertically-integrated measure of 
air quality (e.g., Engel-Cox et al., 2004; Edwards et al., 2006).  Some applications to date 
have focused on identifying specific events such as forest fires or desert dust plumes 
(e.g., Spichtinger et al., 2001; Falke et al., 2001), characterizing the long-range transport 
of some pollutants in combination with global-scale modeling (e.g., Heald et al., 2006), 
augmenting the spatial coverage of surface monitoring data (e.g., Wang and Christopher, 
2003; Liu et al., 2005a) and evaluating regional air quality model simulations (e.g., 
Hodzic et al., 2006; Vijayaraghavan et al., 2006; Kondragunta et al., 2006; Byun et al., 
2006).  There is clearly an enormous potential for the use of satellite data to improve our 
capabilities in air quality modeling and it is, therefore, of particular interest to investigate 
how satellite measurements can be used to improve our characterization of the 
atmosphere and evaluate air quality models in a more comprehensive manner. 
 

We investigate here the feasibility of using satellite data to evaluate air quality 
models and improve their performance via data assimilation.  Section 2 presents an 
overview of satellite remote sensing data relevant to air quality.  In Section 3, we explain 
the acquisition and processing of satellite data for air quality applications.  Section 4 
discusses the major air quality applications for satellite data.  
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2. Satellite Remote Sensing Data Relevant to Air Quality 
 

In this section, we present some basic ideas on remote sensing followed by an 
overview of satellites and sensors.  Satellites and sensors currently used for the remote 
sensing of tropospheric air quality are listed.  We then discuss the chemical species that 
are measured by these sensors.  Finally, we discuss the limitations and uncertainties in 
current satellite retrievals. 
 
2.1 Essentials of remote sensing 

 
Remote sensing is defined as the science by which the characteristics of an object 

of interest can be identified, measured or analyzed without direct contact (Japan Assoc. 
Remote Sensing, 1996).  Electro-magnetic radiation that is reflected or emitted from an 
object is the usual source of remote sensing data.  In our study, the object of interest is the 
Earth’s atmosphere and its constituents.  Each atmospheric constituent such as ozone, 
water vapor, etc. has its own unique spectral characteristic of emission and absorption.  A 
device to detect the electro-magnetic radiation reflected or emitted from an object is 
called a "remote sensor" or "sensor".  These sensors are carried aboard platforms such as 
aircraft and satellites.  The process of extracting the geophysical information of interest 
from the measured radiances is known as the “retrieval”. 
 
2.2 Overview of satellites 
 
 Based on their orbital distance, satellites launched by humans can be classified 
into Low Earth Orbit (LEO), Mid-Earth Orbit (MEO), Geostationary Orbit (GEO), and 
Lagrangian Point (L-1) satellites.  LEO satellites have elliptical or circular orbits 
typically at a height of less than 1,000 km above the surface of the earth.  Polar-orbiting 
satellites are a subset of LEO satellites that can be used to view only the poles or to view 
the same place on earth at the same time each 24-hr day; these are usually at an altitude 
of 700-800 km.  A sun-synchronous orbit is a special case of a polar orbit that crosses the 
equator at the same time each orbit.  MEO satellites have circular orbits at an altitude of 
1,000-10,000 km with an orbital period of 6 hours or less.  GEO satellites have circular 
orbits oriented in the plane of the earth's equator and at an altitude of 35,800 km.  
Because its orbital period of 24 hours is equal to that of the rotational period of the Earth, 
a GEO satellite will appear fixed above the surface of the earth, i.e., at a fixed latitude 
and longitude.  L-1 satellites orbit around the Sun such that they are continuously 
between the Sun and the Earth, at a distance of 1.5 million km from the Earth.   
 

Of these satellite types, the ones commonly used for the remote sensing of air 
quality are LEO polar-orbiting sun-synchronous satellites and to a lesser extent, GEO 
satellites.  MEO and L-1 satellites are not used for remote sensing currently but have 
been proposed for future missions.  A MEO satellite constellation has been proposed to 
the National Oceanic and Atmospheric Administration (NOAA) for consideration for a 
post-2012 mission.  An L-1 mission called “Janus”, which will provide the first 
comprehensive and continuous observation of the Earth's whole dayside atmosphere, the 
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solar wind, and the Sun, has been proposed to the National Aeronautics and Space 
Administration (NASA). 

   
Polar-orbiting and GEO satellites provide complementary information about the 

state of the atmosphere.  The GEO satellites are able to provide measurements with high 
temporal resolution (by remaining fixed in the equatorial plane over a given point) but at 
(typically) reduced horizontal and vertical resolution compared to polar-orbiting 
satellites.  Polar-orbiting satellites have a poor temporal resolution (at best, a 12-hour 
measurement repeat cycle for a given geographic location) but tend to offer higher 
vertical and horizontal resolution than the GEO satellites due to greater proximity to the 
Earth’s surface.  However, polar-orbiting satellites can have a fixed equator crossing time 
and thus will measure the same geographic location at the same time each day.  (This can 
be a benefit or detriment depending upon the desired use of the data.) 

 
Satellites can also be classified into operational and research satellites based on 

their mission and available products.  Operational satellites typically have a clearly 
defined mission with specific, well-defined products, while research satellites tend to 
have more research-grade products that are state-of-the-art in terms of sensor and data 
retrieval technology.  Operational satellites are intended to provide stable, long-term 
inputs into numerical weather prediction models, but have the ability to obtain some 
information relevant to air quality models.  In contrast, research satellites tend to be 
designed for very specific purposes, such as measurement of aerosols or ozone.  The 
primary difference with the operational satellites lies in the availability of data products, 
both in terms of the ability to obtain the data and the timeliness of the data distribution 
after the measurement.  The “operational products” are generally available and have well-
documented error characteristics, while “research grade” products tend to contain less 
documentation about errors and may only be available directly from the scientists 
working on the product.   

 
The primary agencies/organizations involved in the launch and/or operation of 

satellites and sensors used in the remote sensing of air quality are NASA, NOAA, the 
European Space Agency (ESA), the Canadian Space Agency (CSA), and the Japan 
Aerospace Exploration Agency (JAXA).  One of the first remote sensing satellites 
launched was the Earth Resources Technology Satellite or Landsat, launched by NASA 
in 1972, which provided multi-spectral data related to crops, minerals, soils, urban 
growth, and many other Earth features.  Table 1 lists the key satellites currently used for 
the remote sensing of the chemical constituents of the Earth’s atmosphere. 
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Table 1.  Satellites currently used for the remote sensing of air quality.a,b 

 

Satellite Organization Launch Date Orbit 

ERS-2 ESA Apr 21, 1995 Sun-synchronous 

TOMS-EP NASA Jul 2, 1996 Sun-synchronous 

Terra NASA Dec 18, 1999 Sun-synchronous 

ODIN SSC/CSA/CNES/TEKES Feb 23, 2001 Sun-synchronous 

GOES-M NOAA/NASA Jul 23, 2001 Geo-synchronous 

ENVISAT ESA Mar 1, 2002 Sun-synchronous 

Aqua NASA May 8, 2002 Sun-synchronous 

ACE/SCISAT CSA/NASA Aug 12, 2003 Sun-synchronous 

Aura NASA Jul 15, 2004 Sun-synchronous 

NOAA-N POES NOAA/NASA May 20, 2005 Sun-synchronous 

CALIPSO NASA Apr 28, 2006 Sun-synchronous 

CloudSat NASA Apr 28, 2006 Sun-synchronous 

GOES-N NOAA/NASA May 24, 2006 Geo-synchronous 

MetOp-A ESA Oct 19, 2006 Sun-synchronous 
 
 

a This list includes satellites with widely disseminated data and is not comprehensive. 
b See Appendix A for a list of acronyms used here. 
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 A list of the acronyms used in Table 1 and elsewhere in this document is presented in 
Appendix A. 

 
NASA’s air quality remote sensing satellites include Aqua, Aura, CALIPSO, and 

CloudSat (which are all part of the “A-Train”, a series of six satellites that fly in close 
proximity to one another thus allowing for coordinated measurements), and Terra and 
TOMS-EP.  All of these satellites have LEO sun-synchronous orbits. 

 
NOAA's environmental satellite system is composed of two types of satellites: 

Geostationary Operational Environmental Satellites (GOES) for national, regional, short-
range warning and "now-casting"; and the Polar-orbiting Operational Environmental 
Satellites (POES) for global forecasting and environmental monitoring.  The current 
operational version in the GOES series is GOES-M (known as GOES-12 once on-orbit) 
while that in the POES series is NOAA-N (known as NOAA-18 once on-orbit).  Note 
that GOES-N was launched recently (May 24, 2006).  The POES spacecraft serve as 
complementary satellites to the GOES system. Where the GOES satellites provide near-
term data from the continental United States and Hawaii, the POES spacecraft provide 
full global data for short- and long-range forecast models, climate modeling, and various 
other secondary missions.  NASA is responsible for the launch and testing of the 
spacecraft, instruments and unique ground equipment and turns operational control of the 
spacecraft over to NOAA after 21 days of comprehensive subsystem checkout.  Most of 
the visible satellite images seen currently on television weather forecasts use data from 
the GOES satellites. 

 
The Atmospheric Chemistry Experiment (ACE) satellite, also known as SCISAT-

1, was primarily funded by the Canadian Space Agency (CSA) and launched by NASA. 
CSA also manages a sensor on the Odin satellite in collaboration with the Swedish Space 
Corporation (SSC), the Finnish National Technological Agency (TEKES), and the French 
National Space Study Center (CNES).  The European Space Agency (ESA) has launched 
three satellites that are currently used for the remote sensing of air quality, the 
Environmental Satellite (ENVISAT), the European Remote Sensing Satellite (ERS-2, the 
second in the ERS series), and the Meteorological Operational Satellite Programme 
(MetOp-A).  ERS-2 continues to provide good data far beyond its nominal lifetime of 10 
years.  JAXA operates weather monitoring satellite missions jointly with NASA and also 
manages some sensors in satellites such as Aqua. 

 
Most current air quality remote sensing satellites are research satellites.  The 

POES series of satellites are the exception; these are operational polar-orbiting satellites.  
These will be replaced in the future with the National Polar-orbiting Operational 
Environmental Satellite System (NPOESS) series of satellites.  The NPOESS sensors 
provide enhanced spectral and spatial coverage over the existing systems and will be of 
increased utility to the air quality community. 
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2.3 Overview of sensors 
 
Remote sensors can be categorized into passive and active sensors.  Passive 

sensors take advantage of the interaction between naturally occurring radiation (such as 
sunlight or infrared radiation emitted by objects) and atmospheric matter.  Most current 
satellites use passive sensors.  Active remote sensors work by emitting a signal and then 
processing the backscattering (return) of the emitted signal.  Satellite-based active remote 
sensing systems include radars and lidars that emit radio waves and laser beams, 
respectively, in the direction of the object to be sampled, and then utilize a parabolic dish 
to collect the backscattered radiation.  For example, the CALIPSO satellite will use lidar 
to create high-resolution vertical profiles of clouds and aerosols. 

 
The electro-magnetic radiation regions used in remote sensing (Japan Assoc. 

Remote Sensing, 1996) are near UV (ultra-violet) (0.3-0.4 μm), visible light (0.4-0.7 
μm), near shortwave and thermal infrared (0.7-14 μm) and microwave (1 mm - 1 m).  
Thus, remote sensors can be classified into three types with respect to the wavelength 
regions; (1) Visible and Reflective Infrared Remote Sensors, (2) Thermal Infrared 
Remote Sensors and (3) Microwave Remote Sensors.  The energy source used in passive 
visible and reflective infrared remote sensing is the sun.  The source of radiant energy 
used in thermal infrared remote sensing is the object itself.  The energy source for 
microwave remote sensing could be the object itself or another source depending on 
whether the sensing is passive or active, respectively;  lasers are the active source in other 
regions of the spectrum. 

 
Table 2 lists the sensors on the satellites shown earlier in Table 1.  The acronyms 

used for the sensors are expanded in Appendix A. 
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Table 2. Sensors currently used for the remote sensing of air quality.a 
 
Satellite Sensors used for remote sensing air quality 

Aqua AIRS, MODIS 

Aura HIRDLS, MLS, OMI, TES 

CALIPSO Lidar 

CloudSat CPR 

Terra MISR, MODIS, MOPITT 

TOMS-EP TOMS 

GOES-M, GOES-N Weather monitoring instruments 

NOAA-N POES SBUV/2 

ACE/SCISAT ACE-FTS, MAESTRO 

ENVISAT MIPAS, SCIAMACHY 

ERS-2 GOME 

MetOp-A IASI, ASCAT, GOME-2 

ODIN OSIRIS, SMR 

 
a This list is not comprehensive 
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2.4 Air quality related data 
 
We describe below the air quality products determined from satellite 

measurements and retrievals along with characteristics such as detection limit, spatial and 
temporal characteristics.  We also describe products that may be derived from 
combinations of measurement parameters.  We focus our discussion on tropospheric air 
quality products; we list only those stratospheric products that are directly relevant to the 
troposphere or are used to compute tropospheric columns (e.g., MLS measures a 
stratospheric OH concentration, but it is not listed in the table). 

 
The emphasis is on standard data products that are readily available from sources 

such as NASA, but the discussion also includes specialized data products developed for 
various sensors by the science team investigators.   

 
Table 3 lists the species available from NASA’s Earth Observing System (EOS) 

platform, which is currently among the most widely available in terms of data and 
documentation.  The EOS includes the following satellites: Aqua, Aura, CALIPSO, 
CloudSat, and Terra (and several others not measuring air quality). 

 
 
 

Table 3. Air quality related species and sensors from the NASA-EOS satellites. 
 

Product Sensor(s) 
Aerosol properties HIRDLS, Lidar, MISR, MODIS, OMI 
Bromine oxide (BrO) OMI 
Carbon monoxide (CO) AIRS, MLS, MOPITT, TES 
Chlorine dioxide (OClO) OMI 
Chlorine bitrate (ClONO2) HIRDLS 
Cloud properties AIRS, CPR, HIRDLS, Lidar, MLS, MODIS, OMI 
Dinitrogen pentoxide (N2O5) HIRDLS 
Formaldehyde (HCHO) OMI 
Glyoxal (OCHCHO) OMI 
Methane (CH4) HIRDLS, MOPITT, TES 
Nitric acid (HNO3) MLS 
Nitrogen dioxide (NO2) HIRDLS, OMI 
Nitrous oxide (N2O) HIRDLS, MLS 
Ozone (O3) AIRS, HIRDLS, MLS, MODIS, OMI, TES 
Sulfur dioxide (SO2) AIRS, MLS, OMI 
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Table 4 lists the characteristics of sensors providing air quality products on the 
NASA-EOS platforms.  Ozone has been the most commonly retrieved air quality product. 

 
In addition to these sensors, the other NASA/NOAA sensors that measure air 

quality include the TOMS and SBUV/2 instruments aboard the TOMS-EP and NOAA-N 
POES satellites, respectively.  The TOMS sensor provides global measurements of total 
column ozone.  It also measures SO2 released in volcanic eruptions.  Ozone is measured 
by observing both incoming solar energy (solar irradiance) and backscattered ultraviolet 
(UV) radiation at six wavelengths.  "Backscattered" radiation is solar radiation that has 
penetrated to the Earth's atmosphere and is then scattered by air molecules, clouds and 
the surface back through the atmosphere to the satellite sensor. Along that path, a fraction 
of the UV is absorbed by ozone. By comparing the amount of backscattered radiation to 
observations of incoming solar energy at identical wavelengths, one can calculate the 
Earth's albedo, the ratio of light reflected by Earth compared to what it receives. Changes 
in albedo at the selected wavelengths are used to derive the amount of ozone above the 
surface (NASA Science Missions web-site, 2006).  The SBUV/2 instrument measures 
solar irradiance and backscattered solar energy in the near ultraviolet spectrum (160 to 
400 nm). These are used to retrieve the global ozone concentration in the stratosphere to 
an absolute accuracy of 1 percent and the vertical distribution of atmospheric ozone to an 
absolute accuracy of 5 percent.  The measurements of total ozone column from TOMS 
and stratospheric ozone column from SBUV/2 have been frequently used (e.g., Fishman 
et al., 2003, 2005) to derive the tropospheric ozone residual (TOR). 
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Table 4.  Spatial resolution, coverage and accuracy of sensors providing air quality related products on the NASA-EOS platforms. 
 
Sensor Product Spatial Resolution Spatial Coverage Accuracy Notes 
OMI Total Column 

Ozone (O3) 
13 x 24 km, total 
column 

Global, Day, 
once/day 

3% absolute, 1.5% 
relative 

 

 Ozone (O3) 
Profile 

20 x 45 km horizontal, 
6 km vertical (20 – 45 
km) 

Global, Day, 
once/day 

10% absolute, 1.5% 
relative 

 

 Tropospheric 
Ozone (O3) 

52 x 48 km, 60N – 60S 
latitude, total 
(tropospheric) column 

Global, Day, 
once/day 

25% absolute, 10% 
relative 

 

 Cloud 
Scattering 
Layer Pressure 

13 x 24 km Global, Day, 
once/day 

100mb absolute, 30 mb 
relative 

Limited to optically thick 
clouds 

 Aerosol Optical 
Thickness 

13 x 24 km, total 
column 

Global, Day, 
once/day 

0.1 or 30% absolute, 0.05 
or 10% relative 

Cloud-free pixels only 

 Aerosol Single 
Scattering 
Albedo (SSA) 

13 x 24 km, total 
column 

Global, Day, 
once/day 

0.1 absolute, 0.05 
relative 

Cloud-free pixels only 

 Sulfur Dioxide 
(SO2) 

13 x 24 km, total 
column 

Global, Day, 
once/day 

Non-volcanic:  50% 
absolute, 20% relative;  
Volcanic:  30% absolute, 
20% relative 

 

 Nitrogen 
Dioxide (NO2) 

26 x 48 km, total 
column 

Global, Day, 
once/day 

Background:  2E+14 
molecules/cm2;  
Polluted:  30% absolute, 
20% relative 
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Table 4.  Spatial resolution, coverage and accuracy of sensors providing air quality related products on the NASA-EOS platforms 
(continued). 
 
Sensor Product Spatial Resolution Spatial Coverage Accuracy Notes 

OMI Formaldehyde 
(HCHO) 

13 x 24 km, total 
column 

Global, Day, 
once/day 

35% absolute, 25% 
relative 

 

 Bromine 
Oxide (BrO) 

13 x 24 km, total 
column 

Global, Day, 
once/day 

25% absolute, 25% 
relative 

 

 Chlorine 
Dioxide 
(OClO) 

26 x 48 km, slant 
column 

Global, Day, 
once/day 

15% absolute, 10% 
relative 

 

HIRDLS Aerosol 
Extinction 
Coefficient 

500 km horizontal, 
1.25 km vertical (10-30 
km)  

Twice/day 2-10% absolute, 2-10% 
relative 

Units: km-1 

 CFC-11 
(CFCl3) 

500 km horizontal, 
1.25 km vertical (7-28 
km) 

Twice/day 4-8% absolute, 2-10% 
relative 

 

 CFC-12 
(CF2Cl2) 

500 km horizontal, 
1.25 km vertical (7-30 
km) 

Twice/day 4-8% absolute, 1-10% 
relative 

 

 Methane 
(CH4) 

500 km horizontal, 
1.25 km vertical (10-65 
km) 

Twice/day 3-5% absolute, 3-10% 
relative 

 

 Chlorine 
Nitrate 
(ClONO2) 

500 km horizontal, 
1.25 km vertical (17-40 
km) 

Twice/day 5-10% absolute, 8-15% 
relative 

 

 Cloud Top 
Height 

500 km horizontal, 250 
m vertical (7-24 km) 

Twice/day 250 m absolute, 125 m 
relative 
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Table 4.  Spatial resolution, coverage and accuracy of sensors providing air quality related products on the NASA-EOS platforms 
(continued). 
 
Sensor Product Spatial Resolution Spatial Coverage Accuracy Notes 

HIRDLS Nitric Acid 
(HNO3) 

500 km horizontal, 
1.25 km vertical (10-40 
km) 

Twice/day 3-5% absolute, 2-10% 
relative 

 

 Nitrous Oxide 
(N2O) 

500 km horizontal, 
1.25 km vertical (10-55 
km) 

Twice/day 3-5% absolute, 3-10% 
relative 

 

 Dinitrogen 
Pentoxide 
(N2O5) 

500 km horizontal, 
1.25 km vertical (20-45 
km) 

Twice/day 5-10% absolute, 2-10% 
relative 

 

 Nitrogen 
dioxide (NO2) 

500 km horizontal, 
1.25 km vertical (20-60 
km) 

Twice/day 3-5% absolute, 3-10% 
relative 

 

 Ozone (O3) 500 km horizontal, 
1.25 km vertical (10-80 
km) 

Twice/day 3-5% absolute, 1-10% 
relative 

 

MLS Cirrus Ice 
Content 

200 km horizontal, 3 
km vertical (10-20 km) 

Monthly global 
map 

TBD  

 Carbon 
Monoxide 
(CO) 

500 km horizontal, 3 
km vertical (8-90 km) 

Monthly global 
map 

5-10% absolute, 3-10 
ppbv relative 

 

 Stratospheric 
Ozone (O3) 

500 km horizontal, 3 
km vertical (15 – 90 
km) 

Daily global map 5-10% absolute, 2-10% 
relative (15-50km) 

 

 Tropospheric 
Ozone (O3) 

500 km horizontal, 3 
km vertical (8-15 km) 

Monthly global 
map 

5-10% absolute, 2-10 
ppbv relative (8-15 km) 
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Table 4.  Spatial resolution, coverage and accuracy of sensors providing air quality related products on the NASA-EOS platforms 
(continued). 
 
 
Sensor Product Spatial Resolution Spatial Coverage Accuracy Notes 
MLS Sulfur Dioxide 

(SO2) 
500 km horizontal, 3 
km vertical (10-40 km) 

Daily global map 5-10% absolute, 1-2 
ppbv relative (10-30 km) 

 

TES Ozone (O3) Nadir:  5.3 x 8.5 km 
horizontal, 2-6 km 
vertical (0-34 km) 

Every other day 3% absolute, 3-20 ppbv 
relative 

 

 Carbon 
Monoxide 
(CO) 

Nadir:  5.3 x 8.5 km 
horizontal, 2-6 km 
vertical (0-34 km) 

Every other day 3% absolute, 10 ppbv 
relative 

 

 Methane (CH4) Nadir:  5.3 x 8.5 km 
horizontal, 2-6 km 
vertical (0-34 km) 

Every other day 3% absolute, 14 ppbv 
relative 

 

 Carbon 
Monoxide 
(CO) 

Nadir:  5.3 x 8.5 km 
horizontal, 2-6 km 
vertical (0-34 km) 

Every other day 3% absolute, 10 ppbv 
relative 

 

AIRS Cloud Mask 40.6 km horizontal Twice per day TBD Cloud/no-cloud 
 Total Column 

Ozone (O3) 
40.6 km horizontal, 
total column 

Global, twice per 
day 

~10% total column  

MODIS Aerosol 
Product 

10 km horizontal, 
global over oceans 

Daily 0.05 Problems over land 

 Cloud Products 1 – 5 km, global 1-2 per day 2-5% absolute, 10% 
relative 

Characteristics vary 
depending upon product 
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Table 4.  Spatial resolution, coverage and accuracy of sensors providing air quality related products on the NASA-EOS platforms 
(continued). 
 
 
Sensor Product Spatial Resolution Spatial Coverage Accuracy Notes 

MODIS Aerosol 
Optical Depth 
(AOD) 

1, 4.6, 36 km, global 
over ocean 

Daily ?? Clear sky only 

  Ozone (O3)     

MISR Aerosol 
Optical 
Thickness 
(AOT) 

17.6 km horizontal Global coverage 
once per week 

0.05 or 20% Better over ocean than 
over land or dusty sites 

MOPITT Total Column 
Carbon 
Monoxide 
(CO) 

22 km horizontal 
resolution 

 10% precision Also gridded in 1 degree x 
1 degree daily and 
monthly averages 

 Profile 
Carbon 
Monoxide 
(CO) 

22 km horizontal 
resolution, 4 km 
vertical resolution 

 10% precision Also gridded in 1 degree x 
1 degree daily and 
monthly averages 

 Total Column 
Methane 
(CH4) 

22 km horizontal 
resolution, 4 km 
vertical resolution 

 1% precision Also gridded in 1 degree x 
1 degree daily and 
monthly averages 
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Table 5 lists the air quality products measured by the sensors on the Canadian and 
European satellites listed earlier (ACE/SCISAT, ENVISAT, ERS-2, and ODIN). 
 
 
Table 5.  Available air quality related products from the sensors on Canadian and 
European satellites. 
 
Sensor 
 

Air Quality Products* 
 

Spatial resolution 
 

ACE-FTS O3, NO, NO2, HNO3, N2O, 4 km vertical 
  N2O5, CO, CH4, HCl   
      
MAESTRO O3, NO2 1-2 km vertical 
      
MIPAS O3, NO2, HNO3, N2O, CH4 3 km x 30 km horizontal, 
    3 km vertical 
      
SCIAMACHY O3, NO2, N2O, SO2, CO 32 km x 215 km horizontal, 
  CH4, HCHO, BrO, OClO 3 km vertical 
  glyoxal (CHOCHO), AOD   
      
GOME O3, NO2, HCHO, AOD 40 km x 40 km to 
    40 km x 320 km horizontal, 
    5 km vertical 
      
OSIRIS O3, NO2, BrO, OClO, ~ 2 km vertical 
  aerosol properties   
      
SMR O3, NO, N2O, HNO3, HO2, ~ 2 km vertical 
  CO, chlorine monoxide (ClO)   

* Not comprehensive 
 
While satellite sensors measure the aerosol optical depth (AOD), several 

properties of the aerosol (e.g., PM2.5 contribution to AOD, mean effective diameter) can 
be deduced from measurements made at several wavelengths (e.g., Remer et al., 2005).   

 
In addition to the direct comparison of air quality model outputs with 

measurement data, additional parameters not necessarily computed by the model may be 
used to improve the understanding of differences between the models and the 
measurements.  For example, an examination of cloud parameters can be used as a 
quality control mechanism when evaluating daily measurements, since the amount of 
cloud cover can impact both the measurement and the chemistry.  Further, one could use 
averages of cloud and aerosol information when comparing monthly data to see regions 
where the model/measurement bias might be impacted by cloud/aerosol.  Also, 
stratospheric information, while not directly relevant to most air quality model 
calculations, can be used to diagnose problems with tropospheric column comparisons. 
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2.5 Limitations of satellite data  
 

The main advantage of satellites is the ability to provide global measurements of a 
particular quantity with moderate spatial and temporal resolution.  Satellites in 
geostationary orbit are able to provide high temporal resolution with reduced spatial 
coverage, while satellites in polar orbits provide global coverage with less frequent 
temporal coverage.  There are, however, a number of limitations compared to in-situ 
sensors.  These limitations include the following: 

 
(1) Many chemical species of relevance to air quality are present in trace amounts 

that cannot be measured by satellite sensors and must be inferred from those that 
can be measured. 

(2) Temporal sampling is limited (sensors on sun-synchronous platforms sample a 
given location at the same time each day). 

(3) The horizontal spatial resolution may be coarse compared to the air quality model 
resolution, particularly in the case of regional/urban scale modeling. 

(4) The vertical resolution is usually limited to total atmospheric column (or 
tropospheric column) or at most very limited information about the vertical 
distribution of the chemical species. 

(5) Cloud cover will limit coverage, making regions with pervasive cloud cover 
difficult to sample. 

(6) The spatial and temporal co-location of data from several sensors is usually 
required to maximize the number of parameters available for model validation.  
This can be difficult due to different spatial and temporal measurement scales for 
the different sensors.  The complexity of this process further increases when not 
all of the sensors are available on the same satellite platform. 

(7) There can be day/night and land/ocean differences in the measurement errors 
depending upon the type of sensor and the methods used to extract the 
geophysical data from the radiometric measurements. 

(8) Ground albedo (reflection) can result in a lack of contrast between the atmosphere 
and the surface, making it difficult to obtain the atmospheric quantity from the 
measurement.  This also pertains to low clouds, as are often found over the ocean 
just off the coast. 

 
We elaborate on these uncertainties and how some of them are resolved, using the 

satellite retrieval of tropospheric columns of NO2 and HCHO from the GOME sensor as 
an example below. 

 
   1. The largest uncertainties are due to clouds, as they will shield near-surface 

NO2 and HCHO from the view of the satellite.  The retrieval is sensitive to the presence 
of clouds, and even small cloud fractions (between 5 to 20%) have a major impact.  High 
quality observations of the cloud properties (at least cloud fraction and cloud top height) 
are necessary for a quantitative retrieval. 
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   2. The surface albedo directly influences the sensitivity of GOME for boundary 
layer NO2 and HCHO (the spectral signature of changes in surface albedo can be 
confused with changes in the gas concentration).  High quality albedo maps in the 
relevant spectral range are essential. 

 
   3. Profiles of NO2 are characterized by a large range of spatial and temporal 

variability.  In emission areas, the NO2 concentration will peak at the surface, while, 
downstream of such areas the pollution plume will peak at higher altitudes.  Aspects such 
as the distribution of emission sources, the stability and height of the boundary layer, wet 
removal of nitric acid, deep convection and long-range transport by the wind will 
determine the NO2 profile, all of which are strongly varying in time and space.  This 
information will not necessarily be captured in the tropospheric column measurement. 

 
   4. The NO2 columns measured by GOME consist of comparable stratospheric 

and tropospheric contributions.  The stratospheric background has to be quantified 
carefully in order to derive the tropospheric column.  Atmospheric dynamics is well 
known to generate significant variability in stratospheric tracer amounts, consistent with 
for instance HALOE observations of NO2.  A standard approach applied to GOME is 
based on the assumption that stratospheric NO2 is zonally uniform, or at least has only a 
small longitudinal variation.  This simplification can introduce errors larger in magnitude 
than the small tropospheric NO2 column amount, making the retrieval of such amounts 
practically impossible. 

 
   5. Aerosols constitute another source of uncertainty.  Thick aerosol layers 

influence the radiation field and the sensitivity of GOME for near-surface NO2 and 
HCHO.   Under high-aerosol conditions, the measurement may not be representative of 
the actual column abundance. 

 
One important improvement of SCIAMACHY as compared to GOME is the 

smaller ground pixel size. In this way, the variability of NO2 and HCHO can be better 
resolved, and the fraction of cloud-free pixels will be larger, improving the quality of the 
retrieval. 

 
Typically, the uncertainties due to clouds and the surface albedo are handled by 

using coincident information about the cloud and surface properties, such as land-type 
maps which provide a “typical” albedo for a given location, and by tailoring the 
geophysical data retrieval algorithms to provide optimal results under specific 
measurement conditions.  The limitations in temporal and spatial resolution can be 
overcome, in part, by using the results of retrievals of the same species from different 
sensors (with careful consideration to the error sources and magnitude for each set of 
data). 
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3. Acquisition and Processing of Satellite Data for Air Quality Applications  
 
3.1 Acquisition of satellite data  
 

The acquisition of satellite data is a relatively straightforward process once the data 
have been identified.  Identification of relevant data sets, however, depends upon a 
number of factors relating to the type of product desired. 

 

Satellite data was traditionally processed by a team lead by the Principal Investigator 
(PI) of the sensor.  Often the data was held until the team had a chance to thoroughly 
evaluate (and publish) results from the data, and one still needed to contact the PI in order 
to obtain the data.  The process has changed somewhat in that data is now often available 
in a number of different archive locations (such as the web sites of NASA data 
processing centers).  In these cases, the data is usually cataloged in such a way as to be 
searchable, allowing the user to easily download the desired data.  However, products 
that are relatively new or un-validated are often delayed for posting to these web sites.  
Further, there can be multiple teams working on different ways to retrieve a particular 
product, leading to multiple sources of data for non-standard products.  In most cases, the 
data is available only to the science team until the products have been validated.  (After 
this validation, however, the processed data are typically uploaded quickly to NASA 
websites.) 

 

The data available often comes in a variety of spatial and temporal domains.  The 
initial data sets are, of course, at the native temporal and spatial resolution of the 
measurement.  However, post-processing of the data is often done to reduce the impact of 
sensor noise or to provide the consistent treatment of spatial/temporal averaging of the 
data to all users of the data.  (Consistency is important because it requires a thorough 
understanding of the data to know how and when to include data within an average – 
often some data must be rejected from the average due to factors such as cloud 
contamination of the pixel.) 

 

The primary location for data from NASA sensors and satellites is the NASA Earth 
Observing System (EOS) Data Gateway (http://redhook.gsfc.nasa.gov/%7Eimswww/pub/ 
imswelcome/).  This site contains links to relevant data sets and also lists other locations 
for obtaining data (such as those for European sensors).  The data are generally in a 
standard “hdf” format, with various readers available for ease of data processing.  
Information is also available regarding the processing of the data – this is very important 
as it often tells about quality control of the data and how any spatial and temporal 
averaging was performed.  The satellite data are available at different “levels” or stages 
of data processing.  Level-1 data are usually raw radiances measured by satellites after 
some calibration.  Level-2 data refer to chemical species and other parameters at the 
finest space-time resolution; these are processed (“retrieved”) from the corresponding 
level-1 data.  Level-3 data are time and space averaged quantities of the level-2 satellite 
data.  The data nomenclature can vary slightly depending upon the organization 
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responsible for the data.  The two primary definitions, used by NASA and NOAA, are 
summarized in Table 6. 

 

Table 6.  Satellite data nomenclature. 
Data Name Description 
RDR (“Raw Data 
Record”) 

Raw data downloaded from the sensor to the ground processing station.  Usually in 
detector “counts” without any calibration or processing applied.  Usually no geospatial 
information, just some sort of reference time tag of when the data was collected 
(usually seconds from a particular date).  Of little use to “scientists”. 

SDR (“Sensor Data 
Record”) 

Sensor data that has been transformed from “counts” to engineering units.  
Calibration, bias correction, etc., has been applied.  Data is directly linked to 
geospatial information such as latitude, longitude, date, time.  Some data quality flags 
may be added to the header. 

EDR 
(“Environmental 
Data Record”) 

Geophysical quantities derived from the SDRs, such as temperature profiles or total 
column ozone.  Contains the necessary information about date, time and Earth 
location.  Usually has quality-control parameters listed (e.g., did the algorithm 
converge or is this potentially a bad data point?). 

Level 1A Raw data from the spacecraft are uncompressed and the actual measured “counts” are 
reconstructed. File headers typically contain important ancillary data such as time, 
date, spacecraft and target location, and instrument point angle. 

Level 1B Sensor data that has been transformed from “counts” to engineering units. Calibration, 
bias correction, etc., has been applied.  Certain data quality flags are added to the 
header. 

Level 2 Geophysical quantities derived from the SDRs, such as temperature profiles or total 
column ozone.  Contains the necessary information about date, time and Earth 
location.  Usually has quality-control parameters listed (e.g., did the algorithm 
converge or is this potentially a bad data point?). 

Level 3 Data has undergone one or more post-processing steps such as re-gridding to a 
standard spatial grid, spatial and/or temporal averaging and/or subsetting for certain 
conditions (e.g. clear/cloudy). 

 

 

In addition to products distributed by government agencies (primarily NASA and 
NOAA in the United States), there are a number of groups involved in determining 
geophysical parameters from satellite data.  The list of institutions includes, but is 
certainly not limited to, AER, Harvard University, the Harvard-Smithsonian Center for 
Astrophysics (HS-CfA), the University of Maryland, Hampton University, the University 
of Bremen, the University of Wisconsin, and other governmental organizations such as 
the Royal Netherlands Meteorological Institute (KNMI), the French meteorological 
administration (Météo France), the United Kingdom Meteorology Office (UKMO) and 
the German Aerospace Center (DLR). 
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3.2 Processing of satellite data  
 
Multiple steps are involved in order to process the satellite data into a form that 

can be used to validate, constrain or initialize models.  The overall scope of this task will 
vary depending upon the characteristics of the sensor, knowledge of system parameters 
(such as knowing errors in where the satellite is pointing, and thus where the 
measurement occurs), and the form in which one wants to use the data (e.g. specific 
spatial/temporal points or mean values, and geophysical parameters or raw radiances).  
This section provides an overview of this process and outlines some of the key factors 
that must be considered when deciding to work with satellite data.  The overall process is 
summarized in Figure 1.  Note that not all of these steps need to be done by the air quality 
modeler, but one should understand the overall process in order to appropriately use the 
level 2 or level 3 products. 

 

Raw Satellite Data

Calibration and Geolocation of Radiances

Inversion Model

Geophysical Parameters

Spatial and/or Temporal Resampling

Averaged Geophysical Quantities Comparison Procedure and Software

Air Quality Model

Raw Satellite Data

Calibration and Geolocation of Radiances

Inversion Model

Geophysical Parameters

Spatial and/or Temporal Resampling

Averaged Geophysical Quantities Comparison Procedure and Software

Air Quality Model

 
 
Figure 1:  Flowchart of the top level processes that occur when comparing satellite 
measurements with model outputs (quality control checks that must occur at each step are 
not shown). 

 
The initial set of processing relates to the determination of geophysical quantities 

from the measured radiances.  This process can be quite complex and requires a number 
of different steps, from determining calibrated radiances to verifying geo-location 
information.  The calibrated radiance data for a given measurement can be considered as 
a matrix that is a function of the wavelength of the measurement.  The process of 
determining the geophysical information from the radiance data, the “inversion”, involves 
a matrix inversion: 

 
y = Kx  =>  x = K-1 y        (1) 
 

where y is the observation vector (e.g., a set of radiance measurements), x is the set of 
geophysical quantities of interest (e.g. an ozone profile) and the matrix K represents the 
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translation of the geophysical parameters into radiances.  Of course there are a number of 
pitfalls involved with a non-linear, noisy system, and the science of the inversion process 
has been thoroughly discussed by a number of authors (Menke, 1984; Rodgers, 1976, 
1996, 2000) and is beyond the scope of this document.  However, one should realize that 
there are a number of different approaches to the inversion and the resulting geophysical 
data can have a wide range of characteristics depending upon temporal and spatial 
averaging (used to reduce measurement noise), constraints added to the inversion to 
provide stability, and how well the signal of interest can be recovered from the 
measurement itself (due to factors such as low concentrations of the quantity of interest 
as well as interference by other gases, clouds, and the surface). 
 

The use of a priori information is required to constrain the retrieval solution, 
which is inherently an ill-posed problem with more unknowns (information about the 
atmosphere) than knowns (the radiance measurement).  This information takes the form 
of both the retrieval quantity itself (e.g. the ozone profile) and a covariance matrix of the 
uncertainty of this quantity.  Thus the a priori information could represent, for example, 
the climatological mean profile shape along with the inherent variability of this shape.   
The maximum likelihood retrieval method is one example of this type of retrieval 
algorithm (Rodgers, 2000). 

 
After the initial processing has been performed, the data may be analyzed in the 

context of the problem at hand.  Depending upon the way in which the data will be used 
with the model, some additional processing may be required.  It is important to match the 
model temporal/spatial sampling to that of the measurement, realizing that care must be 
taken in constructing averages of the satellite data.  In particular, one must be certain to 
minimize the influence of external factors that may affect the averaging.  The main factor 
for consideration is clouds, which can obscure the measurement footprint and lead to a 
misleading characterization of the data of interest.  One must also consider temporal 
issues related to the measurement and the calculation.  For example, the time-step for the 
model represents some sort of averaging in time, and the instantaneous measurement 
from the satellite may not be directly comparable. 
 

Another factor to consider in the processing of satellite data is what is actually 
represented by the vertical profile of the data.  The comparison of model data with 
measurements is a relatively straightforward process for total column quantities – one 
needs only to be sure that the sensor measures the total column directly, or, in the case of 
a profile measurement that is integrated to provide the total column, that the mass of the 
species not measured is small compared to the total column or can be quantified and 
removed from model-measurement differences.  The comparison of vertical profiles is 
more complex. 
 

Remote sensing measurements have an inherent vertical resolution that depends 
upon the nature of the parameter being measured (i.e. the vertical profile and how 
changes in the concentration manifest themselves as changes in radiance) and the spectral 
characteristics of the measurement (i.e., to what degree can the measurement identify the 
relevant spectral characteristics of the parameter).  Thus a vertical profile given for a set 
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of levels above the ground really represents some sort of vertically averaged quantity of 
the true profile.  Models, on the other hand, have their own set of vertical averaging 
characteristics, dictated by the way in which the model was built.  In order to use satellite 
data in conjunction with model data, it is necessary to match these vertical resolutions.  
The proper way to treat these differences in vertical resolution is through the use of the 
sensor “averaging kernel”.  The following discussion summarizes Deeter (2002). 
 

The averaging kernel represents the way in which the vertical structure of the 
atmospheric profile is mapped into the radiances measured by the sensor.  It is expressed 
mathematically as a matrix where each row defines the averaging kernel for a particular 
retrieval level within the measured profile, and each element in this row represents the 
contribution of other levels in the atmospheric profile to the retrieved profile value.  The 
value of the averaging kernel is a function of sensor parameters (such as the field-of-
view) as well as those parameters input to the forward radiative transfer model (such as 
the temperature profile and the species of interest itself).  It will also be a function of the 
a priori (guess) profile shape if that information is used to constrain the retrieval. 
 

As an example of the use of averaging kernels, consider data from MOPITT and 
how it must be transformed for comparison with a model.  Because the MOPITT retrieval 
algorithm incorporates a priori information about the profile to constrain the retrieval, the 
profile retrieved from the measurement is actually a linear combination of the true 
atmospheric profile and the a priori profile: 

 
( )

( )
retrieval apriori true apriori

true apriori

x x A x x

Ax I A x

≈ + −

≈ + −
 (2) 

 
In this equation the x vectors are a function of altitude (or pressure).  The 

averaging kernel is given by “A” and “I” is the identity matrix.  As the vertical resolution 
of the measurement becomes higher, A tends toward the identity matrix and the retrieved 
profile will match the true profile exactly.  Both the averaging kernel and the a priori are 
provided along with the satellite retrieval and depend on time and location (sometimes 
the a priori is a constant profile).  A is dependent on the sensor used and the radiative 
transfer model used for the satellite retrieval. 
 

In order to compare the finite-resolution MOPITT profiles with the model output, 
the model results are first interpolated to the same vertical profile as the a priori and the 
satellite retrieval and then the averaging kernel matrix is applied to the model output.  In 
other words, the model data is “degraded” in vertical resolution to be directly comparable 
to the profile retrieved from the MOPITT measurements.  This is done directly from 
equation (2): 
 
 ( )MODEL apriori MODEL apriorix x A x x′ ≈ + −  (3) 
 
The x’ quantity for the model can now be compared directly with the MOPITT retrieval. 
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When comparing regional-scale models to satellite retrieval values, there may be 
some instances where the model vertical profile is a better approximation to the true 
profile than the profile retrieved from the satellite data.  This may occur because the 
retrieved profile is strongly influenced by the a priori profile, particularly when 
deviations from the a priori profile occur near the surface or in the upper troposphere (for 
example, the satellite sensors are most sensitive to CO in the mid-troposphere). Examples 
include urban air pollution (i.e., deviation from the a priori profile near the surface, 
Vijayaraghavan et al., 2006b) and biomass fires with high plume rise (i.e., deviation from 
the a priori profile in the upper troposphere, Gevaerd et al., 2006).  Then, it would be 
more appropriate to use the model vertical profile as the a priori profile, to retrieve the 
satellite data using this location/time specific profile, and to compare the new retrieved 
profile to the model results (note that if the model profile is used as the a priori profile, 
there is no need according to Equation 2 to process the model output through the 
averaging kernel).  However, because the satellite data must be reprocessed, this 
approach is more resource-intensive than that where the model output is processed via 
Equation 2. 
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4. Use of Satellite Data for Air Quality 
 
 
4.1 Evaluation of air quality models  
 

The evaluation of regional air quality models is typically conducted using ground-
level measurements and occasionally using data aloft from aircraft, helicopters, sondes or 
towers.  Satellite remote sensing data provide two important sources of information 
compared to surface monitoring data: more complete spatial coverage and a vertically-
integrated measure of air quality (e.g., Engel-Cox et al., 2004; Al-Saadi et al., 2005; 
Edwards et al., 2006).  Satellites in polar orbits provide good spatial (typically global) 
coverage albeit at a low temporal resolution.  However, satellite measurements have 
several limitations as discussed earlier.  These must be taken into account before air 
quality model outputs are compared with satellite data for the purpose of model 
performance evaluation. 

 
Many of the chemical species that are simulated by an air quality model are 

present in trace amounts that cannot be measured by satellite sensors.  Also, a large 
number of chemical species may be planned for retrieval during a satellite mission (as 
listed in Tables 3, 4, and 5) but many of these are either not retrieved due to 
instrument/algorithm issues or are not validated and thus not quickly made available for 
public dissemination.  Validated tropospheric satellite data are commonly available only 
for the following species or physical quantity: O3, CO, NO2, SO2, HCHO, and AOD.  So 
it is currently feasible to evaluate tropospheric air quality models typically for these 
species only.  Thus, model evaluation studies have tended to focus on one or more of 
these species (e.g., Chin et al. 2002; Boersma et al. 2006; Byun et al. 2006; Fishman et al. 
2006a, 2006b; Hodzic et al. 2006; Jing et al. 2006; Kondragunta et al. 2006, Lyon et al. 
2006; Rao et al. 2006; Pickering et al. 2006; Pierce 2006; Szykman et al. 2006; 
Vijayaraghavan et al., 2006a, 2006b; Zhang et al. 2005; Ziemke et al. 2006).  Satellite 
data for other species such as HNO3 are becoming available (e.g., Santee, 2006) but are 
sometimes limited by the time period of availability. 

 
Currently, air quality models are typically evaluated using point surface 

measurements with various averaging times (ranging from 1 hour to 24 hours).  The 1-
hour temporal resolution of the model is, therefore, consistent with or finer than that of 
the measurement.  However, the spatial resolution of the model which is of several 
kilometers provides a volume-average result that is generally not consistent with the point 
measurement.  When using satellite data, we will typically compare the model to data that 
offer a range of temporal and spatial resolutions.  As discussed earlier, satellites in 
geostationary orbit are able to provide high temporal resolution with reduced spatial 
coverage, while satellites in polar orbits provide global coverage with less frequent 
temporal coverage.  Because most satellites involved in the remote sensing of air quality 
have a sun-synchronous polar orbit (see Table 1), poor temporal resolution is usually 
more of a concern than spatial coverage.  For example, sensors such as OMI typically 
provide global coverage at 13 x 24 km horizontal spatial resolution (see Table 4) which is 
comparable to the typical horizontal resolution of regional-scale air quality models (12 to 
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36 km) but provide data only once a day.  Thus, weekly, monthly, seasonal, and annual 
averages (rather than hourly or daily values), at the particular time of day of the satellite 
observation, are more appropriate for comparison between the model and satellite data 
due to the latter’s poor temporal resolution.   

 
To ensure horizontal spatial compatibility between the modeling results and the 

satellite measurements, we need to either re-grid the satellite data to the air quality model 
grid or the model results to the satellite grid before comparing the two.  Although recent 
sensors such as OMI have a relatively fine spatial resolution, poor temporal resolution 
and other confounding factors could necessitate a comparison at a coarser horizontal 
resolution.  For example, consider the AOD product derived from MODIS data.  The 
inherent spatial resolution is quite high, though the temporal coverage is limited.  
Moreover, one wants to separate cloudy measurements (which are not representative of 
the total AOD) from those of “clear sky” aerosol measurements.  This selective sampling 
of the data can introduce biases and thus the result should be compared to a similar set of 
data points from the model.  Selecting only the high resolution pixels that meet this sort 
of quality control requirement will result in a sparse dataset.  Also, the model run itself is 
not exactly on the same time grid as each of the selected measurement points, making it 
difficult to make a meaningful comparison of the measurement and the model.  To 
mitigate these effects, and ensure that all researchers are using a consistent, validated 
product, the MODIS team has developed a data product consisting of a uniform 1o x 1o 
spatial grid that contains AOD measurements.  This Level-3 product is available for data 
averaged over various timescales and can be compared with air quality model outputs 
(e.g., Matsui et al., 2004).  The inputs to the average are only the measurement points that 
meet the quality control criteria.  Thus each averaged point consists of a temporal and 
spatial average of measurements.  For comparison purposes with models that have a finer 
spatial and/or temporal scale than this measurement grid one should perform a similar 
averaging procedure for the model output prior to the comparison with the measurement 
product.  Thus, the comparison of models and data requires a careful understanding of the 
data and the spatial and temporal scales associated with both the quantity measured and 
the measurement process itself. 
 
 One of the key advantages of using satellite data for evaluation of air quality 
models is the availability of data aloft.  Satellite retrievals may be available as a total 
atmospheric column (e.g., for ozone, AOD), tropospheric column (e.g., for NO2, ozone, 
AOD, HCHO), and/or vertical profiles (e.g., for CO).  Several studies have compared air 
quality model simulations with satellite retrievals of ozone column (e.g., Fishman et al. 
2006b; Liu et al., 2006; Ziemke et al., 2006), tropospheric NO2 column and profiles (e.g., 
Boersma et al. 2006; Eskes and Levelt, 2006; Kunhikrishnan et al., 2006), CO column 
and profiles (e.g., Allen et al., 2004; Vijayaraghavan et al., 2006b), total and tropospheric 
column AOD (e.g., Chin et al. 2002; Hodzic et al. 2006; Yu et al., 2003), and HCHO 
column (e.g., Wittrock et al., 2006; Vijayaraghavan et al., 2006a). 
 

A complicating factor in the evaluation of model results aloft is the representation 
of the vertical grid for both the model and the measurement.  As discussed above in terms 
of “averaging kernels”, the vertical resolution of the satellite measurement is limited by 
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characteristics of the sensor itself (such as the vertical field-of-view for a limb-viewing 
sensor) and the spectral/radiometric properties of the atmosphere itself.  For example, it is 
very difficult to measure the tropospheric column of ozone from a satellite because of 
interference due to the large stratospheric column that exists between the troposphere and 
the measurement (thus one is trying to measure very small changes, the tropospheric 
column amount, to a fairly large number, the total atmospheric ozone column amount).  
Even for measurements of the total atmospheric column, the impact of clouds must be 
considered within the spatial averaging domain as for these points the vertical column is 
no longer from space to the surface.  As discussed earlier, the total ozone column and 
stratospheric ozone column are usually used to derive the tropospheric ozone residual 
(TOR).  In contrast, Liu et al. (2005b, 2006) demonstrated that the global distribution of 
Tropospheric Column Ozone (TCO) could be directly retrieved from GOME data.  They 
followed the methodology of Chance et al. (1997) and used observations of backscattered 
radiance spectra with moderate spectral resolution of 0.2-0.4 nm and the presence of a 
high signal to noise ratio in the ultraviolet ozone absorption bands to retrieve the vertical 
distribution of ozone down through the troposphere.  In both cases, the selection of the 
tropopause and additional processing are important during the comparison of model-
derived TCO with satellite-retrieved TCO/TOR.  For example, Pickering et al. (2006) 
took the following steps when comparing the ozone column amount from the Eta/CMAQ 
model with the TCO calculated from OMI total column ozone minus MLS SCO over the 
United States.  They regridded only the Eta/CMAQ results at 1900 UTC, i.e., the closest 
to the OMI overpass time in the Eastern United States, to the OMI 1o x 1.25o grid and 
integrated model data from the surface to the NCEP tropopause.  They then filtered the 
OMI-MLS and Eta/CMAQ gridded data to remove regions where the tropopause pressure 
(as determined by NCEP) exceeded 170 hPa (this eliminated strong stratospheric ozone 
gradients).  The OMI Level-2 averaging kernels were then applied to the Eta/CMAQ 
tropospheric ozone profiles before comparing with OMI-MLS TCO data. 

 
Another important consideration in the comparison of model simulation results 

with satellite data is the uncertainty in the satellite measurements.  Clearly, there are 
uncertainties associated with ground-based air quality measurements (e.g., Bhave, 2004; 
Seigneur, 2004); but in many cases, these uncertainties can be minimized and/or 
estimated.  Satellite air quality measurements are subject to several limitations as 
explained earlier.  There may also be errors in satellite data due to factors such as sensor 
radiometric calibration, bias in the spectroscopic parameters used in the retrieval 
algorithm, and/or the choice of a priori constraints used to stabilize the retrieval 
algorithm.  The magnitude and characteristics of these errors is determined during the 
post-launch calibration and validation period.  The nature of these error sources is such 
that the data are often found to have a slight systematic bias, yet are still able to capture 
the spatial variations of the quantities of interest.  Thus, there can often be good 
qualitative agreement between the model and the measurement even with not so good 
quantitative agreement.  This is not a limitation of satellite data, but rather a warning that 
it is important to understand the influence of the retrieval process on the output 
geophysical parameters when performing model/measurement comparisons.  In general, 
satellite data should be used as a quantitative benchmark in the performance evaluation of 
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air quality models only after the satellite retrievals have been independently validated 
against other data such as from aircraft, sondes and ground-based measurements.   

 
Satellite measurements are routinely validated by the retrieval team before being 

released to the public.  For example, Emmons et al. (2004) validated MOPITT CO 
retrievals with aircraft profiles at several locations around the Earth during 2000-2002.  
NASA and other organizations also conduct special aircraft campaigns, such as the 
Intercontinental Chemical Transport Experiment (INTEX-A) in 2004, which provide 
additional data for validation.  Additional examples of satellite data verification include 
the validation of ACE-SCISAT retrievals of O3 (Walker et al., 2005), TES retrievals of 
CO, O3 and water vapor (Osterman et al., 2005) and MODIS retrievals of AOD 
(Kleidman et al., 2005).  The data used to validate the satellite retrievals are typically 
different from the land-based data used for air quality model evaluations.  The satellite 
data validations are, however, often done for specific time periods corresponding to the 
aircraft campaign flights.  It is not reasonable to expect the satellite retrievals to be 
validated for all time periods that are of interest to the air quality modeler.  Thus, satellite 
data should be used in conjunction with other measurements, and not as a sole test, for 
the evaluation of air quality models.   
 
4.2 Boundary and initial conditions  
 

Boundary conditions can have a significant influence on the simulated pollutant 
concentrations, particularly for pollutants that have a long atmospheric lifetime, such as 
PM2.5 in the absence of precipitation.  In-situ measurements available to provide those 
boundary conditions are generally sparse and limited to surface locations.  Global-scale 
models are typically used to provide concentrations at the boundaries of a regional 
model; however, there may be significant uncertainties associated with their simulated 
concentrations.  Satellite data provide the spatial coverage needed for the boundary and 
initial conditions of regional air quality models, particularly, aloft and over the oceans 
and other areas where other data may not be available. 
 

The IDEA (Infusing satellite Data into Environmental Applications) project, an 
EPA/NASA/NOAA partnership, aims to improve the results of regional air quality model 
simulations when upper and lateral boundary air pollutant data from satellites are used to 
describe the influx of pollutants (Neil et al., 2004).  Satellite measurements, when used as 
boundary conditions, can be used to account for the contributions of pollutants 
transported over long distances, for example, from Asia to the United States over the 
Pacific Ocean.  This phenomenon of long-range transport has been demonstrated in 
several studies using CO data from MOPITT (Heald et al. 2003), O3 data from TES 
(Zhang et al., 2006), AOD data from MODIS (Heald et al. 2006), etc.  A combination of 
satellite measurements and air quality modeling of O3 and CO can be used to quantify the 
continental outflow of these pollutants from the United States (e.g., Zhang et al., 2006). 

 
Initial concentrations of chemical species such as O3 and CO may have a non-

negligible effect on simulations that cover a limited time period (say, a week or less).  A 
“spin-up” simulation period is typically used to minimize the effect of the initial 
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conditions but using available data can nevertheless improve the initialization of an air 
quality model, particularly when conducting air quality forecasting (Goldberg and 
Kondragunta, 2006). 
 
 The incorporation of satellite data as boundary and initial conditions for air 
quality models will be subject to some of the disadvantages of satellite data discussed 
earlier such as limited temporal and/or spatial resolution, gaps in data due to clouds, and 
availability of column information rather than vertical profiles.  Nonetheless, this area 
promises to be a fruitful application of satellite measurements for air quality modeling. 
 
 
4.3 Inverse modeling and data assimilation 

 
There has been an increasing effort over the past few years to use experimental 

data to improve the performance of air quality models.  This process involves inverse 
modeling and data assimilation.  Inverse modeling consists in using the observations to 
derive optimized model inputs that are most consistent with those observations.  
Variational methods (also referred to as adjoint methods because they use an adjoint 
model of the air quality model), sequential methods (based on the use of Kalman filters) 
and iterative methods (minimization of the modeling error by iteration) are typically used 
to perform the inverse modeling.  Inverse modeling has been used in air quality modeling 
to optimize emission inventories (e.g., Mendoza-Dominguez and Russell, 2000; Gilliland 
et al., 2003) and boundary conditions (e.g., Roustan and Bocquet, 2006).  The optimized 
model inputs may then be used to generate a model simulation that is in better agreement 
with the data.  It is also possible to assimilate concentration data directly into the 
simulation to force the model simulation toward the observations as the simulation 
progresses.  Finally, model simulation results and measurements can be combined to 
create air pollutant concentration (or deposition flux) fields that leverage the best 
information of both data sets; this type of data assimilation, which is conducted after 
completion of a model simulation, is typically referred to as data fusion.  Most of these 
applications so far have used surface measurements of ambient pollutant concentrations 
or wet deposition fluxes.  There is obviously some interest and potential benefits in using 
satellite measurements as well for inverse modeling and data assimilation.  In particular, 
this is an area of current research for air quality forecasting (Goldberg and Kondragunta, 
2006;  Hollingsworth, 2004). 

 

4.3.1 Basics of inverse modeling and data assimilation 
 
Chemical transport models (CTMs) of air quality simulate atmospheric chemical 

concentrations (and deposition fluxes) using initial and boundary conditions, meteorology 
and emissions as inputs. In inverse modeling, the inverse problem is solved: given 
measurements/estimates of chemical concentrations (or deposition fluxes), one calculates 
some of those inputs (e.g., emissions or boundary conditions).  The set of concentrations 
defines the model state and these concentrations are referred to as the state variables; the 
inputs are referred to as the control variables.  Although there exist a large number of 
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techniques that have been applied to conduct inverse modeling in atmospheric science 
(Enting, 2002), the two major approaches are the sequential methods (which include 
various Kalman filter techniques) and the variational methods (also referred to as adjoint 
techniques). 

 

4.3.1.1  Brief overview of inverse modeling, sensitivity analysis and data assimilation 
 
Figure 2 depicts schematically the overall process of inverse modeling and data 

assimilation.  In this conceptual example, we can consider the model input to be the 
emission inventory of the precursor species (e.g., NOx), E, and the model output to be the 
atmospheric concentrations of the chemical species of interest (e.g., NO2), C.  In the case 
of the use of satellite data, these concentrations will be vertically integrated to provide the 
column density.  The model is first applied with an initial guess of the input, which is 
referred to as the a priori input, Ea.  There is an error (uncertainty), εE, associated with 
this a priori input.  Observations, O, such as column densities from satellite data, are 
available with an associated error, εO.  (In theory, an error due to the model can also be 
associated with the model output and added to the observation error; since it is generally 
not invoked in most current applications, it is not included in this example. It seems 
counterintuitive to associate the observation error and model error; however, the model 
and the observation are used here together to obtain the input and our ability to estimate 
the “true” input is limited by both the error in the observation and the error in the model.)  
The objective is to optimize the model input.  The optimized model input is referred to as 
the a posteriori input.  (Representativeness error refers to scales that are included in the 
observation that are not “represented” by the model.  Representativeness errors are often 
treated together with the observation error because, as discussed above, they are model 
errors that, together with the observation error, affect our ability to estimate the “true” 
input.) 

 
The general procedure for obtaining an optimized model input involves inverse 

modeling.  First, a cost (or objective) function is defined based on Bayesian and 
maximum likelihood arguments.  With the assumption of normal (i.e., Gaussian) errors, 
the cost function is found to be the sum of two terms: (1) the first term represents the 
deviation of the model output from the observation (we can refer to this term as the 
performance term) and (2) the second term represents the deviation of the input from the 
a priori input (generally referred to as the penalty term).  Each term is weighted by its 
associated error such that if the error is large the term contributes less to the cost 
function.  For example, if the satellite data have large associated errors (e.g., due to 
presence of clouds, assumption of vertical profile, interference from aerosols), the first 
term will have little influence on the cost function and the a priori model input will be 
heavily weighted.  On the other hand, if there are huge uncertainties in the a priori input, 
the second term will have little weight and the optimized input will depend almost 
entirely on the first term, i.e., the observation. 
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Figure 2.  Schematic representation of the sensitivity analysis, inverse modeling and data assimilation steps with respect to modeling.
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The cost function will be minimized when its derivative with respect to the input 

becomes zero.  Therefore, the optimization procedure requires obtaining the first-order 
sensitivity (or gradient) of the cost function to the input.     A standard approach to obtain 
the model output sensitivity is to calculate the derivative of the model output with respect 
to a model input, which can be done by solving a set of differential equations for this 
derivative (the direct method) or by applying a small perturbation to the model input 
(perturbation or indirect method, also referred to as “brute force” method) and comparing 
the results to the original simulation.  This approach is sometimes referred to as “forward 
sensitivity” because the sensitivity equations are solved forward in time.  Note that the 
result (∂C(x,y,z,t)/∂E) provides the sensitivity of the model output that is a function of 
space and time with respect to a model input that is not resolved in space nor time 
(typically a perturbation across the board or averaged over a specific domain and time 
period).  Sequential methods such as the Kalman filter use a forward sensitivity analysis.  
On the other hand, variational methods use the adjoint sensitivity, which is obtained by 
means of an adjoint model.  The adjoint model reverses the order of the computations of 
the forward model.  The variable solved for in the adjoint model is the sensitivity of the 
output of the original model (here, C) to the input (here, E).  In the case of the adjoint 
sensitivity, the model output is averaged over some spatial domain and time period and 
the adjoint sensitivity equations provide its first-order derivative with respect to a model 
input that is resolved in space and time (∂C/∂E(x,y,z,t).  Thus, the forward and adjoint 
sensitivities provide distinct types of information. 

 
If the final objective is to obtain a model simulation that is in better agreement 

with the observations than the original simulation, the a posteriori input can then be used 
in the model.  This forward model step is, of course, part of the iterative adjoint solution.  
In inverse modeling only the model input is affected, and the model is considered to be a 
perfect representation of the atmosphere. It is also possible to perform the assimilation of 
the observational data directly (i.e., without any inverse modeling) by forcing the model 
output toward those data.  (This is analogous to the data assimilation process used in 
numerical weather prediction.)  However, the result is then a combination of the model 
output and observations and it does not correspond to a solution of the model (this 
includes techniques referred to as nudging or data fusion). 

 
We provide some additional descriptions of the sequential and variational 

methods below, highlighting their respective advantages and shortcomings. 

4.3.1.2  Sequential methods 
 
Sequential methods use available measurements to correct the prediction of the 

model for the next time step.  The Kalman filter is the best known sequential method.  In 
the standard application of the Kalman filter, the output of the model is compared to 
measurements (or estimates derived from measurements).  The sensitivity of the model 
input to the variable being measured is obtained, for example, by conducting two separate 
simulations with slightly different initial (a priori) inputs and relating the change in the 
output variable to the difference in the input or by using a forward sensitivity method 
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such as the decoupled direct method (DDM).  Then, a new (a posteriori) value of the 
input is calculated by using the measured value and the sensitivity of the input to the 
measured variable.  If several measurements are available, then a least-square 
minimization can be conducted to obtain the solution.  An advantage of the Kalman filter 
is that it evolves the error covariance matrix of the model state using the model dynamics.  
At the same time, it takes into account the error in the measurements and the error in the 
model input to calculate the optimized model input.  As discussed above, if large errors 
are associated with the measurements, the initial (a priori) value of the model input will 
carry more weight than the measurement.  Conversely, if the measurements are accurate, 
the a posteriori value of the model input will be strongly influenced by the measurements. 

 
The advantage of this method is that it is relatively easy to implement.  At each 

model time step, available measurements are used to minimize the error in the model and 
the next model time step is calculated using the improved model state estimate.  The 
disadvantage of this method is that it only uses information at a given time step.  
Consequently, applying a Kalman filter will not provide spatial or temporal information 
on the optimization of the inputs.  Furthermore, if the differences between the model 
outputs and the measurements are significant and vary widely, the successive corrections 
may lead to a result that shows discontinuities as a function of time.  Such discontinuities 
can be minimized by applying the Kalman filter over several previous time steps, thereby 
smoothing the error minimization over several time steps.  However, the application of 
the Kalman smoother requires inverse modeling via a variational approach (see below).  
Kalman filters have been applied with global models such as GEOS-Chem and 
regional/urban models such as CMAQ. 

 

4.3.1.3  Variational methods 
 
Variational methods are optimization techniques that also provide sensitivity 

analysis information.  They are based on the definition of an objective (or cost) function 
that is to be minimized.  As mentioned above, the cost function includes two terms.  In 
the variational method, the second term is weighted by a regularization parameter that is 
defined empirically.  A first-order derivative of the cost function is calculated to carry out 
the minimization process.  As discussed above, the variational analysis requires the 
development of the adjoint model of the CTM.  In theory, the equations for the adjoint 
model can be developed analytically and subsequently solved numerically.  However, it 
is typically best to develop the adjoint from the numerical code of the CTM to eliminate 
inconsistencies between calculations of the objective function and calculations of its 
gradient.  The validity of the adjoint code should be checked for accuracy by carrying out 
numerical tests of input perturbations. 

 
The advantage of the variational method is that it uses information from previous 

time steps and it provides sensitivity information that is spatially-distributed and 
temporally-resolved with respect to the model input.  It is, therefore, useful if one wants 
to optimize a model input (e.g., emission inventory) as a function of location and time, 
rather than across-the-board (see example below).  The disadvantage is that it requires the 
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development of the adjoint model, which can be a significant effort for a CTM.  Note, 
however, that adjoint models have been developed for the global CTM GEOS-Chem 
(Henze and Seinfeld, 2006) and the regional/urban CTM CMAQ (Hakami et al., 2006). 
 

4.3.2 Applications of inverse modeling/data assimilation to satellite data 
 

There are two major categories of applications of inverse modeling techniques 
using satellite data: (1) the estimation of a set of inputs by minimizing the difference 
between the model output and the satellite data and (2) the assimilation of satellite data in 
the model simulation.  Both approaches aim at improving model performance by either 
refining the model inputs or correcting the model output.   We describe some practical 
applications of those two major categories. 

 
It should be noted that in all these examples a CTM is used and the input 

meteorology is held fixed.  In fact, observations of chemical species may also be useful to 
refine estimates of the meteorology.  For example, a passive tracer provides information 
on advecting winds.  Coupled chemistry meteorology models may one day make optimal 
use of both types of observations and for many years ECMWF has included ozone in 
meteorological models. 
 

4.3.2.1 Estimation of input data 
 

The most common application of inverse modeling to CTMs has been to estimate 
emission data.  For example, Gilliland et al. (2003) applied a Kalman filter with CMAQ 
to estimate ammonia emissions based on ammonium wet deposition data, Mendoza-
Dominguez and Russell (2000) applied the Direct Decoupled Method (DDM) of 
sensitivity analysis combined with an iterative optimization technique with a CTM to 
estimate ozone precursor emissions and Pison et al. (2006) applied the adjoint of a CTM 
to optimize NOx emissions in an ozone simulation over the Paris region.  These examples 
used surface data with regional-scale CTMs.  To date, the use of satellite data for inverse 
modeling has mostly been limited to global-scale CTMs, although some recent work has 
been done with regional-scale models such as CMAQ as well.  We summarize some 
recent examples below. 

 
Martin et al. (2003) performed inverse modeling with GEOS-Chem using NO2 

column densities retrieved from the GOME satellite to estimate global NOx emissions.  
The estimation of NO2 column densities was improved by (1) taking into account the 
effect of atmospheric particulate matter on the signal and (2) by using the vertical profile 
simulated by GEOS-Chem instead of assuming a universal profile.  This analysis ignored 
atmospheric transport and the NO2 column density was assumed to be related to the NOx 
emission rate in that column through linear chemistry relationships only.  Those 
relationships (NO2 fraction of NOx and loss of NOx via chemical reactions) were obtained 
from the GEOS-Chem simulation (and, therefore, varied among the columns).  The 
spatial resolution of the analysis was 2o latitude and 2.5o longitude.  The analysis took 
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into account the errors present in the a priori and estimated emissions simply by 
calculating the a posteriori emission as the geometric average of the a priori and 
estimated emissions weighted by their respective errors.  The results showed (1) 
improvement in the GEOS-Chem simulation when the results are compared to the 
GOME-derived NO2 column densities (the error was halved, an expected result since the 
a posteriori inventory includes information from the GOME column densities), (2) good 
agreement on average with two global emission inventories, (3) but significant 
differences with those inventories in specific regions of the globe.  Martin et al. (2006) 
repeated the same analysis using SCIAMACHY NO2 data and adding NOx emissions 
from lightning.  Their results highlighted the rapid increase of NOx emissions in Asia.   

 
Palmer et al. (2006) performed a similar analysis to estimate isoprene emissions 

from the HCHO column density from the GOME satellite.  Errors in the retrieval of the 
HCHO column result in part from interferences from particulate matter, the assumed 
HCHO vertical profile and clouds, with clouds being the major source of error (Millet et 
al., 2006).  The estimation of HCHO column densities used the vertical profiles simulated 
by GEOS-Chem.  The error in the retrieved HCHO column density was estimated to be 
about 40%.  The HCHO concentrations were related to the isoprene emissions via a linear 
relationship that accounted for the oxidation of isoprene to HCHO, the photolysis of 
HCHO and the oxidation of other VOC to HCHO (considered a background HCHO 
concentration due to the lower oxidation rate of most VOC compared to isoprene).  As 
for NOx, transport was ignored (the oxidation of isoprene to HCHO was considered to be 
faster than the advection of isoprene at the GEOS-Chem spatial resolution).  In this 
application, no a posteriori emissions were calculated; instead, the GOME-derived 
isoprene emissions (so-called top-down, literally) were compared to values from an 
emission model (so-called bottom-up) and from measurements.  This approach seems 
appropriate for estimating isoprene emissions with a coarse spatial resolution; at a finer 
resolution, emissions of anthropogenic VOC, which are sources of HCHO, will interfere 
with the inverse modeling of isoprene emissions.  Therefore, at regional/urban scales, it 
will be necessary to include some treatment of transport processes and to use a variational 
approach. 

 
Kopacz et al. (2006) have used a variational approach to optimize CO emissions 

with good spatial resolution using CO column densities from the MOPITT satellite with 
GEOS-Chem.  As mentioned above, the objective of estimating emissions with good 
spatial resolution requires the use of a variational method because all relevant 
atmospheric processes can then be taken into account (i.e., chemistry and transport). 
 

Hakami et al. (2006) used NO2 column densities from the SCIAMACHY satellite 
to optimize the NOx emissions using a variational approach with CMAQ.  Because the 
emission input file of CMAQ is a 3-D file, the inverse modeling was spatially resolved 
for the 3-D field of 47,610 grid cells (some of the non-surface grid cells have zero 
emissions).  No time dependence of the scaling of the emissions was used.  The inverse 
modeling was conducted for a modeling domain that covers the southeastern United 
States with a 36 km resolution for a three-day period (this period corresponds to the time 
needed for the satellite to cover the full domain).  The results showed considerable 
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improvements in CMAQ’s ability to reproduce the satellite NO2 column densities.  
However, the NOx emissions needed to be scaled up with factors in the range of 1.5 to 3 
with some values up to 5.  These results suggest a very significant underestimation of the 
NOx emission inventory.  It is possible that NOx emissions from lightning, which are 
missing from the original CMAQ emission inventory, are a significant cause of this 
discrepancy. 

 
In addition to emission estimation, inverse modeling can also be used to estimate 

boundary conditions of regional-scale CTMs.  For example, Roustan and Bocquet (2006) 
used mercury surface data with a variational approach to estimate mercury boundary 
concentrations for a CTM domain covering Europe.  Their results properly reflected the 
influence of the northern boundary during spring when mercury depletion events lead to 
increased reactive gaseous mercury concentrations.  Also, Vautard et al. (2000) applied a 
CTM with its adjoint to obtain the sensitivity of simulated O3 concentrations to upwind 
boundary conditions and to improve model performance using the optimized boundary 
conditions.  However, to our knowledge, satellite data have not been used to estimate 
boundary conditions for a regional-scale model.  Since satellite data have a large spatial 
coverage, they can be used directly to provide information on boundary conditions and, 
therefore, their use in an inverse modeling exercise would seem superfluous.  
Nevertheless, Hakami et al. (2006) listed the estimation of boundary conditions with a 
variational method as a possible future task. 

 

4.3.2.2  Data assimilation 
 
Data assimilation is primarily of interest in two areas: (1) air quality forecasting 

(or hindcasting) and (2) data fusion.  Air quality forecasting is typically conducted over a 
period of one day to a few days.  Although the atmospheric diffusion equation, which 
governs the air quality system, unlike the equations governing meteorology, is not 
chaotic, it is useful to have initial conditions that are as accurate and consistent as 
possible.  Thus, data assimilation can be useful to improve the initial chemical 
concentration fields.  Data fusion refers to the combination of model simulations results 
and measurements.  Spatial interpolation techniques are used to develop fields of 
concentrations and atmospheric deposition fluxes that combine model outputs and 
measurements.  Assimilating satellite (and surface) data into the results of a model 
simulation is similarly a data fusion approach.  Data assimilation for air quality 
forecasting is a dynamic process because the data affect the model simulation as it 
progresses, whereas data fusion can be seen as a static assimilation process because the 
assimilation step does not feed back into the model simulation. 

 
Jones et al. (2006) used a Kalman filter to assimilate CO and O3 data from the 

Aura Tropospheric Emission Spectrometer (TES) in two global-scale models, GEOS-
Chem and AM2, for a two-week period in November 2004.  The assimilation led to 
significant increases in CO throughout the southern hemisphere and significant increases 
(20 to 50%) in O3 over the Indian Ocean and the Indonesian/Australian region.  The 
model results with data assimilation showed much better agreement with the satellite 
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data, as expected, and GEOS-Chem and AM2 were in much better agreement after data 
assimilation.  The revised O3 simulation affected the NOx chemistry, which would affect 
the NOx/NO2 relationship that is used in the retrieval of NO2 satellite data to estimate 
NOx emissions (see above).  This result points out the interrelationship between various 
chemical species in a non-linear system and the benefits (i.e., lower errors) that can be 
gained by conducting satellite data retrieval jointly for several chemical species. 

 
Sarigiannis et al. (2006) assimilated AOD data from the Earth Observation (EO) 

satellite into REMSAD using a Kalman filter to develop maps of PM10 concentrations 
over southern Europe.  The objective was to combine the model simulation output results 
with satellite data to obtain improved PM10 concentrations.  Yu et al. (2003) presented 
global monthly distributions of AOD after integrating AOD from MODIS retrievals with 
that from Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and 
Transport (GOCART) simulations to account for gaps in the MODIS data due to highly 
reflective arid and snow-covered lands.  These analyses are examples of the use of satellite 
data for data fusion. 

 
The use of satellite data, along with surface ambient air quality measurements, to 

improve air quality forecasting is planned in the United States (e.g., Hoff et al., 2006; 
Kondragunta et al., 2006).  These plans include assimilation of AOD and O3 column 
densities into CMAQ simulations for air quality forecasting.  In Europe, Eskes and Levelt 
(2006) have presented plans to use a combination of data (O3, CO, NO2, SO2, HCHO and 
CH4) from the OMI (Aura) satellite and surface data to improve model performance for 
air quality forecasting using a variational approach. 

 
NOAA has deployed a smoke forecast tool which integrates GOES satellite 

information on the location of wildfires with NOAA National Weather Service weather 
inputs from the North American Mesoscale model and smoke dispersion simulations 
from the NOAA Research HYSPLIT model to produce a daily updated 48-hour 
prediction of surface PM2.5 concentrations due to wildfire smoke transport in the US 
(http://www.arl.noaa.gov/smoke/). 

 
 

4.3.3 Future prospects 
 
Information from satellites on concentrations of chemical species and particulate 

matter in the atmosphere can be very valuable to improve the performance of air quality 
models.  We can distinguish three major categories of procedures to use satellite data in 
air quality modeling: 

 
• Input data optimization pertains to the development of optimized emission 

inventories (and possibly boundary conditions) that provide better 
agreement with the data. 
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• Data assimilation involves the use of the data in an air quality simulation, 
either directly (concentrations) or after processing (optimized emissions), 
to obtain better performance. 

• Data fusion combines the results of an air quality simulation with data to 
develop fields of air concentrations or atmospheric deposition fluxes that 
leverage the best aspects of model results and data. 

 
Table 7 presents an overview of the possible applications of satellite data to those 

various aspects of inverse modeling and data assimilation. 

 

For the optimization of input data, satellite data can be very useful for the 
improvement of the emission inventories of some species and source categories (see 
Section 4.3.2 for some recent examples at the global scale and the regional scale).  For 
global scale applications where the spatial resolution allows one to neglect the effect of 
atmospheric transport, the use of a Kalman filter or similar technique is sufficient.  
However, at the regional scale where both chemistry and transport are important in the 
inverse modeling process, a variational approach is needed.  As mentioned above, we do 
not see the optimization of boundary conditions as a major application of satellite data via 
inverse modeling because the satellite data can be used directly to specify the boundary 
conditions (see Section 4.2). 

 

For data assimilation into an ongoing air quality simulation, both concentrations and 
optimized emissions can be assimilated to improve model performance. In the case of 
concentrations, assimilation of satellite data for O3, NO2 and AOD (surrogate for PM) 
will directly improve the performance of air quality simulations for these pollutants.  In 
the case of emissions, the ability to perform the inverse modeling in a real-time manner 
will be the limiting step for air quality forecasting (this is not an issue for hindcasting).  
There are some specific areas where such data assimilation will be key because satellite 
data provide information that is not directly available from other sources: for example, 
AOD measurements can provide valuable information on biomass fires (Kondragunta et 
al., 2006) and SO2 measurements can help characterize volcanic eruptions.   

 

For data fusion, satellite data will be most useful to improve concentration maps of 
air pollutants such as O3, NO2 and PM (using AOD).  Some applications have already 
been performed (see Section 4.3.2) or are ongoing for the display of air pollutant 
concentration maps or their use in epidemiological studies. 
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Table 7.  Overview of the possible applications of satellite data in air quality 
modeling with inverse modeling and data assimilation. 

 

Procedure Specific 
Application 

Use of Satellite Data 

Emission 
inventories 

NO2 data for NOx 
emissions 

HCHO data for isoprene 
emissions 

CO data for CO emissions 

AOD data for PM2.5 
biomass fire emissions 

SO2 data for volcanic 
emissions 

Input data 
optimization 

Boundary 
conditions 

Not likely because data 
can be used directly as 
model input (see Section 
4.2) 

Emissions Same as above for input 
data optimization but with 
near-real time (nrt) 
processing 

Data assimilation 

Concentrations O3, AOD, NO2, SO2, 
HCHO, CO 

Concentrations O3, NO2 and AOD (for 
PM) 

Data fusion 

Deposition fluxes No direct application 
because satellite data do 
not provide quantitative 
information of 
atmospheric deposition; 
use of ground-level 
monitoring data instead. 
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5. Conclusion 
 
 

Satellite remote sensing measurements of some chemical species offer more 
complete spatial coverage and integrated vertical column/profile information compared to 
the in-situ data typically used to evaluate, constrain or initialize regional air quality 
models.  Validated tropospheric satellite data are currently available typically only for the 
following species and physical quantities: O3, CO, NO2, SO2, HCHO, and AOD.  So most 
current evaluations of tropospheric air quality models focus on these species.  As new 
validated data for species such as HNO3 become available, these could be used for model 
evaluation and data assimilation. 

 
Multiple steps are involved in retrieving air quality data from the observed 

radiances in the atmosphere and an a priori or background profile.  The air quality 
modeler would typically be interested in the final processed product that provides the 
temporally- and spatially-averaged geophysical quantity of interest.  The satellite 
retrieval and the air quality simulation results should be mapped to the same spatial and 
temporal grid and processed with the satellite averaging kernel matrix before comparison 
with each other. 

 
Most satellites currently used for the remote sensing of air quality are sun-

synchronous polar-orbiting and provide data at a higher vertical and horizontal resolution 
than geo-synchronous satellites but at a poor temporal resolution, once or twice daily.  
Satellite data may suffer from other limitations such as a coarse horizontal spatial 
resolution compared to the air quality model resolution and uncertainties in retrieval due 
to cloud cover, ground albedo, and day/night and land/ocean differences in the sensor 
measurement errors.  There may also be errors in satellite data due to factors such as 
sensor calibration, bias in the spectroscopic parameters used in the retrieval algorithm, 
and/or the choice of a priori constraints used to stabilize the retrieval algorithm.  In 
general, satellite data should be used as a quantitative bench mark in the performance 
evaluation of air quality models only after the satellite retrievals have been independently 
validated against other data such as from aircraft, sondes and ground-based 
measurements.  Such validation is routinely done by the retrieval team, usually using 
aircraft/sonde data which are different from the surface data typically used for air quality 
model evaluations. 

 
Satellite data provide the spatial coverage needed for the boundary and initial 

conditions of regional air quality models, particularly, aloft and over the oceans and other 
areas where other data may not be available.  Satellite measurements, when used as 
boundary conditions, can be used to account for the contributions of pollutants 
transported over long distances, for example, from Asia to the United States over the 
Pacific Ocean.  This phenomenon of long-range transport has been demonstrated in 
several studies using CO, O3 and AOD data.  A combination of satellite measurements 
and the air quality modeling of species with long residence times such as O3 and CO can 
be used to quantify the continental outflow of these pollutants from the United States and 
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other countries.  Satellite data can also be used to initialize an air quality model, 
particularly when conducting air quality forecasting. 
 

Another promising application of satellite data in air quality modeling lies in the 
areas of inverse modeling/data assimilation.  Inverse modeling consists in using the 
observations to derive new model inputs that are optimized with respect to those 
observations using variational (adjoint) methods, sequential (e.g., Kalman filter) methods, 
and iterative methods.  It is also possible to assimilate concentration data directly into the 
simulation to force the model simulation toward the satellite observations as the 
simulation progresses or to combine simulation results and satellite measurements to 
create air pollutant concentration or deposition flux fields after completion of a model 
simulation (data fusion).  These are all rapidly evolving areas of research and each have 
advantages and disadvantages.  Sequential methods are easier to implement than 
variational methods.  For global scale applications where the spatial resolution allows one 
to neglect the effect of atmospheric transport, the use of a Kalman filter or similar 
technique is sufficient.  However, at the regional scale where both chemistry and 
transport are important in the inverse modeling process, a variational approach is needed.  
But variational methods require the development of the adjoint of the air quality model, a 
non-trivial process.  For the optimization of input data, satellite data can be very useful 
for the improvement of the emission inventories of some species and source categories.  
For data assimilation into an ongoing air quality simulation, both concentrations and 
optimized emissions can be assimilated to improve model performance, for example, in 
air quality forecasting.  Satellite data are useful to provide information at inaccessible 
areas: for example, AOD measurements from biomass fires and SO2 measurements from 
volcanic eruptions.  For data fusion, satellite data will be most useful to improve 
concentration maps of air pollutants such as O3, NO2 and PM (using AOD). 
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Appendix A: Acronyms 
 
 
Organizations 
CNES - Centre national d'études spatiales (French National Space Study Center) 
CSA - Canadian Space Agency 
ESA - European Space Agency 
JAXA - Japan Aerospace Exploration Agency 
NASA - National Aeronautics and Space Administration 
NOAA - National Oceanic and Atmospheric Administration 
SSC – Swedish Space Corporation 
TEKES – Finland National Technological Agency 
 
Satellites 
ACE – Atmospheric Chemistry Experiment Satellite (also called SCISAT-1) 
CALIPSO – Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations 
ENVISAT – Environmental Satellite 
ERS – European Remote Sensing Satellites 
GOES – Geostationary Operational Environmental Satellites 
MetOp – Meteorological Operational Satellite Programme 
NPOESS – National Polar-orbiting Operational Environmental Satellite System 
POES – Polar-orbiting Operational Environmental Satellites 
SCISAT-1 – Another name for the Atmospheric Chemistry Experiment (ACE) Satellite  
TOMS EP – Total Ozone Mapping Spectrometer Earth Probe 
 
Sensors 
ACE-FTS - Atmospheric Chemistry Experiment Fourier Transform Spectrometer 
AIRS – Atmospheric Infrared Sounder 
ASCAT – Advanced Scatterometer 
AVHRR – Advanced Very High Resolution Radiometer 
CERES - Cloud's and the Earth's Radiant Energy System 
CPR – Cloud Profiling Radar 
GOME – Global Ozone Monitoring Experiment 
HIRDLS – High Resolution Dynamics Limb Sounder 
HIRS –  High Resolution Infrared Radiation Sounder 
IASI – Infrared Atmospheric Sounding Interferometer 
IMG – Interferometric Monitor for Greenhouse Gases 
ILAS – Improved Limb Atmospheric Spectrometer 
LIDAR - Light Detection And Ranging 
MAESTRO - Measurement of Aerosol Extinction in the Stratosphere and Troposphere 

Retrieved by Occultation 
MIPAS - Michelson Interferometer for Passive Atmospheric Sounding 
MISR – Multi-angle Imaging SpectroRadiometer 
MLS – Microwave Limb Sounder 
MODIS – Moderate Resolution Imaging Spectroradiometer 
MOPITT – Measurements of Pollution in the Troposphere 
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OMI – Ozone Monitoring Instrument 
OSIRIS - Optical Spectrometer and InfraRed Imager System 
SBUV – Solar Backscatter Ultraviolet Radiometer 
SCIAMACHY – Scanning Imaging Absorption Spectrometer for Atmospheric 

Chartography 
SeaWiFS – Sea-viewing Wide Field-of-view Sensor 
SMR - Sub-millimeter Microwave Radiometer 
SOFIS – Solar Occultation FTS for Inclined-Orbit Satellite 
TES – Tropospheric Emission Spectrometer 
TOMS – Total Ozone Mapping Spectrometer 
TOVS – TIROS Operational Vertical Sounder 
 
Other Acronyms 
GEO – Geostationary Earth Orbit 
L-1 –  Lagrangian Point 1 
LEO – Low Earth Orbit 
MEO – Mid-Earth Orbit 
 

 
 


