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1.0 Overview 

ERG has been using the cloud to prepare on-road emissions for EPA's National 

Emissions Inventory (NEI) and other national inventories for rulemaking analyses. Many 

computationally-intensive MOVES runs are required, and the cloud environment provides a 

relatively inexpensive source of abundant computing resources. The MOVES runs required for 

SMOKE-MOVES cover many individual counties and months, and are independent of each 

other, making this application an ideal candidate for parallel computing. As an example, ERG 

recently ran MOVES in the cloud for an EPA scenario that used 568 separate Amazon Web 

Services (AWS) computing instances, corresponding to combinations of 284 unique counties for 

a summer and winter month. This included tens of thousands of individual MOVES runspecs. By 

running 570 instances in parallel in the cloud, the MOVES runs completed within 60 hours (2.5 

days). The total processing time was about 30,000 hours, roughly corresponding to 3.5 years on a 

single machine.  

In its work, ERG has adapted a series of customized scripts originally developed by EPA 

to handle the mechanics of transferring data into and out of the cloud, organizing data, launching 

MOVES runs in the cloud, and monitoring their progress including run completion checks. EPA 

intends to make the scripts public in the future, but they are not currently user friendly. ERG has 

written this report to describe the full process in a chronological order, beginning with opening 

an account with a cloud services provider, organizing MOVES input data on a local machine, 

selecting the desired cloud environment features, transferring data to the cloud, running 

MOVES, checking results, post-processing, and downloading post-processed results that can 

then be fed into SMOKE.  

As a MOVES end user, should you consider using the cloud environment for executing 

model runs? For many users, the answer is yes. In the example mentioned above and discussed 

throughout this document, the time savings for running MOVES in the cloud vs. a single local 

machine was a factor of 500! In this case, using the cloud took an essentially impossible task and 

made it reality. While you may not have quite as many runs to do to support your own work, the 

cloud still presents an opportunity for significant time savings – a scenario requiring only a few 

hundred MOVES runspecs could still be finished in a single business day, instead of weeks. 

 In addition, the cloud environment is very cost effective. In the large EPA example 

above, combined AWS costs for processing time, data storage, and data transfer were 

approximately $5,000, with more than 90% of that cost for CPU time. (This does not include 

staff labor costs, which will vary according to familiarity with AWS and MOVES.) Compare this 
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to the costs of purchasing and running multiple MOVES servers for years at a time for a single 

scenario! Smaller workloads on the order of hundreds of runs are also quite affordable; ERG has 

executed 400 MOVES runspecs to support local emissions inventory works for AWS costs of 

less than $200. 

This report is intended to assist MOVES users with the process of executing model runs 

in the AWS cloud environment by providing step-by-step instructions, along with screenshots 

and sample files. Section 2 of this document details initial setup of an AWS account, along with 

associated security credentials. Section 3 describes the Perl scripts that must be run on a user’s 

local machine to prepare MOVES inputs prior to interaction with the cloud. Section 4 provides 

instruction on moving files into and out of the cloud, model execution, post-processing, and QA. 

Finally, Section 5 contains information on frequently encountered issues, troubleshooting tips, 

and instructions on interacting with individual AWS instances. For user reference, we have also 

included in an electronic appendix the scripts used to generate SMOKE-MOVES inputs for a 

specific scenario performed for calendar year 2013 using MOVES2014a.  

Supplemented by ERG’s experience running several MOVES scenarios in the cloud, this 

document draws liberally from two existing EPA documents:  

 Running MOVES on Amazon, Wes Faler, Fluid and Reason LLC. May 2011 

 Documentation of EPA-Side Scripts and Structure for Amazon SMOKE-MOVES, 

Harvey Michaels and David Brzezinksi, US EPA OTAQ, November 2012 

While much of the process of generating MOVES files for the cloud has largely remained 

the same since 2012, other aspects have changed – most notably, the Amazon cloud interface 

itself. We hope this document serves as a useful tool for performing MOVES runs in the cloud in 

2015 and beyond. 

The author would like to acknowledge the assistance of several individuals in preparing 

this report: 

 The authors of the documents above: Wes Faler, Harvey Michaels, and David 

Brzezinksi,  

 Other EPA staff: Alison Eyth, Alexis Zubrow, and David Choi 

 ERG Mobile Sources Modeling Team: Sandeep Kishan, John Koupal, Alison 

DenBleyker, and Doug Jackson 
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2.0 Initial Amazon Account Setup 

This section describes creation of an Amazon account to use with Amazon Web Services 

(AWS), as well as associated security credentials. Note that some items in the screenshots that 

follow are greyed out for security reasons. 

2.1 Account Creation 

Initial setup of an Amazon account for use with AWS is fairly straightforward: all that is 

needed is a valid email address, associated contact information, and a valid credit card. Navigate 

to aws.amazon.com, where you will see the following page: 
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Click on the Create a Free Account button and you will be directed to the login page. 

 
 

Here, enter a valid email address, toggle the I am a new user button1, and click on the 

Sign In Using Our Secure Server button. From there, follow the prompts to provide a password, 

name, address, phone number, other required contact information, and a credit card number. 

Amazon will initiate an automated phone call to verify your information. When given the option 

to choose support, select Free Support and continue.  

  

                                                 
1 Alternatively, if you already have an existing Amazon account, you can login with those credentials and enable it 

to use AWS services. 
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From this point, you should be able to access the AWS management console, which is the 

jumping off point for accessing various features of the cloud environment.  

 
 

Although there are many such features, for the purposes of MOVES modeling in the 

cloud, we will use only EC2 (for computing resources), S3 (for data storage), and SQS (for 

sending instructions to the cloud). 
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2.2 Security Credentials 

Next, create an Access Key that will be needed later. From the AWS Management 

Console page, select your name in the upper right corner, and click Security Credentials in the 

dropdown menu that appears. You should see a page similar to the following. 
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Click the plus sign next to Access Keys to expand its submenu, and click the blue Create 

New Access Key button. When prompted, click Show Access Key to reveal your new Access Key 

ID and Secret Access Key. Copy these to a file on your local system, and keep them safe for 

later. Note: these credentials are very important, and must be stored securely! Using them, 

anyone can start an instance that would be billed directly to your account. 

 
 

 

After creating the Access Key, you can move on to setting up modeling scenarios on a 

local computer using Perl scripts. (You will return to the AWS interface later when it’s time to 

execute model runs.) 

2.3 Other Considerations 

Instead of credit card billing, you may wish to set up billing via Purchase Order or other 

mechanism. Unfortunately, this is not possible using the AWS billing interface. If needed, 

contact Amazon support directly to request alternate billing arrangements. 
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3.0 Initial Scenario Setup 

This section describes setup and QA of required software, scripts, and input data on the 

user’s local machine prior to any processing in the Amazon cloud environment. Software version 

numbers listed below are current as of December 2015; when installing software, use the latest 

version available. 

3.1 Required Software, Data, and Code 

To prepare MOVES runspecs for execution in the cloud, along with other supporting 

files, the user needs to install the most recent version of MOVES2. If not already installed, the 

MOVES setup program will prompt the user to acquire both MySQL3 and the Java JDK4. Along 

with these programs, users should download ActivePerl5 in order to execute many of the 

included Perl scripts, and the MySQL Workbench6 to be able to manually view databases and 

tables during QA. Users can follow default prompts during installation of all software listed 

above. 

In addition to the above, there are a number of other files needed to prepare and execute 

MOVES runs scripts in the cloud environment. These will be discussed further in the sections 

that follow. Several have been included in the electronic appendix to this report, but others will 

need to be obtained from EPA staff. These files include the following: 

 Files Provided in Appendix 

– Perl Scripts and their associated input files listed in Section 3.2 

 Files Requested from EPA 

– Representative County Databases (CDBs)  

– LEV Databases 

– MOVES-Specific Amazon Machine Image (AMI) 

– JAR files 

 MOVES Code 

 MOVES Databases 

 Postprocessing Code 

 

                                                 
2 Available at http://www3.epa.gov/otaq/models/moves/. Current version is MOVES2014a. 
3 Available at https://dev.mysql.com/downloads/mysql/. Current version is 5.7.10. 
4 Available at http://www.oracle.com/technetwork/java/javase/downloads/index.html. Current version is 8u66. 
5 Available at http://www.activestate.com/activeperl/downloads. Current version is 5.22.0.2200. 
6 Available at https://dev.mysql.com/downloads/workbench/. Current version is 6.3.6. 

http://www3.epa.gov/otaq/models/moves/
https://dev.mysql.com/downloads/mysql/
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.activestate.com/activeperl/downloads
https://dev.mysql.com/downloads/workbench/
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3.2 File System Organization 

As defined by EPA staff, in the context of MOVES scenario execution, a project is “a set 

of runs that use the same representative counties and the same met[eorological data]” as input. 

The runs can involve different calendar years or control strategies so long as each project is 

connected to a single execution of the Runspec Generator script (discussed below). A batch is a 

subset of a project, and is usually delineated by a combination of county and month. For 

example, a single batch might involve inputs for Harris County, TX, in the month of July. 

Further, a job is a subset of a batch, and consists of individual MOVES runspecs, which are 

often separated according to temperature regime or process type. In the included example, you 

will examine a single project, with 570 batches, each containing between 75 and 150 jobs. 

It is often easiest to start create a project by using scripts and inputs from an existing 

project. Copy the example files from the attached electronic appendix and note both the provided 

files and the directory structure. Required files as input for MOVES runspec generation include 

the following: 

 Perl Scripts, which are run in the following order and are discussed in more detail 

in the sections that follow: 

– RepCnties.plx 

– runspec_generator_v0.33_26Mar13.plx 

– LoadZmh.plx 

– CreateandPopulateAmazonDirStructureSmokeMoves.plx (referred to as 

CreateandPopulate below) 

– CreateBatchFilesForAmazonRunsSmokeMoves.plx (referred to as 

CreateBatchFiles below) 

 Under subdirectory SampleRunSpecs, three text files that identify pollutants and 

processes to be used in creating the RatePerDistance (RD), RatePerProfile(RP), 

and RatePerVehicle(RV) runspecs, each of which are included as job types in a 

given batch. 

 Under subdirectory PerlScripts, two scripts called by other scripts in the process. 

 Various inputs required for previously mentioned Perl scripts: 

– RepCounty text file, which contains a list of counties and an 8-digit date 

of their associated representative county database (CDB) 

– Met4moves input files, obtained from EPA 
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– Zonemonthhour (zmh) files, created by the runspec generator script and 

used by LoadZmh 

– Empty csv tables, used by the runspec generator and provided here 

– RunSpecGenControl, provided here and modified by the user to reflect the 

project 

The Perl scripts and supplemental files described above are used to create the files listed 

below, which are the direct inputs for MOVES execution in the cloud. They include the 

following: 

 RunSpecGenOutput 

 Under subdirectory InputDatabases 

– Representative county databases – these 284 counties were chosen by EPA 

as being representative for the entire US. The databases include many 

MOVES inputs that are county specific, including IM, fleet distributions, 

VMT, activity data, and a variety of other data. 

– LEV Databases - required for modeling the effects of LEV in counties 

where it applies. Includes updates to the MOVES emissionratebyage table. 

– Other user supplied databases. This could be modifications to any input 

desired by the user. In the case of the included example, modifications to 

the fuelsupply table were made and are included. 

 Under subdirectory AmazonStructure 

– A subdirectory for each project 

 A 0scripts subdirectory containing batch files, created by the 

Create Batch File script, for interaction with the cloud environment 

 A subdirectory containing project databases to be uploaded to the 

cloud 

 A subdirectory for each batch 

 A subdirectory containing batch databases to be uploaded 

to the cloud 

 A subdirectory for each job associated with a particular 

batch 

 A runspec and input database for each job 

 

In addition, execution of the scripts requires files in an additional \amazon folder in your 

MOVES directory. This folder contains commands specific to interacting with the cloud 

environment, and must be requested from EPA. 
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3.3 Perl Script Execution 

 

3.3.1 RepCnties Script 

Start by modifying the RepCnties.plx script. Open it in a text editor (for example, 

Notepad++ or UltraEdit). You will need to edit the lines listed below to reflect appropriate 

project name, calendar year, and directory paths for your project. Variables are denoted in Perl 

with the $ operand, and five variables of interest in RepCnties.plx are listed in the sample below. 

Note carefully the double backslash syntax (“\\”) within quotes; this is necessary for Perl to 

interpret the paths correctly. Note that most paths can be on a network drive if desired, so long as 

it is mapped appropriately.  

$project='2013-MOVES2014a'; 

$year=2013; 

$filedir="P:\\EPA_MOVES_3-04\\$project\\SmokeMovesRunSpecGenerator_2013-MOVES2014a"; 

$repcdblist="P:\\EPA_MOVES_3-04\\$project\\285RepCos2013_M2014_20151103.txt"; 

$output="RunSpecGenRepCnties_$project.txt"; 

 

Save your changes, and open a command window (to do this, press Windows-R, type 

cmd in the open dialog, and press Enter). Using the Windows cd command, navigate to the 

directory where RepCnties.plx is located, type perl RepCnties.plx, and press Enter. The 

program will run, and produce a RunSpecGenRepCnties text file. This file will be used in 

execution of the next script. 

3.3.2 RunSpecGenerator Script 

The runspec_generator_v0.33_26Mar13.plx script itself does not require any 

modification. Rather, you will provide as input to it the text file produced by RepCnties, and in 

addition provide a RunSpecGenControl input file. This control file consists of the following 

lines: 

DBHOST       = localhost 

BATCHRUN     = 2013-MOVES2014a  

OUTDIR       = P:\EPA_MOVES_3-04\2013-MOVES2014a\SmokeMovesRunSpecGenerator_2013-

MOVES2014a\RunSpecGenOutput_2013-MOVES2014a\ 

MOVESHOME    = C:\EPA\MOVES\amazon20130603 

MODELYEAR    = 2013 

POLLUTANTS   = OZONE,PM,TOXICS,GHG 

DAYOFWEEK    = WEEKDAY, WEEKEND 

METFILE      = P:\EPA_MOVES_3-04\2013-

MOVES2014a\met4moves\MOVES_RH_DAILY_2013ej_v6_13i_12US2_2013001-2013365.txt 

RPMETFILE    = P:\EPA_MOVES_3-04\2013-

MOVES2014a\met4moves\MOVES_DAILY_2013ej_v6_13i_12US2_2013001-2013365.txt 
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Of interest here are the BATCHRUN, which should reflect your project name; the 

OUTDIR, which should point to a directory for RunSpecGenerator output; the MODELYEAR, 

which is not actually a model year but should instead reflect a calendar year of interest; and the 

METFILE and RPMETFILE, which should point to your met4moves data obtained from EPA. 

Do not modify the other parameters in this example. Edit the file as needed in a text editor and 

save your changes. To execute the script, use a command window to navigate to its location, type 

perl runspec_generator_v0.33_26Mar13.plx [RunSpecGenControl] 

[RunSpecGenRepCnties] and press Enter, where the two bracketed values are the names of 

your particular input files – no brackets are required at the command prompt. This program will 

take some time to complete, on the order of several hours. In this example 568 batches, 

containing more than 50,000 runspecs, will be generated. When complete, the program will 

generate runspecs in the OUTDIR folder, along with associated zonemonthhour files, as well as 

other XML and batch files that are unused in this example. 
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3.3.3 LoadZMH Script 

Next, open the LoadZMH.plx file in a text editor, and edit the lines listed below to reflect 

appropriate project name, calendar year, and directory paths for your project. Again, be mindful 

of the double backslash convention in Perl. 

$project='2013-MOVES2014a'; 

$year=2013; 

$mysqldata="\"C:\\ProgramData\\MySQL\\MySQL Server 5.6\\data\""; 

$homedir="P:\\EPA_MOVES_3-04\\2013-MOVES2014a\\SmokeMovesRunSpecGenerator_2013-

MOVES2014a"; 

$repcdblist="P:\\EPA_MOVES_3-04\\2013-MOVES2014a\\285RepCos2013_M2014_20151103.txt"; 

$mvdroutput="$homedir\\RunSpecGenOutput_2013-MOVES2014a"; 

$mvdroutputlocal_backslash="C:\\a\\${project}_runspecgenoutput_zmh"; 

$mvdroutputlocal_fwdslash="C:/a/${project}_runspecgenoutput_zmh"; 

$zmhdbs="$homedir\\2013-MOVES2014a_zmh"; 

 

Note that the mvdroutputlocal variables denote a directory on your local machine where 

ZMH files will be copied before input to your local MySQL installation. 

Save your changes to the script, and execute it using a command window by navigating 

to its location, typing perl LoadZMH.plx, and pressing Enter. This script takes some time to 

execute, usually on the order of hours, since the system is creating many thousands of small 

ZMH databases for each job to be modeled. Per the EPA documentation, “the total number of 

databases produced should equal the number of zmh.csv files.  This number is also the number of 

jobs that will be produced and run.” Do a quick QA check at this point to ensure the number of 

databases output is what you expect. If not, check your input parameters for typos, and examine 

and Perl errors that might have occurred. 

3.3.4 CreateAndPopulate Script 

Initially, you will want to run the CreateAndPopulate script in a modified fashion, to 

generate a set of jobs for a single batch. In this way, you can carefully QA the created runspecs 

to make sure they include all of the desired model options, and also execute a runspec locally to 

catch any errors in our inputs that might otherwise be missed. This is an important step – if it is 

ignored, you may end up wasting time having to recreate the entire set of batches. 
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To start, open the CreateAndPopulate script, and edit the lines below to reflect project, 

years, and paths as appropriate: 

$project='2013-MOVES2014a'; 

$year=2013; 

$vers=20151106; 

$repcdblist="285RepCos2013_M2014_20151103.txt"; 

$case="$project";  # for when the case does not include a scen & year 

$casevers="${case}-${vers}"; 

$casepath="P:\\EPA_MOVES_3-04\\$project\\AmazonStructure\\$casevers"; 

$dbdir="P:\\EPA_MOVES_3-04\\$project\\InputDatabases"; 

$runspecgenyear=2013;  # This can be different from $year 

$fuelsdb='M2014a_fuelsupply'; 

$cdbdir="P:\\EPA_MOVES_3-04\\$project\\InputDatabases\\2013RepCos_20151103"; 

$zmhoutput="P:\\EPA_MOVES_3-

04\\$project\\SmokeMovesRunSpecGenerator_$project\\${project}_zmh"; 

$rdrunspectemplate='samplerunspecs\\RDCB05CB6NEI_2013_core.mrs'; 

$rprunspectemplate='samplerunspecs\\RPCB05CB6NEI_2013_core.mrs'; 

$rvrunspectemplate='samplerunspecs\\RVCB05CB6NEI_2013_core.mrs'; 

 

Next, search CreateAndPopulate for the string “diag”; There are three lines in the script 

containing this string (see below), and each has a leading pound character (#) that denotes a 

comment. Delete the leading pound character from each of these lines. This will limit the 

creation of runspecs by the script to a single county, month, and job. 

Save your changes to the script, and execute it using a command window by navigating 

to its location, typing perl CreateAndPopulate.plx, and pressing Enter. Verify that the program 

has generated output for a single job in the AmazonStructure folder; if it hasn’t, make corrections 

to the script and try again. Once you’re successful creating a single runspec, once again edit the 

CreateAndPopulate script, this time re-inserting a leading pound character on the following line 

of code, like so: 

# if($jobcount>1){last;}  # Limit to one job for diagnostics 

 

Re-run the script. This time, all of the RD, RP, RV runs for a single batch will be created. 

Navigate to the batch output directory and verify the runspecs exist. Select one runspec each 

from RD, RP, and RV and open them in a text editor for QA. Examine them carefully to ensure 

the inputs are correct, especially the calendar year, list of sourcetypes, pollutants/processes/fuels, 

and calls to any external databases. 
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3.4 Local QA 

Next, verify that the runspecs generated by the script can be correctly interpreted and 

processed by MOVES itself. Select a single RP runspec and copy it to your local machine (if it’s 

not already there), along with its required input databases. Open the MOVES GUI and load the 

runspec. All of the checkmarks in the GUI should be green; if not, examine them further by 

drilling down into the inputs to determine the cause of the problem. 

Execute the RP runspec and wait for it to complete, which should take a few minutes. 

When it is finished, take a look at the output database. Does the moveserror table contain any 

entries? Is the rateperprofile table populated with data? Does the movestablesused table correctly 

list databases that were used during the run? 

If desired, you can also perform similar QA on the RV and RD runspecs, although if the 

RP passes QA, it is likely the others will as well. Generally, it is best to start with an RP run 

since its execution time is relatively short, especially compared to RD which can take several 

hours. 

Once local QA is complete, edit the CreateAndPopulate script a final time, this time re-

inserting leading pound characters on the following two lines of code, like so: 

#if($cntycount>1){last;}  # Limit to one county for diagnostics 

#if($monthcount>1){last;}  # Diagnostic limit to one month 

 

This will enable the script to generate output for all county and month combinations. 

 

3.5 Full Runspec and Batch File Generation 

Now you are prepared to generate all of the runspecs necessary to support output for 

SMOKE MOVES. As before, run the CreateAndPopulate script you just edited above. In 

addition to creating runspecs, the script also compresses them, along with their associated input 

databases, into .jar files (which are functionally the same as .zip files, and can be examined with 

any archive software7). In the included example, this process takes about a day of processing 

time. 

Finally, you must create a series of batch files that will allow our local file system to 

more easily interact with the AWS cloud environment. Open the CreateBatchFiles script, and 

edit the lines below to reflect project, years, and paths as appropriate. Many of these variables 

will be similar, or even identical, to variables from CreateAndPopulate.  

                                                 
7 The freely available 7zip file archiver, downloadable at http://www.7-zip.org/, is recommended. 

http://www.7-zip.org/
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$project='2013-MOVES2014a'; 

$year=2013; 

$vers=20151106; 

$movescode='20151028'; 

$mddb="movesdb20151028"; 

$codebucket="moves_code_bucket"; 

$dbbucket="moves_db_bucket"; 

$repcdblist="285RepCos2013_M2014_20151103.txt"; 

$casepath="P:\\EPA_MOVES_3-04\\$project\\AmazonStructure\\$casevers"; 

$casepathp="P:\\\\EPA_MOVES_3-04\\\\$project\\\\AmazonStructure\\\\$casevers"; 

$accesskey='ABCDEFGHIJKLMNOPQRS'; 

$secretkey='Abcdefg1234567!@#$%^&Abcdefg1234567!@#$%'; 

 

Of particular interest are the bolded variables above. movescode and mddb will reflect 

the version of the MOVES code and MOVES databases provided by EPA, and will be discussed 

further in the following section. codebucket and dbbucket are names for the Amazon buckets 

where the MOVES code and database, will be stored, respectively. Note carefully that these 

buckets must have names that are unique across all of AWS. The accesskey and secretkey are 

text strings generated during the creation of your account. And allow for direction connection to 

AWS via batchfiles. 

Once editing is complete, save changes and execute CreateBatchFiles using a command 

window by navigating to its location, typing perl CreateBatchFiles.plx, and pressing Enter. 

This script runs very quickly, and generates a number of different batch files in the 

AmazonStructure/[Project]/0scripts directory (not all of which you will use). Batch files of 

interest to this example are discussed in the following section. 
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4.0 Execution of MOVES in the AWS Cloud Environment 

This section describe the process of uploading and executing MOVES batches generated 

locally, along with QA, post-processing, and downloading of model results. 

4.1 Amazon AWS Options and Setup 

Section 2 above discusses creation of security credentials associated with your Amazon 

account. Beyond that, there is some additional one-time setup that must take place prior to 

proceeding with uploading and executing MOVES runs. 

First, login to your account. You should be presented with the AWS management 

console. Click on EC2 to switch to the EC2 management console. You should see a screen 

similar to this:  

 

  



 

18 

In the EC2 dashboard on the left hand side of the screen, click Elastic IPs, then the 

Allocate New Address button. Make sure the drop down menu reads EC2, and click Yes, 

Allocate, as pictured below. When the confirmation popup window appears, click Close. This 

will create a new IP address for you to access your instances. 
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Next, click Key Pairs in the EC2 dashboard, and click the blue Create Key Pair button. 

Give the key a name, and click Create. The system will prompt you to download and save a .pem 

file to your local system. This file is used to directly login (via SSH) to instances you’ve created, 

usually during QA or troubleshooting. Without it, you will be able to start instances, but not 

login to them, so be sure to store it securely. 
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Next, click Security Groups in the EC2 Dashboard, and click the blue Create Security 

Group button at the top of the page. Provide a security group name and description, and select 

the VPC option. Under the inbound tab, click the Add Rule button, and select SSH under the 

Type dropdown menu. Under Source, select My IP, and the field will be automatically 

populated. When finished, the dialog should appear similar to the figure below. Click the blue 

Create button to finish. These settings will ensure that only someone using your IP address, with 

the SSH protocol, will be able to connect to the instances you create later. 
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Finally, click Limits in the EC2 Dashboard. There are a few limit increase requests to 

make here, in order to run a sufficient number of simultaneous instances. EPA generally selects 

the c4.large instance type, since it provides sufficient computational power and RAM to 

complete batches in a few days’ time8. As an example, scroll down under the Instance Limits 

subheading, find the “Running On-Demand c4.large instances” item, and click Request Limit 

Increase. This will open a new browser window under the AWS Support Dashboard. Scroll 

down the page and fill in the drop down menus as needed. An example of a request for an 

increase in the limit of c4.large instances to 600 is shown below. 

 

In addition to the above, you will probably want to increase both Provisioned IOPS 

(SSD) volume storage and General Purpose (SSD) volume storage, listed under the EBS Limits 

subheading, from 20 TiB to 50 TiB, since files associated with SMOKE-MOVES input 

generation can be quite large. You may wish to make limit increase requests for other type of 

instances to meet your specific needs. 

Finally, you will need access to a specific Amazon Machine Image (AMI) to run properly 

run MOVES in a cloud environment. An AMI is analogous to the operating system on your local 

machine. As mentioned in the previous section, you will also need .jar files containing MOVES 

code, its associated database, and post-processing code. All of these items will need to be 

obtained from EPA by request. 

                                                 
8 For more information on AWS instance types, including available CPUs, RAM, and costs, see 

https://aws.amazon.com/ec2/pricing/ 
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4.2 Uploading and Adding Jobs 

Before any files can be uploaded to your AWS account, you need to create three buckets 

for storing data – one for the MOVES code, one for the database, and one for the batch input and 

output files. Although this can be done via the AWS web interface, it is easier to accomplish 

using the freely available S3 Browser9. Several screenshots in the section that follows will 

display the S3 Browser GUI. 

To create the buckets, open the S3 Browser and first add your AWS account. Under the 

Accounts menu, click Add New Account, populate the fields shown, and click the Add New 

Account button. 

 

 

Next, click the New Bucket button and in the prompt that follows, give your bucket a 

name that matches the project name specified in the Perl scripts earlier, and also ensure that the 

region matches the one where you created your account. Do this again for your MOVES code 

                                                 
9 Download from http://s3browser.com/download.php 
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bucket and database bucket, again being careful to provide names that match those in the 

previous Perl scripts. 
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Now upload the MOVES code and database jars obtained from EPA to your newly 

created buckets via the S3 Browser GUI. 
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Having created buckets in the Amazon account, you are almost ready to begin uploading 

batches. Before you can do that, however, you must create queues using Amazon’s Simple 

Query Service (SQS). These queues allow you to pass commands to the Amazon environment, 

including upload, download, execution, and several other operations. Do this by navigating to the 

\0scripts directory generated by CreateBatchFiles.plx on your local machine, and double clicking 

the CreateQueues.bat file. A DOS window will appear with status messages while your local 

machine communicates with Amazon. Don’t close this window until the “Press Any Key to 

Continue” message appears, which should take less than a minute. Once created, you should be 

able to see the empty queues via the AWS web interface under the SQS Management Console, as 

presented in the example below. 

 

 

Now that the queues are created, you can upload the jobs from your local machine to the 

cloud. Do this by double clicking the UploadJobs.bat file in the \0scripts directory. Again, a DOS 

window will appear, but this operation will usually take several hours to complete. You can 

monitor the status of uploaded files via the log that UploadJobs.bat creates in the 0scripts 

directory, or by opening S3 Browser and refreshing the view of the project bucket. 

Another way to monitor the progress of the upload process (as well as adding, executing, 

and downloading jobs later on) is to use the BatchStatus.bat file. This program takes about 15 

minutes to run, and checks status files created by the Amazon batch files during execution. When 

complete, it creates a batchstatus.csv file that can be opened in Microsoft Excel, as in the 

example below. (Note how batches are usually identified by combinations of county and month, 

for example, 01073_1, where jobs are identified by additional RD/RV/RP text and associated 

temperature regime.) 

A job that has been successfully uploaded will be marked as such in the appropriate 

column (with similar results for the other functions tracked by the program). When checking for 

batches or jobs that may have failed during upload, you can filter the spreadsheet for blank 
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values as shown. Any blank values reflect that the job has either not yet been processed, or has 

failed; in the latter case, more investigation is required to determine the cause of the failure. 

Once your batches have been successfully uploaded to Amazon S3, the next step is to add 

those batches to the queue for processing. Do this by navigating to the \0scripts directory and 

double clicking the AddJobs.bat file. This script takes a few hours to run, depending upon the 

number of batches you have prepared and the speed of your local computer. You can check its 

progress by monitoring the AddJobs.log file, or by opening the SQS management console and 

reviewing the Messages Available column in the jobs queue (which you can refresh in real time). 

Adding jobs is complete when the DOS window disappears, and the number of messages 

available is equal to the number of batches you have prepared. You can also use BatchStatus.bat, 

as described above, to monitor progress. 

 

Once batches are uploaded and queued, you are ready to start Amazon instances to 

execute MOVES runs in the cloud environment. 
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4.3 Creating Instances 

To process your batches, start at the EC2 management console page and click the Create 

Instance button. You will be directed to Step 1 of the instance creation page. In the left-side 

frame, click My AMIs, and toggle the checkboxes as shown below, to include Ownership: Shared 

with me and Architecture: 64-bit. This will filter the available AMIs to the particular MOVES 

AMI shared with you by EPA. Click the blue Select button. 
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At Step 2, filter the instances by Compute Optimized, and click the box corresponding to 

the c4.large instance type. (This is for the purposes of the included example; you may of course 

choose another instance type as needs dictate.) Click the grey Next: Configure Instance Details 

button in the lower right corner. 
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At Step 3, there are several important parameters to configure. The number of instances 

you can would like to execute in a subnet net at once (first red arrow) is limited by the number of 

IP addresses available, so your choice must be less than or equal to the limit. This number is 

usually 251 if no other instances are currently running; if you need to run more than 251 

instances concurrently, as EPA does, you will need to repeat this process a few more times, 

creating groups of instances in different subnets. (Eventually, you need to generate as many 

instances as you have messages in the jobs queue.) 

Populate the other options as shown. Many of these values are defaults, with the 

exception of Shutdown Behavior, which should be changed from “Stop” to “Terminate”. 
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Next, scroll down to the bottom of the page and click the arrow next to Advanced Detail 

to expand its submenu. You need to paste some configuration text into the text box shown; this 

text is available in the \0scripts directory in the file TextToStartInstance-MOVES.txt. Open 

this file in a text editor, and copy its entire contents to the text box at the bottom of the Step 3 

page. It should look similar to the figure below. Click the grey Next: Add Storage button. 
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On the Step 4 page, you need to increase the default size in GiB from 48 to 100. If you 

don’t, MOVES may get hung up during its activity generator process and fail to proceed – 

although your instance will not terminate, so you will continue to incur charges! Click the grey 

Next: Tag Instance button. 
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At Step 5, populate the Value field to assign a name to the instances generated. It can be 

useful to provide a fair amount of descriptive information here, including date and time, for the 

purposes of QA later. Click the grey Next: Configure Security Group button. 
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At Step 6, click the radio button next to Select an existing security group. The security 

group that you created during initial account setup will appear (in this example, OnlySSH). Click 

the box next to that group, and then click the blue Review and Launch button in the bottom right 

of the page. 
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At this point, you’re almost ready to launch the instances10. On the Step 7 screen, review 

all of the choices you’ve made during steps 1 through 6. If you need to make changes, you can 

go back and do so. After you’ve carefully check the instance options, click the blue Launch 

button. Amazon will begin creating instances, and you will be presented with a wait screen 

during this process. After creation, you can return to the EC2 management console, where all of 

the instances and their status will be displayed. Below is an example of what to expect once 

instances have been running for 1-2 days. You can see that some instances are still ongoing, 

while a few have completed. All told, the MOVES batches typically take between 36 and 72 

hours to complete using the c4.large instance type. 

 

 

You can also verify, via the SQS management console, that messages in the queue are 

being “picked up” by your newly created instances. If you repeatedly click the Refresh button on 

                                                 
10 If this is the first time you’re starting instances associated with a particular project or scenario, you may want to 

consider launching only a single instance to see whether it will execute successfully, before executing all available 

batches. Doing so can avoid excess EC2 charges. 
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this page, you should be able to see the “Messages Available” transition to “Messages in Flight” 

in real time; the number of messages in the jobs queue should decrease to 0, while the number of 

messages in the stats queue increases rapidly. 

4.4 Downloading Initial Results and QA 

When each batch is processing in the cloud environment, there are multiple RD, RV, and 

RP runspecs that are executed in sequence. This means that although a particular instance may 

not have finished yet, after several hours it will begin to generate output files. You can monitor 

the status of your batches by viewing outputs generated to date using the S3 Browser. You can 

also run the DownloadResults.bat file in the \0scripts folder, which will download the 

results*.jar files associated with each job, which contain compressed MOVES logs. After 

running DownloadResults, which can take several hours in some cases, BatchStatus can then be 

run to view how many jobs in each batches have been complete. In fact, EPA recommends 

running the RepeatDownloadResults.bat program a few hours after starting instances; this 

program repeats the download process 100 times, and can help to save time by accessing job 

outputs as they complete, rather than waiting to download the results all at once. 

After the instances have completed execution and results have been downloaded, run 

BatchStatus a final time to verify that all batches are complete. If any are not, make note of them. 

Then, open a DOS command window, navigate to the \0scripts directory and execute the 

QA1MovesOslogLogqueue.plx perl script at the command prompt. This script takes a few 

minutes to run. When it completes, read the output file it generates into Excel, and use the Text 

to Columns wizard to split the text based on spaces. EPA recommends checking that the total 

count of jobs is correct, and that the number of generated bundles is equal to retrieved bundles 

for all jobs.  If not, you will need to check your inputs to determine where the problem lies. 

(Note that it is also possible for batches to fail due to Amazon errors, and not because of errors in 

the inputs themselves!)   

Next, execute the QA2MovesOslogLogqueue.plx perl script at the command prompt. 

Wait a few minutes for it to complete, and review its output. This script searches for the string 

"RUN_ERROR:" in the MOVES logs, but excludes the string "RUN_ERROR: Warning:", and is 

intended to detect failures that don't cause a job to stop.  MOVES output can pass QA1, but fail 

QA2, so it is important to run both.  

At this point, if any batches have failed, you have likely detected them by use of 

BatchStatus or either one of the QA scripts above. These batches will need to be rerun, but many 

times a batch will not fail completely; rather, a few jobs will succeed before the instance 
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encounters a problem. In order rerun only the jobs that have failed, and not the entire batch, you 

can use the Readdjobs.bat file. This file contains by default all batches, but you only want to re-

add those batches that have failed. Open the file in a text editor, and either “comment out” lines 

corresponding to batches you don’t wish to re-run by adding the text “rem “ at the beginning of 

the line, or delete the line entirely. Save the Readdjobs with a slightly different name so as not to 

overwrite the original, and execute your newly edited batch file by double clicking it. At this 

point, you will repeat the process described above of monitoring jobs added to the SQS queue, 

adding instances to process them, downloading their logs and otherwise monitoring their 

progress. 

4.5 Post-processing MOVES results into SMOKE-MOVES format 

Once all of the MOVES batches are complete and have been quality assured, the final 

step is to post-process MOVES outputs into a format useable by SMOKE-MOVES. This process 

is similar to that described above in sections 4.2 and 4.3, so it will not be repeated in detail here. 

Rather, significant differences in the processing will be highlighted below. 

Post-processing consists of the following steps: 

 Use AddPostProcess.bat to add messages to the SQS post queue, which will use 

the MOVES post-processing code (provided by EPA in a .jar file, which you 

uploaded previously). No uploading of data is required here, since the program 

will be using MOVES output already present in the S3 project bucket. 

 Create and launch instances as before, using similar options. One important 

exception is that you should use the text from the TextToStartInstances-post.txt 

file during Step 3 of the instance configuration. These batches typically take only 

about 30-60 minutes to complete. 

 If any post-processing batches fail, edit and run Readdpostproc.bat as necessary. 

As the post-processing batches complete, you will notice output files in the S3 Browser. These 

files are usually between 100 and 300 MB in size. The outputs can be downloaded automatically 

using Downloadpostresults.bat, or manually using the S3 browser. 
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5.0 Troubleshooting 

This section presents additional information that may be helpful when troubleshooting 

instances that have failed or are non-responsive.  

5.1 Tips and Tricks 

There are a few other items to keep in mind as you work through the modeling process.  

 Amazon has set a hard limit of 100 S3 buckets per account. To create more, you 

will have to delete existing buckets.  

 If you don’t see your instances or any other settings when logging in from a new 

system, make sure you have chosen the proper region (e.g., N. Virginia).  

 Be careful not to run multiple Perl scripts or batch files at once, as this can cause 

undesirable behavior. For example, one script may log out of your account before 

the other script completes, causing errors. Proceed systematically through 

execution of scripts and batch files.  

 Become familiar with the format of the batch files. Once you are comfortable with 

how they work, it is often useful to edit them during the QA process to allow for 

uploading, adding, and running single batches.  

Note that it is not uncommon for AWS instances to fail. In fact, you can expect a failure 

rate of about 5% in general. There are a number of possible reasons for these failures, including 

the following:  

 Sometimes batches may not be picked up from the SQS queue at all. In this case, 

create a new instance for each job remaining.  

 Some batches may fail midway through. In this case, use the Readdjobs batch file 

to process only the jobs that remain instead of starting the entire batch over from 

the beginning.  

 Instances may immediately fail without any warning or error messages. If this 

happens, check to see if your instance and/or storage limits have been exceeded.  
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 Amazon may not have enough capacity for the instance type you have selected. 

You can either wait for Amazon to free up additional capacity, try a different 

instance type, or create instances in a different subnet.  

 On occasion, during post-processing, instances may complete their calculations 

but fail to write out data, and “freeze up” without terminating. One work-around 

for this problem is to create a new bucket specifically for post processing, copy 

the MOVES database output to that bucket, edit your batch files to point to the 

new bucket, and re-run the post-processing there.  
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5.2 Lifecycle 

The following is taken directly from Section 5.2 of Faler’s Running MOVES on Amazon, and 

presents the sequential lifecycle of a project in the cloud environment. It’s a useful summary of 

the entire process that can be used as a quick reference.  

  

The overall steps for processing MOVES jobs on Amazon that use post processing are: 

 

• An Amazon SQS queue is created to hold job processing commands. 

• An Amazon SQS queue is created to hold status messages. 

• MOVES code is placed into a JAR file. 

• The MOVES code JAR is placed into an Amazon S3 bucket. 

• A MOVES default database is placed into a JAR file. 

• The default database JAR file is placed into an Amazon S3 bucket. 

• JAR files are created for each job. 

o A JAR file is created for each job.  This file contains the job's runspec (.mrs file) and 

input databases, if any. 

o A JAR file is created for the batch-level input databases, if any. 

o A JAR file is created for the scenario-level input databases, if any. 

• The JAR files are uploaded to a single Amazon S3 bucket. 

• After all JAR files for jobs in a batch have been uploaded, a command to process all jobs in a 

batch is placed into the command queue.  

• One or more Amazon EC2 instances are started to process the commands.  These instances are 

given the SEPARATERESULTS=1 flag in their instance data. 

• The status queue is polled for messages originating from the EC2 instances. 

• Job result JAR files are downloaded from an Amazon S3 bucket.  These JAR files contain only 

the log files. 

• Result JAR files and job JAR files are deleted from the bucket. Database result JAR files 

remain undownloaded in the bucket. 

• The result JAR file's contents are extracted, including only log files. 

• Operating system log files are duplicated and placed into the batch's logqueue directory for 

automated scanning. 

• Amazon EC2 instances shutdown automatically after processing all jobs in a batch. 

• An Amazon SQS queue is created to hold post processing commands. 

• An Amazon SQS queue is created to hold post processing status messages. 

• Post processing code and required databases are placed into a JAR file. 

• The post processing code JAR is placed into an Amazon S3 bucket. 

• A command to post process all jobs in a batch is placed into the post processing command 

queue.  

• One or more Amazon EC2 instances are started to process the commands.  These instances are 

given the JOBCOMMAND=batchpostprocess flag in their instance data. 

• The status queue is polled for messages originating from the EC2 instances. 

• Batch result JAR files are downloaded from an Amazon S3 bucket.  These JAR files contain 

batch-level post processing results and log files. 

• No result JAR files are deleted from the bucket. 

• The result JAR file's contents are extracted. 

• Operating system log files are duplicated and placed into the batch's logqueue directory for 

automated scanning. 

• Amazon EC2 instances shutdown automatically after processing all jobs in a batch. 
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5.3 Logging into Instances 

Sometimes the only way to diagnose problems with a particular instance is to login to it 

directly. This can be done by using the free WinSCP11 software package, which allows you to 

connect to an Amazon instance directly using the private key credentials (in .pem format) created 

earlier.  

Before you can access an instance, you must first import your credentials into WinSCP. 

Download, install and open WinSCP. At the bottom right, click the Tools button and Select Run 

PuttyGen.  

 

In the new window that appears click Conversions and select Import Key. You will be 

presented with a Windows open file dialog; navigate to the .pem file you created earlier during 

account setup and click Open.  

                                                 
11 Available at https://winscp.net/eng/download.php. Current version is 5.7.6. 

https://winscp.net/eng/download.php


 

41 

 

  



 

42 

 The window will populate with information on your key. Click Save Private Key, give 

the key a name in the file dialog, and close the window. 

 

Next, at the main WinSCP window, again click the Tools button, but this time select Run 

Pageant. A small blue computer icon will appear in your system tray. Right click this icon and 

select View Keys.  
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At the next window, click the Add Key button and navigate to the .ppk file you just 

created in the previous step. You should see a screen similar to this one. 

 

Having imported your credentials, you can now prepare to login to an Amazon instance. 

To determine the IP address of the instance of interest, open the EC2 management console and 

click the blue button next to the chosen instance. Descriptive information about the instance will 

appear; find the Public DNS value, highlight it, and copy it. 
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 Now return to the main WinSCP window and paste the public DNS into the Host Name 

field. For the User Name, enter “ec2-user”. No password is required here since you have already 

provided credentials via private key. Click Login. 
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When prompted to add an unknown server’s host key to a cache, click yes. Next you’ll be 

presented with an FTP environment, with your local machine on the left side of the screen and 

the Amazon instance on the right. Use the icons to navigate to the /home/moves/amazon 

directory in the instance as shown. 

 

From here, you can download several different log files to assist you in diagnosing 

instance failures by double clicking on their file names. Logs of interest include: 

 amazonbootcore.txt, which lists jobs that have been executed 

 dojobcore files, which are logs of MOVES progress 

 movesamazon.log, which lists files retrieved and stored by the instance 

 toplog.txt, which is a periodic dump of the Linux top command, which displays 

CPU usage, memory usage, and running processes with the most recent at the 

bottom. 

 

From this point forward, you’re on your own. Please review the electronic appendix 

carefully for further details and example files. Good luck!  
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