

COORDINATING RESEARCH COUNCIL, INC.
5755 NORTH POINT PARKWAY ● SUITE 265 ● ALPHARETTA, GA 30022

CRC Report No. A-103

PREPARING SMOKE-MOVES INPUTS
USING THE AWS ENVIRONMENT

Preliminary Report

November 2015

The Coordinating Research Council, Inc. (CRC) is a non-profit

corporation supported by the petroleum and automotive

equipment industries. CRC operates through the committees

made up of technical experts from industry and government

who voluntarily participate. The four main areas of research

within CRC are: air pollution (atmospheric and engineering

studies); aviation fuels, lubricants, and equipment performance,

heavy-duty vehicle fuels, lubricants, and equipment

performance (e.g., diesel trucks); and light-duty vehicle fuels,

lubricants, and equipment performance (e.g., passenger cars).

CRC’s function is to provide the mechanism for joint research

conducted by the two industries that will help in determining the

optimum combination of petroleum products and automotive

equipment. CRC’s work is limited to research that is mutually

beneficial to the two industries involved. The final results of the

research conducted by, or under the auspices of, CRC are

available to the public.

CRC makes no warranty expressed or implied on the

application of information contained in this report. In

formulating and approving reports, the appropriate committee

of the Coordinating Research Council, Inc. has not investigated

or considered patents which may apply to the subject matter.

Prospective users of the report are responsible for protecting

themselves against liability for infringement of patents.

Preparing SMOKE-
MOVES Inputs Using the
AWS Environment

CRC Project A-103

Prepared for:

Coordinating Research Council

Prepared by:

Eastern Research Group, Inc.

November 12, 2015

ERG Project No.: 3987.00.001.001

Preparing SMOKE-MOVES Inputs Using the AWS Environment

CRC Project A-103

PRELIMINARY REPORT

Prepared for:

Coordinating Research Council

Prepared by:

Scott Fincher

Eastern Research Group, Inc.

3508 Far West Blvd., Suite 210

Austin, TX 78731

November 12, 2015

i

Table of Contents

1.0 Overview ... 1

2.0 Initial Amazon Account Setup .. 3

2.1 Account Creation .. 3
2.2 Security Credentials .. 6
2.3 Other Considerations .. 7

3.0 Initial Scenario Setup .. 8

3.1 Required Software, Data, and Code .. 8
3.2 File System Organization .. 9
3.3 Perl Script Execution .. 11

3.3.1 RepCnties Script ... 11

3.3.2 RunSpecGenerator Script.. 11

3.3.3 LoadZMH Script ... 13
3.3.4 CreateAndPopulate Script ... 13

3.4 Local QA ... 15
3.5 Full Runspec and Batch File Generation .. 15

4.0 Execution of MOVES in the AWS Cloud Environment .. 17

4.1 Amazon AWS Options and Setup... 17
4.2 Uploading and Adding Jobs .. 22

4.3 Creating Instances ... 27
4.4 Downloading Initial Results and QA .. 35
4.5 Post-processing MOVES results into SMOKE-MOVES format.......................... 36

5.0 Troubleshooting .. 37

5.1 Tips and Tricks ... 37
5.2 Lifecycle ... 39

5.3 Logging into Instances .. 40
APPENDIX A: Scripts and Examples .. 47

1

1.0 Overview

ERG has been using the cloud to prepare on-road emissions for EPA's National

Emissions Inventory (NEI) and other national inventories for rulemaking analyses. Many

computationally-intensive MOVES runs are required, and the cloud environment provides a

relatively inexpensive source of abundant computing resources. The MOVES runs required for

SMOKE-MOVES cover many individual counties and months, and are independent of each

other, making this application an ideal candidate for parallel computing. As an example, ERG

recently ran MOVES in the cloud for an EPA scenario that used 568 separate Amazon Web

Services (AWS) computing instances, corresponding to combinations of 284 unique counties for

a summer and winter month. This included tens of thousands of individual MOVES runspecs. By

running 570 instances in parallel in the cloud, the MOVES runs completed within 60 hours (2.5

days). The total processing time was about 30,000 hours, roughly corresponding to 3.5 years on a

single machine.

In its work, ERG has adapted a series of customized scripts originally developed by EPA

to handle the mechanics of transferring data into and out of the cloud, organizing data, launching

MOVES runs in the cloud, and monitoring their progress including run completion checks. EPA

intends to make the scripts public in the future, but they are not currently user friendly. ERG has

written this report to describe the full process in a chronological order, beginning with opening

an account with a cloud services provider, organizing MOVES input data on a local machine,

selecting the desired cloud environment features, transferring data to the cloud, running

MOVES, checking results, post-processing, and downloading post-processed results that can

then be fed into SMOKE.

As a MOVES end user, should you consider using the cloud environment for executing

model runs? For many users, the answer is yes. In the example mentioned above and discussed

throughout this document, the time savings for running MOVES in the cloud vs. a single local

machine was a factor of 500! In this case, using the cloud took an essentially impossible task and

made it reality. While you may not have quite as many runs to do to support your own work, the

cloud still presents an opportunity for significant time savings – a scenario requiring only a few

hundred MOVES runspecs could still be finished in a single business day, instead of weeks.

 In addition, the cloud environment is very cost effective. In the large EPA example

above, combined AWS costs for processing time, data storage, and data transfer were

approximately $5,000, with more than 90% of that cost for CPU time. (This does not include

staff labor costs, which will vary according to familiarity with AWS and MOVES.) Compare this

2

to the costs of purchasing and running multiple MOVES servers for years at a time for a single

scenario! Smaller workloads on the order of hundreds of runs are also quite affordable; ERG has

executed 400 MOVES runspecs to support local emissions inventory works for AWS costs of

less than $200.

This report is intended to assist MOVES users with the process of executing model runs

in the AWS cloud environment by providing step-by-step instructions, along with screenshots

and sample files. Section 2 of this document details initial setup of an AWS account, along with

associated security credentials. Section 3 describes the Perl scripts that must be run on a user’s

local machine to prepare MOVES inputs prior to interaction with the cloud. Section 4 provides

instruction on moving files into and out of the cloud, model execution, post-processing, and QA.

Finally, Section 5 contains information on frequently encountered issues, troubleshooting tips,

and instructions on interacting with individual AWS instances. For user reference, we have also

included in an electronic appendix the scripts used to generate SMOKE-MOVES inputs for a

specific scenario performed for calendar year 2013 using MOVES2014a.

Supplemented by ERG’s experience running several MOVES scenarios in the cloud, this

document draws liberally from two existing EPA documents:

 Running MOVES on Amazon, Wes Faler, Fluid and Reason LLC. May 2011

 Documentation of EPA-Side Scripts and Structure for Amazon SMOKE-MOVES,

Harvey Michaels and David Brzezinksi, US EPA OTAQ, November 2012

While much of the process of generating MOVES files for the cloud has largely remained

the same since 2012, other aspects have changed – most notably, the Amazon cloud interface

itself. We hope this document serves as a useful tool for performing MOVES runs in the cloud in

2015 and beyond.

The author would like to acknowledge the assistance of several individuals in preparing

this report:

 The authors of the documents above: Wes Faler, Harvey Michaels, and David

Brzezinksi,

 Other EPA staff: Alison Eyth, Alexis Zubrow, and David Choi

 ERG Mobile Sources Modeling Team: Sandeep Kishan, John Koupal, Alison

DenBleyker, and Doug Jackson

3

2.0 Initial Amazon Account Setup

This section describes creation of an Amazon account to use with Amazon Web Services

(AWS), as well as associated security credentials. Note that some items in the screenshots that

follow are greyed out for security reasons.

2.1 Account Creation

Initial setup of an Amazon account for use with AWS is fairly straightforward: all that is

needed is a valid email address, associated contact information, and a valid credit card. Navigate

to aws.amazon.com, where you will see the following page:

4

Click on the Create a Free Account button and you will be directed to the login page.

Here, enter a valid email address, toggle the I am a new user button1, and click on the

Sign In Using Our Secure Server button. From there, follow the prompts to provide a password,

name, address, phone number, other required contact information, and a credit card number.

Amazon will initiate an automated phone call to verify your information. When given the option

to choose support, select Free Support and continue.

1 Alternatively, if you already have an existing Amazon account, you can login with those credentials and enable it

to use AWS services.

5

From this point, you should be able to access the AWS management console, which is the

jumping off point for accessing various features of the cloud environment.

Although there are many such features, for the purposes of MOVES modeling in the

cloud, we will use only EC2 (for computing resources), S3 (for data storage), and SQS (for

sending instructions to the cloud).

6

2.2 Security Credentials

Next, create an Access Key that will be needed later. From the AWS Management

Console page, select your name in the upper right corner, and click Security Credentials in the

dropdown menu that appears. You should see a page similar to the following.

7

Click the plus sign next to Access Keys to expand its submenu, and click the blue Create

New Access Key button. When prompted, click Show Access Key to reveal your new Access Key

ID and Secret Access Key. Copy these to a file on your local system, and keep them safe for

later. Note: these credentials are very important, and must be stored securely! Using them,

anyone can start an instance that would be billed directly to your account.

After creating the Access Key, you can move on to setting up modeling scenarios on a

local computer using Perl scripts. (You will return to the AWS interface later when it’s time to

execute model runs.)

2.3 Other Considerations

Instead of credit card billing, you may wish to set up billing via Purchase Order or other

mechanism. Unfortunately, this is not possible using the AWS billing interface. If needed,

contact Amazon support directly to request alternate billing arrangements.

8

3.0 Initial Scenario Setup

This section describes setup and QA of required software, scripts, and input data on the

user’s local machine prior to any processing in the Amazon cloud environment. Software version

numbers listed below are current as of December 2015; when installing software, use the latest

version available.

3.1 Required Software, Data, and Code

To prepare MOVES runspecs for execution in the cloud, along with other supporting

files, the user needs to install the most recent version of MOVES2. If not already installed, the

MOVES setup program will prompt the user to acquire both MySQL3 and the Java JDK4. Along

with these programs, users should download ActivePerl5 in order to execute many of the

included Perl scripts, and the MySQL Workbench6 to be able to manually view databases and

tables during QA. Users can follow default prompts during installation of all software listed

above.

In addition to the above, there are a number of other files needed to prepare and execute

MOVES runs scripts in the cloud environment. These will be discussed further in the sections

that follow. Several have been included in the electronic appendix to this report, but others will

need to be obtained from EPA staff. These files include the following:

 Files Provided in Appendix

– Perl Scripts and their associated input files listed in Section 3.2

 Files Requested from EPA

– Representative County Databases (CDBs)

– LEV Databases

– MOVES-Specific Amazon Machine Image (AMI)

– JAR files

 MOVES Code

 MOVES Databases

 Postprocessing Code

2 Available at http://www3.epa.gov/otaq/models/moves/. Current version is MOVES2014a.
3 Available at https://dev.mysql.com/downloads/mysql/. Current version is 5.7.10.
4 Available at http://www.oracle.com/technetwork/java/javase/downloads/index.html. Current version is 8u66.
5 Available at http://www.activestate.com/activeperl/downloads. Current version is 5.22.0.2200.
6 Available at https://dev.mysql.com/downloads/workbench/. Current version is 6.3.6.

http://www3.epa.gov/otaq/models/moves/
https://dev.mysql.com/downloads/mysql/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.activestate.com/activeperl/downloads
https://dev.mysql.com/downloads/workbench/

9

3.2 File System Organization

As defined by EPA staff, in the context of MOVES scenario execution, a project is “a set

of runs that use the same representative counties and the same met[eorological data]” as input.

The runs can involve different calendar years or control strategies so long as each project is

connected to a single execution of the Runspec Generator script (discussed below). A batch is a

subset of a project, and is usually delineated by a combination of county and month. For

example, a single batch might involve inputs for Harris County, TX, in the month of July.

Further, a job is a subset of a batch, and consists of individual MOVES runspecs, which are

often separated according to temperature regime or process type. In the included example, you

will examine a single project, with 570 batches, each containing between 75 and 150 jobs.

It is often easiest to start create a project by using scripts and inputs from an existing

project. Copy the example files from the attached electronic appendix and note both the provided

files and the directory structure. Required files as input for MOVES runspec generation include

the following:

 Perl Scripts, which are run in the following order and are discussed in more detail

in the sections that follow:

– RepCnties.plx

– runspec_generator_v0.33_26Mar13.plx

– LoadZmh.plx

– CreateandPopulateAmazonDirStructureSmokeMoves.plx (referred to as

CreateandPopulate below)

– CreateBatchFilesForAmazonRunsSmokeMoves.plx (referred to as

CreateBatchFiles below)

 Under subdirectory SampleRunSpecs, three text files that identify pollutants and

processes to be used in creating the RatePerDistance (RD), RatePerProfile(RP),

and RatePerVehicle(RV) runspecs, each of which are included as job types in a

given batch.

 Under subdirectory PerlScripts, two scripts called by other scripts in the process.

 Various inputs required for previously mentioned Perl scripts:

– RepCounty text file, which contains a list of counties and an 8-digit date

of their associated representative county database (CDB)

– Met4moves input files, obtained from EPA

10

– Zonemonthhour (zmh) files, created by the runspec generator script and

used by LoadZmh

– Empty csv tables, used by the runspec generator and provided here

– RunSpecGenControl, provided here and modified by the user to reflect the

project

The Perl scripts and supplemental files described above are used to create the files listed

below, which are the direct inputs for MOVES execution in the cloud. They include the

following:

 RunSpecGenOutput

 Under subdirectory InputDatabases

– Representative county databases – these 284 counties were chosen by EPA

as being representative for the entire US. The databases include many

MOVES inputs that are county specific, including IM, fleet distributions,

VMT, activity data, and a variety of other data.

– LEV Databases - required for modeling the effects of LEV in counties

where it applies. Includes updates to the MOVES emissionratebyage table.

– Other user supplied databases. This could be modifications to any input

desired by the user. In the case of the included example, modifications to

the fuelsupply table were made and are included.

 Under subdirectory AmazonStructure

– A subdirectory for each project

 A 0scripts subdirectory containing batch files, created by the

Create Batch File script, for interaction with the cloud environment

 A subdirectory containing project databases to be uploaded to the

cloud

 A subdirectory for each batch

 A subdirectory containing batch databases to be uploaded

to the cloud

 A subdirectory for each job associated with a particular

batch

 A runspec and input database for each job

In addition, execution of the scripts requires files in an additional \amazon folder in your

MOVES directory. This folder contains commands specific to interacting with the cloud

environment, and must be requested from EPA.

11

3.3 Perl Script Execution

3.3.1 RepCnties Script

Start by modifying the RepCnties.plx script. Open it in a text editor (for example,

Notepad++ or UltraEdit). You will need to edit the lines listed below to reflect appropriate

project name, calendar year, and directory paths for your project. Variables are denoted in Perl

with the $ operand, and five variables of interest in RepCnties.plx are listed in the sample below.

Note carefully the double backslash syntax (“\\”) within quotes; this is necessary for Perl to

interpret the paths correctly. Note that most paths can be on a network drive if desired, so long as

it is mapped appropriately.

$project='2013-MOVES2014a';

$year=2013;

$filedir="P:\\EPA_MOVES_3-04\\$project\\SmokeMovesRunSpecGenerator_2013-MOVES2014a";

$repcdblist="P:\\EPA_MOVES_3-04\\$project\\285RepCos2013_M2014_20151103.txt";

$output="RunSpecGenRepCnties_$project.txt";

Save your changes, and open a command window (to do this, press Windows-R, type

cmd in the open dialog, and press Enter). Using the Windows cd command, navigate to the

directory where RepCnties.plx is located, type perl RepCnties.plx, and press Enter. The

program will run, and produce a RunSpecGenRepCnties text file. This file will be used in

execution of the next script.

3.3.2 RunSpecGenerator Script

The runspec_generator_v0.33_26Mar13.plx script itself does not require any

modification. Rather, you will provide as input to it the text file produced by RepCnties, and in

addition provide a RunSpecGenControl input file. This control file consists of the following

lines:

DBHOST = localhost

BATCHRUN = 2013-MOVES2014a

OUTDIR = P:\EPA_MOVES_3-04\2013-MOVES2014a\SmokeMovesRunSpecGenerator_2013-

MOVES2014a\RunSpecGenOutput_2013-MOVES2014a\

MOVESHOME = C:\EPA\MOVES\amazon20130603

MODELYEAR = 2013

POLLUTANTS = OZONE,PM,TOXICS,GHG

DAYOFWEEK = WEEKDAY, WEEKEND

METFILE = P:\EPA_MOVES_3-04\2013-

MOVES2014a\met4moves\MOVES_RH_DAILY_2013ej_v6_13i_12US2_2013001-2013365.txt

RPMETFILE = P:\EPA_MOVES_3-04\2013-

MOVES2014a\met4moves\MOVES_DAILY_2013ej_v6_13i_12US2_2013001-2013365.txt

12

Of interest here are the BATCHRUN, which should reflect your project name; the

OUTDIR, which should point to a directory for RunSpecGenerator output; the MODELYEAR,

which is not actually a model year but should instead reflect a calendar year of interest; and the

METFILE and RPMETFILE, which should point to your met4moves data obtained from EPA.

Do not modify the other parameters in this example. Edit the file as needed in a text editor and

save your changes. To execute the script, use a command window to navigate to its location, type

perl runspec_generator_v0.33_26Mar13.plx [RunSpecGenControl]

[RunSpecGenRepCnties] and press Enter, where the two bracketed values are the names of

your particular input files – no brackets are required at the command prompt. This program will

take some time to complete, on the order of several hours. In this example 568 batches,

containing more than 50,000 runspecs, will be generated. When complete, the program will

generate runspecs in the OUTDIR folder, along with associated zonemonthhour files, as well as

other XML and batch files that are unused in this example.

13

3.3.3 LoadZMH Script

Next, open the LoadZMH.plx file in a text editor, and edit the lines listed below to reflect

appropriate project name, calendar year, and directory paths for your project. Again, be mindful

of the double backslash convention in Perl.

$project='2013-MOVES2014a';

$year=2013;

$mysqldata="\"C:\\ProgramData\\MySQL\\MySQL Server 5.6\\data\"";

$homedir="P:\\EPA_MOVES_3-04\\2013-MOVES2014a\\SmokeMovesRunSpecGenerator_2013-

MOVES2014a";

$repcdblist="P:\\EPA_MOVES_3-04\\2013-MOVES2014a\\285RepCos2013_M2014_20151103.txt";

$mvdroutput="$homedir\\RunSpecGenOutput_2013-MOVES2014a";

$mvdroutputlocal_backslash="C:\\a\\${project}_runspecgenoutput_zmh";

$mvdroutputlocal_fwdslash="C:/a/${project}_runspecgenoutput_zmh";

$zmhdbs="$homedir\\2013-MOVES2014a_zmh";

Note that the mvdroutputlocal variables denote a directory on your local machine where

ZMH files will be copied before input to your local MySQL installation.

Save your changes to the script, and execute it using a command window by navigating

to its location, typing perl LoadZMH.plx, and pressing Enter. This script takes some time to

execute, usually on the order of hours, since the system is creating many thousands of small

ZMH databases for each job to be modeled. Per the EPA documentation, “the total number of

databases produced should equal the number of zmh.csv files. This number is also the number of

jobs that will be produced and run.” Do a quick QA check at this point to ensure the number of

databases output is what you expect. If not, check your input parameters for typos, and examine

and Perl errors that might have occurred.

3.3.4 CreateAndPopulate Script

Initially, you will want to run the CreateAndPopulate script in a modified fashion, to

generate a set of jobs for a single batch. In this way, you can carefully QA the created runspecs

to make sure they include all of the desired model options, and also execute a runspec locally to

catch any errors in our inputs that might otherwise be missed. This is an important step – if it is

ignored, you may end up wasting time having to recreate the entire set of batches.

14

To start, open the CreateAndPopulate script, and edit the lines below to reflect project,

years, and paths as appropriate:

$project='2013-MOVES2014a';

$year=2013;

$vers=20151106;

$repcdblist="285RepCos2013_M2014_20151103.txt";

$case="$project"; # for when the case does not include a scen & year

$casevers="${case}-${vers}";

$casepath="P:\\EPA_MOVES_3-04\\$project\\AmazonStructure\\$casevers";

$dbdir="P:\\EPA_MOVES_3-04\\$project\\InputDatabases";

$runspecgenyear=2013; # This can be different from $year

$fuelsdb='M2014a_fuelsupply';

$cdbdir="P:\\EPA_MOVES_3-04\\$project\\InputDatabases\\2013RepCos_20151103";

$zmhoutput="P:\\EPA_MOVES_3-

04\\$project\\SmokeMovesRunSpecGenerator_$project\\${project}_zmh";

$rdrunspectemplate='samplerunspecs\\RDCB05CB6NEI_2013_core.mrs';

$rprunspectemplate='samplerunspecs\\RPCB05CB6NEI_2013_core.mrs';

$rvrunspectemplate='samplerunspecs\\RVCB05CB6NEI_2013_core.mrs';

Next, search CreateAndPopulate for the string “diag”; There are three lines in the script

containing this string (see below), and each has a leading pound character (#) that denotes a

comment. Delete the leading pound character from each of these lines. This will limit the

creation of runspecs by the script to a single county, month, and job.

Save your changes to the script, and execute it using a command window by navigating

to its location, typing perl CreateAndPopulate.plx, and pressing Enter. Verify that the program

has generated output for a single job in the AmazonStructure folder; if it hasn’t, make corrections

to the script and try again. Once you’re successful creating a single runspec, once again edit the

CreateAndPopulate script, this time re-inserting a leading pound character on the following line

of code, like so:

if($jobcount>1){last;} # Limit to one job for diagnostics

Re-run the script. This time, all of the RD, RP, RV runs for a single batch will be created.

Navigate to the batch output directory and verify the runspecs exist. Select one runspec each

from RD, RP, and RV and open them in a text editor for QA. Examine them carefully to ensure

the inputs are correct, especially the calendar year, list of sourcetypes, pollutants/processes/fuels,

and calls to any external databases.

15

3.4 Local QA

Next, verify that the runspecs generated by the script can be correctly interpreted and

processed by MOVES itself. Select a single RP runspec and copy it to your local machine (if it’s

not already there), along with its required input databases. Open the MOVES GUI and load the

runspec. All of the checkmarks in the GUI should be green; if not, examine them further by

drilling down into the inputs to determine the cause of the problem.

Execute the RP runspec and wait for it to complete, which should take a few minutes.

When it is finished, take a look at the output database. Does the moveserror table contain any

entries? Is the rateperprofile table populated with data? Does the movestablesused table correctly

list databases that were used during the run?

If desired, you can also perform similar QA on the RV and RD runspecs, although if the

RP passes QA, it is likely the others will as well. Generally, it is best to start with an RP run

since its execution time is relatively short, especially compared to RD which can take several

hours.

Once local QA is complete, edit the CreateAndPopulate script a final time, this time re-

inserting leading pound characters on the following two lines of code, like so:

#if($cntycount>1){last;} # Limit to one county for diagnostics

#if($monthcount>1){last;} # Diagnostic limit to one month

This will enable the script to generate output for all county and month combinations.

3.5 Full Runspec and Batch File Generation

Now you are prepared to generate all of the runspecs necessary to support output for

SMOKE MOVES. As before, run the CreateAndPopulate script you just edited above. In

addition to creating runspecs, the script also compresses them, along with their associated input

databases, into .jar files (which are functionally the same as .zip files, and can be examined with

any archive software7). In the included example, this process takes about a day of processing

time.

Finally, you must create a series of batch files that will allow our local file system to

more easily interact with the AWS cloud environment. Open the CreateBatchFiles script, and

edit the lines below to reflect project, years, and paths as appropriate. Many of these variables

will be similar, or even identical, to variables from CreateAndPopulate.

7 The freely available 7zip file archiver, downloadable at http://www.7-zip.org/, is recommended.

http://www.7-zip.org/

16

$project='2013-MOVES2014a';

$year=2013;

$vers=20151106;

$movescode='20151028';

$mddb="movesdb20151028";

$codebucket="moves_code_bucket";

$dbbucket="moves_db_bucket";

$repcdblist="285RepCos2013_M2014_20151103.txt";

$casepath="P:\\EPA_MOVES_3-04\\$project\\AmazonStructure\\$casevers";

$casepathp="P:\\\\EPA_MOVES_3-04\\\\$project\\\\AmazonStructure\\\\$casevers";

$accesskey='ABCDEFGHIJKLMNOPQRS';

$secretkey='Abcdefg1234567!@#$%^&Abcdefg1234567!@#$%';

Of particular interest are the bolded variables above. movescode and mddb will reflect

the version of the MOVES code and MOVES databases provided by EPA, and will be discussed

further in the following section. codebucket and dbbucket are names for the Amazon buckets

where the MOVES code and database, will be stored, respectively. Note carefully that these

buckets must have names that are unique across all of AWS. The accesskey and secretkey are

text strings generated during the creation of your account. And allow for direction connection to

AWS via batchfiles.

Once editing is complete, save changes and execute CreateBatchFiles using a command

window by navigating to its location, typing perl CreateBatchFiles.plx, and pressing Enter.

This script runs very quickly, and generates a number of different batch files in the

AmazonStructure/[Project]/0scripts directory (not all of which you will use). Batch files of

interest to this example are discussed in the following section.

17

4.0 Execution of MOVES in the AWS Cloud Environment

This section describe the process of uploading and executing MOVES batches generated

locally, along with QA, post-processing, and downloading of model results.

4.1 Amazon AWS Options and Setup

Section 2 above discusses creation of security credentials associated with your Amazon

account. Beyond that, there is some additional one-time setup that must take place prior to

proceeding with uploading and executing MOVES runs.

First, login to your account. You should be presented with the AWS management

console. Click on EC2 to switch to the EC2 management console. You should see a screen

similar to this:

18

In the EC2 dashboard on the left hand side of the screen, click Elastic IPs, then the

Allocate New Address button. Make sure the drop down menu reads EC2, and click Yes,

Allocate, as pictured below. When the confirmation popup window appears, click Close. This

will create a new IP address for you to access your instances.

19

Next, click Key Pairs in the EC2 dashboard, and click the blue Create Key Pair button.

Give the key a name, and click Create. The system will prompt you to download and save a .pem

file to your local system. This file is used to directly login (via SSH) to instances you’ve created,

usually during QA or troubleshooting. Without it, you will be able to start instances, but not

login to them, so be sure to store it securely.

20

Next, click Security Groups in the EC2 Dashboard, and click the blue Create Security

Group button at the top of the page. Provide a security group name and description, and select

the VPC option. Under the inbound tab, click the Add Rule button, and select SSH under the

Type dropdown menu. Under Source, select My IP, and the field will be automatically

populated. When finished, the dialog should appear similar to the figure below. Click the blue

Create button to finish. These settings will ensure that only someone using your IP address, with

the SSH protocol, will be able to connect to the instances you create later.

21

Finally, click Limits in the EC2 Dashboard. There are a few limit increase requests to

make here, in order to run a sufficient number of simultaneous instances. EPA generally selects

the c4.large instance type, since it provides sufficient computational power and RAM to

complete batches in a few days’ time8. As an example, scroll down under the Instance Limits

subheading, find the “Running On-Demand c4.large instances” item, and click Request Limit

Increase. This will open a new browser window under the AWS Support Dashboard. Scroll

down the page and fill in the drop down menus as needed. An example of a request for an

increase in the limit of c4.large instances to 600 is shown below.

In addition to the above, you will probably want to increase both Provisioned IOPS

(SSD) volume storage and General Purpose (SSD) volume storage, listed under the EBS Limits

subheading, from 20 TiB to 50 TiB, since files associated with SMOKE-MOVES input

generation can be quite large. You may wish to make limit increase requests for other type of

instances to meet your specific needs.

Finally, you will need access to a specific Amazon Machine Image (AMI) to run properly

run MOVES in a cloud environment. An AMI is analogous to the operating system on your local

machine. As mentioned in the previous section, you will also need .jar files containing MOVES

code, its associated database, and post-processing code. All of these items will need to be

obtained from EPA by request.

8 For more information on AWS instance types, including available CPUs, RAM, and costs, see

https://aws.amazon.com/ec2/pricing/

22

4.2 Uploading and Adding Jobs

Before any files can be uploaded to your AWS account, you need to create three buckets

for storing data – one for the MOVES code, one for the database, and one for the batch input and

output files. Although this can be done via the AWS web interface, it is easier to accomplish

using the freely available S3 Browser9. Several screenshots in the section that follows will

display the S3 Browser GUI.

To create the buckets, open the S3 Browser and first add your AWS account. Under the

Accounts menu, click Add New Account, populate the fields shown, and click the Add New

Account button.

Next, click the New Bucket button and in the prompt that follows, give your bucket a

name that matches the project name specified in the Perl scripts earlier, and also ensure that the

region matches the one where you created your account. Do this again for your MOVES code

9 Download from http://s3browser.com/download.php

23

bucket and database bucket, again being careful to provide names that match those in the

previous Perl scripts.

24

Now upload the MOVES code and database jars obtained from EPA to your newly

created buckets via the S3 Browser GUI.

25

Having created buckets in the Amazon account, you are almost ready to begin uploading

batches. Before you can do that, however, you must create queues using Amazon’s Simple

Query Service (SQS). These queues allow you to pass commands to the Amazon environment,

including upload, download, execution, and several other operations. Do this by navigating to the

\0scripts directory generated by CreateBatchFiles.plx on your local machine, and double clicking

the CreateQueues.bat file. A DOS window will appear with status messages while your local

machine communicates with Amazon. Don’t close this window until the “Press Any Key to

Continue” message appears, which should take less than a minute. Once created, you should be

able to see the empty queues via the AWS web interface under the SQS Management Console, as

presented in the example below.

Now that the queues are created, you can upload the jobs from your local machine to the

cloud. Do this by double clicking the UploadJobs.bat file in the \0scripts directory. Again, a DOS

window will appear, but this operation will usually take several hours to complete. You can

monitor the status of uploaded files via the log that UploadJobs.bat creates in the 0scripts

directory, or by opening S3 Browser and refreshing the view of the project bucket.

Another way to monitor the progress of the upload process (as well as adding, executing,

and downloading jobs later on) is to use the BatchStatus.bat file. This program takes about 15

minutes to run, and checks status files created by the Amazon batch files during execution. When

complete, it creates a batchstatus.csv file that can be opened in Microsoft Excel, as in the

example below. (Note how batches are usually identified by combinations of county and month,

for example, 01073_1, where jobs are identified by additional RD/RV/RP text and associated

temperature regime.)

A job that has been successfully uploaded will be marked as such in the appropriate

column (with similar results for the other functions tracked by the program). When checking for

batches or jobs that may have failed during upload, you can filter the spreadsheet for blank

26

values as shown. Any blank values reflect that the job has either not yet been processed, or has

failed; in the latter case, more investigation is required to determine the cause of the failure.

Once your batches have been successfully uploaded to Amazon S3, the next step is to add

those batches to the queue for processing. Do this by navigating to the \0scripts directory and

double clicking the AddJobs.bat file. This script takes a few hours to run, depending upon the

number of batches you have prepared and the speed of your local computer. You can check its

progress by monitoring the AddJobs.log file, or by opening the SQS management console and

reviewing the Messages Available column in the jobs queue (which you can refresh in real time).

Adding jobs is complete when the DOS window disappears, and the number of messages

available is equal to the number of batches you have prepared. You can also use BatchStatus.bat,

as described above, to monitor progress.

Once batches are uploaded and queued, you are ready to start Amazon instances to

execute MOVES runs in the cloud environment.

27

4.3 Creating Instances

To process your batches, start at the EC2 management console page and click the Create

Instance button. You will be directed to Step 1 of the instance creation page. In the left-side

frame, click My AMIs, and toggle the checkboxes as shown below, to include Ownership: Shared

with me and Architecture: 64-bit. This will filter the available AMIs to the particular MOVES

AMI shared with you by EPA. Click the blue Select button.

28

At Step 2, filter the instances by Compute Optimized, and click the box corresponding to

the c4.large instance type. (This is for the purposes of the included example; you may of course

choose another instance type as needs dictate.) Click the grey Next: Configure Instance Details

button in the lower right corner.

29

At Step 3, there are several important parameters to configure. The number of instances

you can would like to execute in a subnet net at once (first red arrow) is limited by the number of

IP addresses available, so your choice must be less than or equal to the limit. This number is

usually 251 if no other instances are currently running; if you need to run more than 251

instances concurrently, as EPA does, you will need to repeat this process a few more times,

creating groups of instances in different subnets. (Eventually, you need to generate as many

instances as you have messages in the jobs queue.)

Populate the other options as shown. Many of these values are defaults, with the

exception of Shutdown Behavior, which should be changed from “Stop” to “Terminate”.

30

Next, scroll down to the bottom of the page and click the arrow next to Advanced Detail

to expand its submenu. You need to paste some configuration text into the text box shown; this

text is available in the \0scripts directory in the file TextToStartInstance-MOVES.txt. Open

this file in a text editor, and copy its entire contents to the text box at the bottom of the Step 3

page. It should look similar to the figure below. Click the grey Next: Add Storage button.

31

On the Step 4 page, you need to increase the default size in GiB from 48 to 100. If you

don’t, MOVES may get hung up during its activity generator process and fail to proceed –

although your instance will not terminate, so you will continue to incur charges! Click the grey

Next: Tag Instance button.

32

At Step 5, populate the Value field to assign a name to the instances generated. It can be

useful to provide a fair amount of descriptive information here, including date and time, for the

purposes of QA later. Click the grey Next: Configure Security Group button.

33

At Step 6, click the radio button next to Select an existing security group. The security

group that you created during initial account setup will appear (in this example, OnlySSH). Click

the box next to that group, and then click the blue Review and Launch button in the bottom right

of the page.

34

At this point, you’re almost ready to launch the instances10. On the Step 7 screen, review

all of the choices you’ve made during steps 1 through 6. If you need to make changes, you can

go back and do so. After you’ve carefully check the instance options, click the blue Launch

button. Amazon will begin creating instances, and you will be presented with a wait screen

during this process. After creation, you can return to the EC2 management console, where all of

the instances and their status will be displayed. Below is an example of what to expect once

instances have been running for 1-2 days. You can see that some instances are still ongoing,

while a few have completed. All told, the MOVES batches typically take between 36 and 72

hours to complete using the c4.large instance type.

You can also verify, via the SQS management console, that messages in the queue are

being “picked up” by your newly created instances. If you repeatedly click the Refresh button on

10 If this is the first time you’re starting instances associated with a particular project or scenario, you may want to

consider launching only a single instance to see whether it will execute successfully, before executing all available

batches. Doing so can avoid excess EC2 charges.

35

this page, you should be able to see the “Messages Available” transition to “Messages in Flight”

in real time; the number of messages in the jobs queue should decrease to 0, while the number of

messages in the stats queue increases rapidly.

4.4 Downloading Initial Results and QA

When each batch is processing in the cloud environment, there are multiple RD, RV, and

RP runspecs that are executed in sequence. This means that although a particular instance may

not have finished yet, after several hours it will begin to generate output files. You can monitor

the status of your batches by viewing outputs generated to date using the S3 Browser. You can

also run the DownloadResults.bat file in the \0scripts folder, which will download the

results*.jar files associated with each job, which contain compressed MOVES logs. After

running DownloadResults, which can take several hours in some cases, BatchStatus can then be

run to view how many jobs in each batches have been complete. In fact, EPA recommends

running the RepeatDownloadResults.bat program a few hours after starting instances; this

program repeats the download process 100 times, and can help to save time by accessing job

outputs as they complete, rather than waiting to download the results all at once.

After the instances have completed execution and results have been downloaded, run

BatchStatus a final time to verify that all batches are complete. If any are not, make note of them.

Then, open a DOS command window, navigate to the \0scripts directory and execute the

QA1MovesOslogLogqueue.plx perl script at the command prompt. This script takes a few

minutes to run. When it completes, read the output file it generates into Excel, and use the Text

to Columns wizard to split the text based on spaces. EPA recommends checking that the total

count of jobs is correct, and that the number of generated bundles is equal to retrieved bundles

for all jobs. If not, you will need to check your inputs to determine where the problem lies.

(Note that it is also possible for batches to fail due to Amazon errors, and not because of errors in

the inputs themselves!)

Next, execute the QA2MovesOslogLogqueue.plx perl script at the command prompt.

Wait a few minutes for it to complete, and review its output. This script searches for the string

"RUN_ERROR:" in the MOVES logs, but excludes the string "RUN_ERROR: Warning:", and is

intended to detect failures that don't cause a job to stop. MOVES output can pass QA1, but fail

QA2, so it is important to run both.

At this point, if any batches have failed, you have likely detected them by use of

BatchStatus or either one of the QA scripts above. These batches will need to be rerun, but many

times a batch will not fail completely; rather, a few jobs will succeed before the instance

36

encounters a problem. In order rerun only the jobs that have failed, and not the entire batch, you

can use the Readdjobs.bat file. This file contains by default all batches, but you only want to re-

add those batches that have failed. Open the file in a text editor, and either “comment out” lines

corresponding to batches you don’t wish to re-run by adding the text “rem “ at the beginning of

the line, or delete the line entirely. Save the Readdjobs with a slightly different name so as not to

overwrite the original, and execute your newly edited batch file by double clicking it. At this

point, you will repeat the process described above of monitoring jobs added to the SQS queue,

adding instances to process them, downloading their logs and otherwise monitoring their

progress.

4.5 Post-processing MOVES results into SMOKE-MOVES format

Once all of the MOVES batches are complete and have been quality assured, the final

step is to post-process MOVES outputs into a format useable by SMOKE-MOVES. This process

is similar to that described above in sections 4.2 and 4.3, so it will not be repeated in detail here.

Rather, significant differences in the processing will be highlighted below.

Post-processing consists of the following steps:

 Use AddPostProcess.bat to add messages to the SQS post queue, which will use

the MOVES post-processing code (provided by EPA in a .jar file, which you

uploaded previously). No uploading of data is required here, since the program

will be using MOVES output already present in the S3 project bucket.

 Create and launch instances as before, using similar options. One important

exception is that you should use the text from the TextToStartInstances-post.txt

file during Step 3 of the instance configuration. These batches typically take only

about 30-60 minutes to complete.

 If any post-processing batches fail, edit and run Readdpostproc.bat as necessary.

As the post-processing batches complete, you will notice output files in the S3 Browser. These

files are usually between 100 and 300 MB in size. The outputs can be downloaded automatically

using Downloadpostresults.bat, or manually using the S3 browser.

37

5.0 Troubleshooting

This section presents additional information that may be helpful when troubleshooting

instances that have failed or are non-responsive.

5.1 Tips and Tricks

There are a few other items to keep in mind as you work through the modeling process.

 Amazon has set a hard limit of 100 S3 buckets per account. To create more, you

will have to delete existing buckets.

 If you don’t see your instances or any other settings when logging in from a new

system, make sure you have chosen the proper region (e.g., N. Virginia).

 Be careful not to run multiple Perl scripts or batch files at once, as this can cause

undesirable behavior. For example, one script may log out of your account before

the other script completes, causing errors. Proceed systematically through

execution of scripts and batch files.

 Become familiar with the format of the batch files. Once you are comfortable with

how they work, it is often useful to edit them during the QA process to allow for

uploading, adding, and running single batches.

Note that it is not uncommon for AWS instances to fail. In fact, you can expect a failure

rate of about 5% in general. There are a number of possible reasons for these failures, including

the following:

 Sometimes batches may not be picked up from the SQS queue at all. In this case,

create a new instance for each job remaining.

 Some batches may fail midway through. In this case, use the Readdjobs batch file

to process only the jobs that remain instead of starting the entire batch over from

the beginning.

 Instances may immediately fail without any warning or error messages. If this

happens, check to see if your instance and/or storage limits have been exceeded.

38

 Amazon may not have enough capacity for the instance type you have selected.

You can either wait for Amazon to free up additional capacity, try a different

instance type, or create instances in a different subnet.

 On occasion, during post-processing, instances may complete their calculations

but fail to write out data, and “freeze up” without terminating. One work-around

for this problem is to create a new bucket specifically for post processing, copy

the MOVES database output to that bucket, edit your batch files to point to the

new bucket, and re-run the post-processing there.

39

5.2 Lifecycle

The following is taken directly from Section 5.2 of Faler’s Running MOVES on Amazon, and

presents the sequential lifecycle of a project in the cloud environment. It’s a useful summary of

the entire process that can be used as a quick reference.

The overall steps for processing MOVES jobs on Amazon that use post processing are:

• An Amazon SQS queue is created to hold job processing commands.

• An Amazon SQS queue is created to hold status messages.

• MOVES code is placed into a JAR file.

• The MOVES code JAR is placed into an Amazon S3 bucket.

• A MOVES default database is placed into a JAR file.

• The default database JAR file is placed into an Amazon S3 bucket.

• JAR files are created for each job.

o A JAR file is created for each job. This file contains the job's runspec (.mrs file) and

input databases, if any.

o A JAR file is created for the batch-level input databases, if any.

o A JAR file is created for the scenario-level input databases, if any.

• The JAR files are uploaded to a single Amazon S3 bucket.

• After all JAR files for jobs in a batch have been uploaded, a command to process all jobs in a

batch is placed into the command queue.

• One or more Amazon EC2 instances are started to process the commands. These instances are

given the SEPARATERESULTS=1 flag in their instance data.

• The status queue is polled for messages originating from the EC2 instances.

• Job result JAR files are downloaded from an Amazon S3 bucket. These JAR files contain only

the log files.

• Result JAR files and job JAR files are deleted from the bucket. Database result JAR files

remain undownloaded in the bucket.

• The result JAR file's contents are extracted, including only log files.

• Operating system log files are duplicated and placed into the batch's logqueue directory for

automated scanning.

• Amazon EC2 instances shutdown automatically after processing all jobs in a batch.

• An Amazon SQS queue is created to hold post processing commands.

• An Amazon SQS queue is created to hold post processing status messages.

• Post processing code and required databases are placed into a JAR file.

• The post processing code JAR is placed into an Amazon S3 bucket.

• A command to post process all jobs in a batch is placed into the post processing command

queue.

• One or more Amazon EC2 instances are started to process the commands. These instances are

given the JOBCOMMAND=batchpostprocess flag in their instance data.

• The status queue is polled for messages originating from the EC2 instances.

• Batch result JAR files are downloaded from an Amazon S3 bucket. These JAR files contain

batch-level post processing results and log files.

• No result JAR files are deleted from the bucket.

• The result JAR file's contents are extracted.

• Operating system log files are duplicated and placed into the batch's logqueue directory for

automated scanning.

• Amazon EC2 instances shutdown automatically after processing all jobs in a batch.

40

5.3 Logging into Instances

Sometimes the only way to diagnose problems with a particular instance is to login to it

directly. This can be done by using the free WinSCP11 software package, which allows you to

connect to an Amazon instance directly using the private key credentials (in .pem format) created

earlier.

Before you can access an instance, you must first import your credentials into WinSCP.

Download, install and open WinSCP. At the bottom right, click the Tools button and Select Run

PuttyGen.

In the new window that appears click Conversions and select Import Key. You will be

presented with a Windows open file dialog; navigate to the .pem file you created earlier during

account setup and click Open.

11 Available at https://winscp.net/eng/download.php. Current version is 5.7.6.

https://winscp.net/eng/download.php

41

42

 The window will populate with information on your key. Click Save Private Key, give

the key a name in the file dialog, and close the window.

Next, at the main WinSCP window, again click the Tools button, but this time select Run

Pageant. A small blue computer icon will appear in your system tray. Right click this icon and

select View Keys.

43

At the next window, click the Add Key button and navigate to the .ppk file you just

created in the previous step. You should see a screen similar to this one.

Having imported your credentials, you can now prepare to login to an Amazon instance.

To determine the IP address of the instance of interest, open the EC2 management console and

click the blue button next to the chosen instance. Descriptive information about the instance will

appear; find the Public DNS value, highlight it, and copy it.

44

 Now return to the main WinSCP window and paste the public DNS into the Host Name

field. For the User Name, enter “ec2-user”. No password is required here since you have already

provided credentials via private key. Click Login.

45

When prompted to add an unknown server’s host key to a cache, click yes. Next you’ll be

presented with an FTP environment, with your local machine on the left side of the screen and

the Amazon instance on the right. Use the icons to navigate to the /home/moves/amazon

directory in the instance as shown.

From here, you can download several different log files to assist you in diagnosing

instance failures by double clicking on their file names. Logs of interest include:

 amazonbootcore.txt, which lists jobs that have been executed

 dojobcore files, which are logs of MOVES progress

 movesamazon.log, which lists files retrieved and stored by the instance

 toplog.txt, which is a periodic dump of the Linux top command, which displays

CPU usage, memory usage, and running processes with the most recent at the

bottom.

From this point forward, you’re on your own. Please review the electronic appendix

carefully for further details and example files. Good luck!

46

47

APPENDIX A: Scripts and Examples

Provided electronically

