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1. PURPOSE 

The purpose of the research described in this report was to analyze an existing set of 
experimental engine and fuel data which had been contracted by the Advanced 
Vehicle/Fuel/Lubricants (AVFL) Committee of the Coordinating Research Council (CRC) to 
study gasoline range fuel effects on Homogenous Charge Compression Ignition (HCCI) 
combustion. The analysis was aimed at developing broad, overall models for the engine response 
to changes in engine control and fuel variables, to exercise the models in a series of parametric 
studies, to structure the models in such a way that they could be used by others for additional 
parametric studies, and to make recommendations for future research in fuels and advanced 
combustion engines, based on the outcome of the analysis. 

This analysis differed from a previous analysis (1, 2) in that in the current work an emphasis was 
placed on overall models and that Principal Components Analysis (PCA) was used to represent 
the fuels. It is well-known that the physical properties of petroleum fuels are frequently 
correlated to each other through the underlying chemistry that connects them and that these 
correlations often complicate or confound studies of fuels.  This analysis uses PCA as a solution 
to this problem. PCA creates new vector variables that carry the correlations present in the fuels 
through subsequent analysis, without requiring the artificial choice of one (or a few) of the 
correlated variables to act as surrogates. In this approach, all of the original variables contribute 
to the analysis through their role in defining the vectors themselves, thereby retaining the highest 
fidelity to the original data. Further, the vector variables are statistically efficient. In 
circumstances where correlations are present among the original variables, there are fewer 
degrees of freedom (free choices) actually present in the data than the number of variables would 
suggest, and a relatively smaller number of vectors may be needed to represent the data. 

In this analysis, experimental variation was accounted for, as much as possible, by including 
variables related to variation in experimental conditions, including set-points, environmental 
factors, phase of research, and control methodology of the engine. This allowed the construction 
of as few models as possible, although separate models for each operating point were needed. 

The results presented in this report capture the major trends (and limitations) of the data and also 
can be considered as a guide for the further use of the supplied models for other studies. The 
authors are also available for consultation if needed in applying these models to other studies. 
This may be important since it is fairly easy to overstep the experimental data when using the 
models.   

2. BACKGROUND 

The following is a brief background of the history of this project as a reminder of the fuels and 
engine conditions selected and how it evolved over time. Further details can be obtained from 
two CRC reports (1, 2) and one SAE paper (3). From 2006 through 2008, CRC sponsored a 
series of engine tests in order to help understand the effects of fuel chemistry and properties on 
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HCCI engine performance. The overall project was contracted to AVL by CRC, which, in turn, 
subcontracted with Battelle Memorial Institute for statistical and experimental design support 
and with Oak Ridge National Laboratory (ORNL) for a literature review and recommendations 
of fuel properties and chemistry of interest. The development of the experimental plan was a 
collaborative effort between CRC AVFL, AVL, Battelle, and ORNL. 

It was recommended that the fuel matrix cover the variable space defined by blends of the four 
main gasoline blending streams (reformate, alkylate, cat cracker gasoline, and straight run 
gasoline) (5). Originally, the recommended independent variables for the fuels were RON 
(Research Octane Number), MON (Motor Octane Number), (RON+MON)/2, sensitivity (RON-
MON), % aromatic, % olefin, % iso-paraffin, % normal paraffin, and % cyclo-paraffin. Three 
RON values of about 92, 80, and 70 were chosen, with as wide a range of MON, sensitivity, and 
chemistry as could be achieved by combining the four blend streams. A total of ten fuels was 
selected from a series of 56 possible fuels blended by ConocoPhillips. 

Volatility, as defined by boiling point distribution or RVP (Reid Vapor Pressure), was not 
expected to play a large role for gasoline range fuels operating under the steady state, warm 
engine conditions selected for the engine testing, and it was recommended that the four blending 
streams be matched as closely as possible for boiling points in order to eliminate this from 
consideration. However, the selected blending streams did differ somewhat in boiling points. The 
final fuels were also doped with n-butane to control RVP to about 7 psi for vapor safety 
considerations. 

In the second phase of the project, ethanol was splash-blended into some of the hydrocarbon 
fuels, which were selected based on CRC group interest augmented with some statistical 
guidance. In this, the physical properties of the oxygenated fuel blends were allowed to vary 
without constraint. Octanes and RVP were allowed to increase, and boiling points were allowed 
to decrease, compared to the characteristics of the base hydrocarbon fuels. In this sense, the 
Phase 2 oxygenated fuels form a separate set of fuels from their hydrocarbon counterparts. The 
engine tests for these were run in two Phases (2a and 2b) with a major engine rebuild occurring 
between them.  

Three operating conditions for the engine were selected to be 1000 rpm at 1.5 bar IMEP, 2000 
rpm at 3.0 bar IMEP, and 3000 rpm at 5.5 bar/deg pressure rise rate. Three control modes for the 
engine included: port fuel injection with negative valve overlap (known as recompression early 
injection - RCEI); port fuel injection with a second exhaust valve event (known as re-breathing 
early injection - RBEI), and direct injection with a second injection during the negative valve 
overlap period (known as recompression split injection - RCSI). In all cases, the crank angle at 
which the Mass Fraction Burned is equal to 50% (MFB50) was controlled to 5° ATDC (After 
Top Dead Center). After analysis of the data from the first ten fuels was completed by AVL and 
Battelle, it was expected to continue the research by blending additional fuels to cover ranges 
found to be of particular interest. An indolene reference fuel was also periodically run in order to 
set baseline engine control parameters and to track engine condition and other experimental 
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variation. Two additional series of tests were run (designated Phase 2a and 2b), primarily to 
study ethanol blending effects. Battelle performed statistical analysis of the data, mainly using 
two factor fuel effect analyses by engine operating mode and engine control mode, while also 
uncovering overall trends which were present in the data. After completion of the Phase 1 report 
(1), the experimental plan was revised to include effects of ethanol blending in the Phase 2 
testing. The experimental data have several characteristics that make analysis difficult. First, the 
data were taken in three separate series (Phase 1, Phase 2a, and Phase 2b), which took place 
during 2006, 2007, and 2008 respectively. During this time, the engine underwent minor 
maintenance, one major rebuild, a change of project engineer, and normal variations of engine 
wear condition and in weather. Second, the experimental design was altered to include ethanol 
effects in Phases 2a and 2b, rather than additional study of petroleum chemistry effects. Third, 
the experimental plan was altered to eliminate one of the control modes for later test phases. 
Finally, there may have been some shift in the fuel properties or chemistry that were of most 
interest for the analysis. The end result of these changes was an unbalanced experimental design 
that makes it difficult to compare fuel variables across the entire range of data. 

Despite these challenges, the authors of this report felt that it would be feasible to model the data 
in its entirety using a different statistical approach in order to identify large, overall fuel and 
engine trends to help guide future research in this area. The CRC AVFL Committee agreed to 
fund this work under Project AVFL-13c, the results of which are presented in this report. This 
analysis was based on applying PCA to represent the fuels, on using a series of dummy variables 
to represent sources of variation such as test phase, engine operating mode, and engine control 
mode, and by including control target variables in the model to allow correction for experimental 
variation. The scope of the work included delivering the models to CRC in active Excel™ format 
so that members can do further analysis and parametric studies as desired. This report is a 
summary of the modeling and PCA analysis of this data with a focus on the major trends in 
engine and fuels that are observed. As is true of all analytical work, the results may be imperfect 
because of correlations in the data that prevent full separation of the variables of interest and 
because not all experimental variation could be assigned to an independent variable.  

3. EXPERIMENTAL FUELS 

3.1 Characteristics of the Experimental Fuels 

The experimental fuels used in the AVFL program were created to explore a wide range of 
potential fuel property and chemistry effects on HCCI engine performance. As described in the 
first CRC report (1), a literature review (4) suggested that gasoline engine performance would be 
affected by octane number – including RON, MON, and sensitivity – in addition to 
characteristics of the fuel’s distillation curve and chemistry. Fuel oxygen content was also added 
to the list of potential fuel effects for Phase 2 of the program. 

To test such effects, a series of 56 candidate gasoline-range fuels were identified in Phase 1 that 
could be created by blending four common refinery blend streams designated as A, B, C, and D. 
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Properties of these candidate fuels were estimated by a blending model. The blend streams were 
chosen to be typical of the refinery stocks from which gasoline is commercially blended: 

• Stream A: a reformate having high aromatic content (about 55%) 

• Stream B: an alkylate having high iso-paraffin content (about 88%) 

• Stream C: a cat-cracker gasoline having high olefin content (about 45%) 

• Stream D: a light straight-run gasoline (about 24% n-paraffin) 

Of the 56 candidates, several fuels were also based on road (commercial) gasoline blends or were 
splash-blended with kerosene, but such fuels were excluded from the engine testing by the CRC 
committee. Following the exclusion, 37 candidate fuels remained from which the ten initial 
experimental fuels were chosen. 

Table 3.1 lists the fuels selected for engine testing in Phase 1 along with their chemistry and 
properties and also includes  D100, which was not tested (but used as a blendstock), and indolene 
(used as a reference test fuel), which was not used in construction of the models. In this table, 
fuels are described in terms of blending percentages – e.g., A75D25 is a fuel targeted as a 75:25 
blend (by volume) of stocks A and D. The ten selected base fuels involve individual two-way 
substitutions between blend streams, meaning substitutions of streams A vs. D, of B vs. D, and 
of C vs. D. One additional base fuel was created from a three-way blend of A, C, and D for phase 
2a. Of the four blend stocks, Streams A, B, and C were also tested alone (as A100, B100, and 
C100) and as blends with Stream D, while Stream D was too low in octane to be an experimental 
fuel in its own right. After blending, the varying volatility of the fuels was controlled by blending 
n-butane as needed to achieve a Reid Vapor Pressure (RVP) of 7 psi. 

For Phase 2, oxygenated fuels were created by splash-blending ethanol into selected base fuels at 
volumetric percentages ranging from E10 up to E30. These fuels are listed in Table 3.2, where an 
oxygenated fuel comprised of 90% A75D25 (by volume) splash-blended with 10% ethanol is 
described as A75D25E10. Five series of oxygenated fuels were created from different base fuels 
and splash-blended with ethanol to create a total of ten oxygenated fuels. 

While the 11 base fuels and ten oxygenated fuels were used in engine testing, two of the fuels 
and their engine tests have been dropped from this analysis, as discussed in Section 3.2. Fuel 
B50D50 was dropped because the measured T50 and T90 values were higher than those of the 
supposed “parent” B100 and D100 fuels and because the reported octane data appeared to be 
incorrect. Fuel C100E20 was dropped because the distillation curve appeared to be incorrect. 
These exclusions leave a dataset covering 15 base fuels, including the ten base fuels tested in 
Phase 1 and the five base fuels re-blended and retested in Phase 2. The dataset also covers nine 
oxygenated fuels created with varying ethanol contents from four base fuels. With the exclusion 
of C10020, only one oxygenated fuel series remains in Phase 2a testing, while three such series 
remain in Phase 2b testing. The sequence of fuels for each test phase is shown in Table 3.3. 
Some of the fuels were run several times and were re-measured, resulting in some slight 
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chemistry and property changes between Tables 3.1 and 3.2. Additionally, a different C100 base 
stock was used in Phase 2a vs. Phase 1. 

 
Table 3.1:  Characteristics of Selected Hydrocarbon Fuels for Phase 1. 

Test Results A100 B100 C100 D100 B50D50 C85D15 B77D23 B30D70 A79D21 C50D50 A33D67 Indolene
RON 95.5 89.1 91.5 52.8 58.9 87.7 81.0 64.7 84.0 78.0 65.5 95.6
MON 84.8 89.3 80.3 50.4 61.1 77.3 81.9 63.7 76.2 71.5 62.8 89.0
Sensitivity 10.7 -0.2 11.1 2.4 -2.1 10.4 -0.8 1.1 7.9 6.4 2.7 6.6
RVP (psi) 7.3 7.0 7.5 6.5 7.5 7.2 7.1 7.3 6.9 7.3 7.0 9.1
Density (60F/60F) 0.796 0.698 0.717 0.757 0.752 0.734 0.713 0.738 0.781 0.741 0.766 0.743
T10, F 175 154 134 190 187 139 159 173 182 147 191 127
T50, F 266 212 179 276 321 213 224 254 266 242 272 221
T90, F 327 338 256 345 421 297 337 344 330 320 339 322
% Butane 2% 4% 0% 7% 8% 1% 7% 6% 4% 4% 6% 1%
% n-Paraffins w/o C4 10% 1% 4% 24% 21% 6% 6% 16% 14% 12% 20% 7%
% i-Paraffins 27% 88% 30% 27% 42% 29% 77% 51% 31% 31% 29% 57%
% Cyclo-Par 3% 3% 10% 23% 20% 11% 7% 15% 8% 16% 17% 6%
Olefins 2% 1% 45% 2% 1% 37% 1% 1% 2% 18% 2% 1%
Aromatics 55% 3% 11% 16% 8% 17% 3% 11% 41% 18% 26% 27%  

 
 

Table 3.2:  Characteristics of Selected Hydrocarbon Fuels for Phase 2. 
Test Results C100 C100E20 A79D21 A79D21E10 A79D21E20 A79D21E30 A50C20D30 C50D50 C50D50E15 C50D50E30 B100 B100E15 B100E30 B77D23 B77D23E15 B77D23E30

RON 86.0 95.1 83.4 88.5 94.7 99.1 82.4 77.2 87.3 94.6 90.0 100.4 105.9 82 94.2 101.2
MON 76.6 82.4 76.5 80.4 83.4 86.9 75.8 72.6 78.8 82.5 89.9 92.7 94 81.7 88.5 90.8
Sensitivity 9.4 12.7 6.9 8.1 11.3 12.2 6.6 4.7 8.5 12.1 0.0 7.7 11.9 0.3 5.7 10.4
RVP (psi) 6.8 7.9 6.6 7.5 7.2 6.8 7.3 8.2 7.6 7.4 8.1 7.6 7.4 8.1 7.7
Density (60F/60F) 0.713 0.727 0.781 0.781 0.782 0.782 0.768 0.741 0.749 0.756 0.698 0.712 0.726 0.713 0.724 0.734
T10, F 140 129 188 153 156 158 166 148 137 143 159 141 145 167 145 148
T50, F 175 149 267 261 252 171 255 245 192 168 216 165 162 225 215 165
T90, F 240 233 332 327 323 319 325 323 317 311 354 316 279 343 335 324
% Butane 0% 0% 4% 3% 3% 2% 4% 4% 3% 3% 5% 4% 3% 7% 6% 5%
% n-Paraffins w/o C4 8% 7% 14% 12% 11% 9% 14% 13% 11% 9% 0% 0% 1% 6% 5% 4%
% i-Paraffins 33% 26% 32% 29% 25% 21% 31% 31% 27% 22% 89% 75% 63% 74% 62% 52%
% Cyclo-Par 11% 9% 8% 7% 6% 5% 10% 15% 13% 10% 1% 1% 1% 6% 5% 4%
% Olefins 36% 28% 2% 1% 1% 1% 7% 17% 15% 12% 0% 0% 0% 1% 1% 1%
% Aromatics 10% 9% 41% 37% 33% 28% 35% 20% 16% 14% 5% 4% 3% 8% 7% 6%
% Ethanol 0% 21% 0% 11% 22% 35% 0% 0% 16% 30% 0% 16% 30% 0% 16% 29%  
 
 

Table 3.3: Experimental Fuels (Base and Oxygenated) Used in Engine Testing by Phase. 

base fuel 0% EtOH 10% EtOH 15% EtOH 20% EtOH 30% EtOH
A100 1

A79D21 1, 2A 2A 2A 2A
A50C20D30 2A

A33D67 1
B100 1, 2B 2B 2B

B77D23 1, 2B 2B 2B
B50D50 1
B30D70 1

C100 1, 2A 2A
C85D15 1
C50D50 1, 2B 2B 2B

TEST PHASE

 
  

In any set of fuels, there are usually a large number of correlations that exist between the 
variables to potentially confound subsequent analysis, and this fuel set is no exception. It is 
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perhaps simplest to consider correlations among the four blending streams, A100 through D100, 
as shown in Table 3.4. 
 

Table 3.4:  Correlations of Properties and Chemistries for Four Blend Components. 
RON MON Sens RVP Density T10 T50 T90 % nC4 % n-P w/o C4 % i-P % Cyclo-P Olefins Aromatics

RON 1.00
MON 0.96 1.00
Sens 0.51 0.24 1.00
RVP 0.89 0.74 0.80 1.00

Density -0.10 -0.26 0.46 -0.03 1.00
T10 -0.67 -0.65 -0.32 -0.75 0.68 1.00
T50 -0.54 -0.55 -0.19 -0.62 0.78 0.98 1.00
T90 -0.45 -0.28 -0.70 -0.77 0.29 0.81 0.78 1.00

% nC4 -0.84 -0.69 -0.80 -0.99 0.09 0.79 0.68 0.84 1.00
% n-P w/o C4 -0.87 -0.93 -0.12 -0.70 0.58 0.84 0.79 0.43 0.68 1.00

% i-P 0.25 0.51 -0.70 -0.14 -0.70 -0.30 -0.35 0.31 0.16 -0.61 1.00
% Cyclo-P -0.94 -0.98 -0.23 -0.68 0.10 0.49 0.37 0.13 0.61 0.85 -0.47 1.00
Olefins 0.30 0.14 0.61 0.65 -0.36 -0.78 -0.77 -0.98 -0.74 -0.34 -0.32 0.02 1.00

Aromatics 0.28 0.12 0.59 0.29 0.93 0.42 0.57 0.15 -0.20 0.22 -0.55 -0.28 -0.28 1.00  
 

These correlations describe several characteristics in this set of blending streams, but one also 
has to interpret or classify these characteristics to understand their general application to gasoline 
blending streams versus their limited application to this particular sampling of blend streams. 
The investigators’ attempt to do this is shown below. 

• RON and MON are highly correlated, probably because of the wide range of RON and 
MON resulting from inclusion of the low octane D100 blendstock in these correlations. 

• RON goes down with n-paraffins content (n-P) and cycloparaffins content (cyclo-P). This 
is universally true for these blending streams, because blend stream D (straight run) was 
the only stream which significantly lowered octane and contained the largest fractions of 
n-P and cyclo-P. 

• RON not highly correlated to isoparaffins (i-P), olefins, nor aromatics content. This 
shows that the blend streams were capable of balancing between these three choices for 
building octane. 

• Sensitivity goes down with i-P and up with olefins and aromatics while cycloparaffins 
(cyclo-P) have little effect. This is universally true for gasoline fuels. 

• T10, T50, and T90 are strongly correlated to each other. This is probably always true for 
refinery components with broad boiling point distributions. It would be less true if pure 
components, such as toluene, were included in the fuels. 

• The olefin stream had lower boiling points and the straight run had higher T10 and T50. 
The authors are not sure if this is typical for these streams or just for this representation 
of these streams, but it must be kept in mind when interpreting the results. This is an 
important consideration, since variation will be assigned to all variables that change 
between blending streams, including boiling points. It should also be kept in mind that 
there is a general trend for pure hydrocarbons that octane values decrease with higher 
boiling points. 
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Overall, the blend streams and fuels selected provided the ability to study octane, chemistry, and 
sensitivity effects in two component blends and two component blends plus ethanol. The fuels 
and blendstreams did not include the study of three component hydrocarbon blends (although 
one three component fuel was tested – A50C20D30) and did not allow the full separation of 
chemistry and boiling points. 

3.2 Fuels Excluded from the Analysis 

Two fuels, B50D50 and C100E20, appear to have been inconsistently or incompletely 
characterized with respect to chemistry and properties. These fuels and the related engine test 
data were therefore excluded from the analysis in their entirety. Note that these fuels were 
retained in the original analysis since they were not examined for consistency of their properties 
and chemistry. 

Fuel B50D50 was found to be an outlier with respect to its T50, T90, and octanes when 
compared to the other fuels and to an initial fuel model that otherwise fit the fuel dataset well. 
When the fuels are plotted against the percentage of stream D in the blend (see Figure 3.1), one 
sees that D (consisting of mixed paraffins) was the main blending stream for adjusting octanes in 
the fuels. The RON and MON octane values for the experimental fuels follow a well-defined 
trend with percent D, except for fuel B50D50 which falls well below the trend. Similar 
discrepancies were noted for sensitivity and the T90 boiling point. Taken together, this evidence 
indicates that the characterization of B50D50 may be in error or, more likely, that it is not a 
blend of B100 and D100. The discrepancies were substantial and had a large effect on the 
parameters of the fuel model.  Therefore, the fuel was excluded from the analysis presented here. 

In the subsequent analysis of the oxygenated fuels, a discrepancy in the distillation curve was 
discovered for fuel C100E20, which was also excluded from the analysis. As Figure 3.2 shows, 
the C100E20 distillation curve is depressed compared to that for C100 until more than 80 percent 
of the fuel has been distilled. If C100E20 were a 20 percent splash blend of ethanol with C100, 
the distillation curve should return to the C100 values much sooner than this. Thus, the C100E20 
fuel must be something else, perhaps a 20 percent blend with another base fuel or a higher 
ethanol blend with C100, or its data may be subject to another error. Because the discrepancies 
preclude determining the base fuel and ethanol percentage with certainty, the fuel and its related 
test data were excluded from the analysis. 
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Figure 3.1:  Octane Discrepancy for Fuel B50D50. 
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Figure 3.1:  Distillation Curve Discrepancy for Fuel C100E20. 

 

3.3 Role of Indolene Fuels in the Analysis 

The AVFL-13 engine testing periodically included a series of tests on indolene fuel.  During the 
first phase of the testing, the indolene fuel was run to “…determine the baseline engine operating 
conditions (valve timings, fuel-rail pressure, single injection timing, split injection timings and 

B50D50
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quantities, and overall fueling quantities)…” These baseline engine-operating conditions were 
the starting conditions for testing each of the test fuels. Only the valve timings were changed to 
achieve the required operating conditions (primarily combustion phasing and engine load).  Four 
repeatability tests with indolene were interspersed in the test fuel matrix to assure the engine 
operation remained consistent throughout testing.” (Ref. 1, p. 3).   

The testing was planned to measure engine performance under specified conditions: 

• At fixed combustion phasing target defined by MFB50 of +5 degrees ATDC 

• At power output targets for IMEP equal to 1.5 bar and 3.0 bar in Modes 1 (1000 rpm) and 
2 (2000 rpm), respectively 

• At a target of 5.5 bar for the maximum rate of pressure rise (MRPR) in Mode 3 (3000 
rpm).  This target results in IMEP values approximating 2.7 bar. 

In addition, intake air temperature was subject to variation from the nominal values for each 
mode, consisting of ambient temperature (~25° C) in Modes 2 and 3 and of 100° C in Mode 1. 

As a practical reality of engine testing, each test data point will deviate to some extent from one 
or more of these target conditions, and the measured engine performance will be influenced by 
the nature and extent of the deviations.  Therefore, the comparison of engine performance 
between data points taken using different fuels or in different engine control modes will be 
influenced by this experimental imprecision, in addition to the effects of fuels or control modes 
that are the purpose of the comparisons.  Some form of correction or control for experimental 
imprecision is needed to obtain the best possible assessment of fuel and control mode effects 
from the data. 

For the Battelle analysis of the Phase 1 engine tests, the indolene repeatability tests were used to 
estimate a corrective model of engine performance versus observed deviations from the 
experimental targets, which was then used to normalize each engine test on the experimental 
fuels based on its own observed deviations from the targets.  The corrective model involves 
terms for: the deviation from the MFB50 target; the deviation from the engine output target 
(either IMEP or MRPR depending on mode); an interaction between the MFB50 and engine 
output deviations; and the deviation of intake air temperatures from nominal values of 25° C or 
100° C depending on mode.  The coefficients for these terms measure the percentage change in 
engine performance per unit of deviation from the targets.   To normalize the experimental data 
taken using non-indolene fuels, the corrective model is evaluated for the target deviations 
observed in each individual test; the percentage change in engine performance that would be 
expected for indolene is removed from the observed engine performance on the experimental 
fuel.  This normalization method makes the fundamental assumptions that deviations from 
experimental targets will have the same percentage effects on engine performance for the 
experimental fuels as that which was observed for indolene and that sufficient indolene runs 
were performed to accurately track experimental variations. 

The present analysis takes a different approach to compensating for the effect of experimental 
imprecision.  The statistical corrections have been incorporated directly in the engine response 
models, where the coefficients of the statistical controls can be estimated simultaneously with the 
coefficients for the terms involving fuel and control mode effects.  The fuels analysis indicates 
that indolene is outside the range of fuels that can be blended using the experimental blend 
stocks, particularly in having higher RVP and different chemistry at the front of the distillation 
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curve.  Given these differences, the investigators preferred to estimate statistical controls within 
the framework of the engine response models using only the experimental fuels.  Three terms are 
included to control for the deviations from the MFB50 target, the engine output target (either 
IMEP or MRPR depending on mode), and the nominal values for intake air temperature. No 
control was included for the interaction of MFB50 and engine output deviations.  Section 6.2.1 
describes the mathematical formulation of these control variables.   

Predictions made for individual tests for comparison to the engine responses observed in the 
experimental data employ the values of the target deviations specific to the tests.  When the 
models are used for general studies of engine behavior with respect to fuels and the control 
modes, these deviations are set to zero to remove the effects of experimental imprecision.  By 
this method, general predictions of engine behavior made with the engine response models 
pertain to conditions that conform precisely to the experimental targets. 

The continuation of engine testing in Phase 2 raises the question of the stability of engine 
performance over time.  More than one year elapsed between the end of Phase 1 and the 
beginning of Phase 2, and the engine was then subsequently rebuilt between the Phase 2a and 2b 
testing.  Accumulated wear on the engine from continued use coupled with maintenance and 
minor changes have the potential to introduce differences in the engine response to fuel and 
control mode variables between Phases 1 and 2, and the engine rebuild during Phase 2 is almost 
certain to do so. 

The indolene testing in Mode 3 (3000 rpm) was used here in an exploratory analysis to determine 
the extent of these differences.  The results indicated clearly that after the rebuild between Phases 
2a and 2b, the engine ran more smoothly, was less smoky and emitted lower HC after the 
rebuild, while having later EVCA (Exhaust Valve Closing Angle) values, higher NOx and longer 
measured combustion durations.  Further, it was possible to detect differences between Phases 1 
and 2.  Using a weighted-average of Phases 1, 2a, and 2b as the baseline, the engine was 
appreciably smokier and emitted higher HC during Phase 1.  Smoke and HC emissions were 
decreased modestly below the baseline in Phase 2a, and decreased much below the baseline in 
Phase 2b following the engine rebuild. Other engine response variables were found to differ 
among the phases. These differences by phase are seen clearly in results presented in Section 8.3. 

The investigators chose to incorporate the statistical controls for phase differences into the 
engine response model in a manner similar to the controls for environmental imprecision.  The 
method is to include a dummy variable representing the aggregate difference of Phase 2 from 
Phase 1 and a second dummy variable representing the difference between Phase 2a and 2b 
induced by the engine rebuild.  Predictions made for individual tests for comparison to observed 
values employ the dummy variable values specific to the tests.  Use of the models for general 
studies of engine behavior with respect to fuels and the control modes evaluate the dummy 
variable terms using the baseline defined by the number of tests conducted in Phases 1, 2a, and 
2b. 

4.  FUEL MODEL 

A statistical model of fuels was created in this work to support the analysis of fuel 
characteristics. PCA was used to identify generalized and independent vector features of the base 
experimental fuels using fuel chemistry and boiling points as independent variables. This vector 
representation of fuels is used in the fuel model to predict other physical properties of the fuels 
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and in the analysis of engine performance to represent the effect of fuels on engine performance. 
The vector representation was then extended to oxygenated fuels by adding ethanol content to 
the set of variables. Further analysis was conducted to determine how the addition of ethanol 
changes the properties of base fuels and how fuel ethanol content changes HCCI engine 
performance compared to the performance on hydrocarbon fuels. A total of 14 physical and 
chemical properties are available through the fuel model, either because they are part of the 
vector definition of a fuel or can be predicted from it. 

4.1 Characterization of Experimental Fuels 

In Phase 1, the ten experimental fuels (as described in Section 3.1) were chosen from the larger 
set of candidate fuels that could be blended from the four blending streams in a manner that was 
designed to minimize the degree of similarity and maximize the differences in terms of physical 
properties and chemistry among the fuels. The crux of the selection problem was stated as: 

“Pairwise plots of the 14 fuel properties revealed that several sets of fuel properties are so 
highly correlated that subsequent analyses of the relationships between engine 
performance and fuel properties could not distinguish between the effects of properties 
within each set. Thus, unless additional candidate fuels were prepared in a way that 
would reduce the correlation of these properties, it is necessary to choose only one of the 
properties to serve as a surrogate for all properties in the set.” (Ref. 1, pg. 15) 

This problem arises because motor vehicle fuels are complex hydrocarbon blends in which the 
conventional variables describing physical properties are not independent of each other, but 
rather are integrally tied together through the chemistry of the fuels. While it is common practice 
to use individual properties such as octane or boiling points to describe fuels used in research 
programs, it is much more difficult to ascribe the effect of fuels on engine performance to any 
one of the variables individually, or to any small subset of the variables. In some cases, it may be 
impossible to distinguish the effect of one variable from another because of the correlations that 
exist among properties. Even when the distinction is possible to draw, the individual variables 
being used are actually surrogates for other, more complex effects involving a number of 
different variables. When the correlations among variables exist because an underlying physical 
reality connects them and not merely because of experimental design, the conventional modes of 
analysis often have difficulty in determining causality. 

PCA was used in Phase 1 to guide the selection of the ten experimental fuels (Ref. 1, Section 
2.3). In this, PCA was used to transform seven chosen fuel properties into seven new, 
multivariate properties called principal components. Because PCA defines the principal 
components to be independent of each other, the principal components could be used as 
independent variables in classical experiment design techniques. A statistical measure was 
created for the distance of each fuel from its neighbors and was used in a selection process that 
maximized the distances among the ten selected fuels.  

4.2 Development of Vector Fuel Model 

While used initially to guide the selection of experimental fuels, PCA has been used more widely 
in the present work to create generalized, multivariate measures of the characteristics of the 
fuels. Because the correlations among octane levels, density and boiling points result from the 
underlying connection between fuel chemistry and physical properties, the vector variables 
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(principal components) created by PCA are viewed as more appropriate and useful measures of 
fuel characteristics than the original property variables. PCA has been applied in a number of 
ORNL studies related to fuels, as given in References 5, 6, and 7. 

In particular, PCA is a solution to the problem of causality faced when using correlated 
variables. This is because they carry the correlations present in the data through the analysis 
without requiring artificial choices among surrogate variables at its start. All of the original 
variables contribute to the analysis through their role in defining the vectors themselves, thereby 
retaining the highest fidelity to the original data. The vector variables are also statistically 
efficient because, in circumstances where correlations are present among the original variables, 
there are fewer degrees of freedom (free choices) actually present in the data than the number of 
variables would suggest. The PCA representation will require fewer vectors to carry the 
systematic information on fuel characteristics. 

Mathematically, PCA decomposes the correlations present among N variables in a set of data 
into multi-dimensional vector variables. PCA works on the basis of variables standardized to a 
mean of zero and standard deviation of one. If there are N variables, then the standardized 
variance in the dataset is also N. Having formed the matrix of independent variables in 
standardized form, PCA, in the form used here, performs a singular value decomposition of the 
correlation matrix to produce a slate of N eigenvectors and N eigenvalues. The eigenvectors are 
generalized, multi-dimensional descriptions of properties or characteristics found empirically in 
the data. The eigenvalues give the (standardized) variance associated with each eigenvector. 
Each entry in the dataset (here, each fuel) can be “scored” in terms of how much (or little) of the 
vector characteristics it expresses. The PCA representation has certain mathematical advantages 
in that its vector variables are independent of each other and produce variable scores that can be 
used as a new, uncorrelated set of variables. Further, the PCA representation usually involves a 
smaller number of vector variables that more closely match the degrees of freedom 
(unconstrained choices) actually present in the data.  

The final result is to create a new coordinate system based empirically on the dataset in question. 
The origin of the coordinate system is located at the center of the cloud of data points, and the 
system of N orthogonal axes have been rotated with respect to the original variables to parse the 
variance in the data into orthogonal components. If the cloud of data points can be visualized as a 
football shape, the first eigenvector is oriented in N-space along the direction in which the data 
show the greatest variance – the long axis of the football. The second eigenvector is oriented at 
right angles along the direction in which the data show the next greatest variance, and so forth. If 
the football were elliptical in cross-section, the second principal component would be oriented 
along the major axis of the ellipse, and the third would be oriented along the minor axis. The 
eigenvectors define axis directions in N-space, and the eigenvalues measure the normalized 
variances along the axes. 

4.2.1 Selection of Variables in Fuel Models 

PCA was used to examine a number of different representations of the fuels during the course of 
the analysis. These representations included models based solely on physical properties such as 
octanes, density and boiling points, models based solely on fuel chemistry, and composite 
models based on both chemistry and properties. The objective was to find a representation that 
captured the fuel characteristics as best as possible, while relying on fuel chemistry as much as 
possible. Also considered was how to represent the ethanol content present in oxygenated fuels, 
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whether as a part of the PCA analysis of fuels or as a separate variable added for oxygenated 
fuels. 

After consideration of alternatives, the representation shown in Table 4.1 was chosen as best 
meeting the objectives in the fuel model, although other representations could have been used 
with equal success. Nine variables describing fuel chemistry and boiling points were chosen to 
represent base (hydrocarbon) fuels as the variables in a PCA analysis. The six fuel chemistry 
variables define broad classes of chemical compounds, but do not provide a detailed speciation 
of the fuels. It was found that the chemistry variables did not fully capture the variation in 
measurable fuel properties. In particular, chemistry did not adequately predict boiling points, due 
most likely to the availability of chemical species within each of the five classes that have 
different distillation characteristics. Therefore, the boiling points T10, T50, and T90 were added 
to the variable set to complete the characterization of base fuels. 
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Table 4.1:  Fuel Chemistry and Property Variables in Fuel Model 
(Independent and Dependent Variables) 

Independent Variables for Base Fuels (used in PCA analysis) 

nParaXC4  n-Paraffin content (excluding C4) volume % 

nParaC4 n-C4 content volume % 

iPara iso-Paraffin content volume % 

cycloPara cyclo-Paraffin content volume % 

Olefins Olefins content volume % 

Aromatics Aromatics Content volume % 

T10 Temperature at which 10% distilled ° F 

T50 Temperature at which 50% distilled ° F 

T90 Temperature at which 90% distilled ° F 

Added Independent Variable for Oxygenated Fuels 

EtOH Ethanol Content volume % 

Dependent Variables Predicted by Fuel Model 

RON Research Octane Number number 

MON Motor Octane Number number 

RMSens Sensitivity = RON – MON number 

SpGrav Specific Gravity gm/cm3 

RVP Reid Vapor Pressure Psi 

T10 a/ Temperature at which 10% 
distilled ° F 

T50 a/ Temperature at which 50% 
distilled ° F 

T90 a/ Temperature at which 90% 
distilled ° F 

a/  Boiling points are dependent variables for oxygenated fuels only, based on the 
predicted change in boiling points of the base fuel (independent variables) caused by 
the added ethanol content. 
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The representation of oxygenated fuels was resolved in favor of adding ethanol content as a 
separate variable to the vector representation of the base fuel, rather than including ethanol 
content in the PCA-based fuel model. PCA is best applied in circumstances where the variables 
are inherently inter-related. This condition is not satisfied in the case of oxygenated fuels 
because ethanol can be added to any base fuel. Further, the use of splash blending, with attendant 
changes in octane and fuel volatility, causes the oxygenated fuels to form a distinct class. 
Therefore, a two-stage fuel model in which ethanol content modifies the characteristics of a pre-
specified base fuel was found to be statistically preferred and in keeping with the nature of splash 
blending. 

The independent variables {nParaXC4, nParaC4, isoPara, cycloPara, Olefins, Aromatics, T10, 
T50, and T90} define a base fuel. The PCA analysis of these nine variables yields nine vectors as 
an alternative description of base fuels. A subset of the vectors were chosen to represent the 
systematic information regarding base fuels and then used as predictors for HCCI engine 
performance. As a second step, ethanol content is added to the selected vectors representing base 
fuels to create a fuel model capable of representing both hydrocarbon and oxygenated fuels. The 
effect of fuel oxygenation on engine performance was determined using a paired analysis in 
which performance on oxygenated fuels is compared to performance on the corresponding base 
fuels. 

The fuel model is completed by its use in predicting the other measured properties of the fuels, 
including RON, MON and sensitivity, specific gravity, RVP, and the final boiling points of 
oxygenated fuels. This also is a two-stage process. In the first stage, statistical models are 
developed to predict RON, MON, sensitivity, specific gravity, and RVP as functions of the 
vector representation of the base petroleum fuels. In the second stage, additional statistical 
models are developed to predict how added ethanol addition changes the properties determined 
for the base fuel as a function of the ethanol amount blended. In an oxygenated fuel, the fuel 
chemistry variables are diluted from the base fuel values, and the octanes, density, volatility and 
boiling points are modified from the base fuel value based on the predicted effects of ethanol. A 
total of 14 different variables are available through the complete fuel model to describe the 
chemistry and physical properties of the experimental fuels. 

4.2.2 Development of Vector Model for Base Fuels 

An attractive feature of the vector variables created by PCA is dimensionality reduction. When 
the correlations among variables are large, the degrees of freedom actually present in the data is 
often much smaller than the number of variables in the dataset. In this case, the result of applying 
PCA to the dataset of nine variables for the base fuels yields nine vectors, of which only three to 
five need be carried to characterize the systematic information about the fuels. Table 4.2 shows 
the partitioning of the fuel variance by eigenvector; the fuel variance is a statistical measure of 
the extent to which the fuels differ from each other in terms of the chemistry and boiling point 
variables that make up each of the vectors. Another way of saying this is ‘what % of the fuel 
range tested can be explained by each vector?’ Vector 1 is associated with 47% of the variance 
present in the fuels dataset, followed in order by Vector 2 (36%) and Vector 3 (13%). Together, 
the first three vectors represent more than 95% of the variance in the data.  They are followed by 
a smaller Vector 4, representing an additional 3% of the variance and bringing the cumulative 
variance up to nearly 99%. Vector 5 (1%) would be required to bring the cumulative variance 
above 99% and an additional four vectors would required to capture 100%. 
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Table 4.2:  Partitioning of Fuels Variation by Principal 

Components. 
Principal 
Component 

Eigenvalue Percent  of 
Variance 

Cumulative 
Percent 

1 4.24 47% 47.1% 
2 3.20 36% 82.7% 
3 1.17 13% 95.7% 
4 0.26 3% 98.6% 
5 0.06 1% 99.3% 
6 0.05 1% 99.8% 
7 0.01 0% 99.9% 
8 0.00 0% 100.0% 
9 0.00 0% 100.0% 
Total 9.00 100% - 

 

PCA produces as many eigenvectors as there are variables in the dataset as a mathematical 
necessity, so that the eigenvectors form a complete vector basis that can be used to exactly 
reproduce the original data. When PCA is used because the original variables are strongly 
correlated, it is usual for a subset of vectors to capture nearly all of the variation in the data. 
Unfortunately, there is not a universal method for making a judicious choice of vectors. In 
general, vectors with eigenvalues of at least 1 are retained, because each of the original variables 
contributed a normalized variance of 1.  Vectors of similar size contribute information equal to a 
“full” variable, and a minimum of three vectors must be retained for this fuel set based on this 
criterion.  One may also consider the number of vectors required to reach a given cumulative 
level of variance explanation; four vectors would capture almost 99% of the variation among 
fuels. 

In this case, the best guidance comes from knowledge that finding three major and one minor 
eigenvectors is not an accident, but is rather a reflection of the degrees of freedom in the data: 

• The three major degrees of freedom were introduced by the blending substitutions of 
A for D; B for D; and C for D in creating the base fuels 

• An additional, minor degree of freedom was introduced by the re-sampling of blend 
stream C during Phase 2 of the study, introducing a blend stream C' with slightly 
different chemical and physical properties. 

The first four eigenvectors are carried in the development of the engine performance and fuel 
models, capturing a cumulative 99% of the variation among fuels. In general, the predictive 
models employ one or more of Vectors 1, 2, and 3 to represent fuel effects, while an occasional 
contribution is made by Vector 4. 
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4.2.3 Definition of Fuel Vectors 

The principal components defined in PCA are vectors in N-space that form the axes of a new 
coordinate system. Each vector consists of a linear combination of the original variables, where 
the variables are expressed in normalized form and internal coefficients give the relative weights 
of each of the variables in defining the vector. In applying PCA to the fuels data, the six 
chemistry variables were first transformed as described in Appendix A in order to implement the 
physical constraint that compositional variables can take on values only in the interval from zero 
to one. The transformation is one that maintains a nearly-linear relationship to the original 
chemistry variables over the range of the data; its use is indicated by the prefix trn as in 
trn(ParaXC4). The three boiling point variables were added to complete the list of variables. All 
of the 15 base fuels used in the analysis are contained in the dataset, including separate entries 
for the fuels re-blended or re-measured for Phase 2. 

Table 4.3 presents the first four vectors of the fuel model as output by PCA. Vector 1 can be read 
in a literal sense as saying that the first principal component axis lies in a direction in space along 
which the variable trn(ParaXC4) increases by 0.269 standard deviations (s.d.), while trn(ParaC4) 
increases by 0.372 s.d, trn(iPara) changes by 0.02 s.d., and so forth.  The mathematical equation 
representing any Vector i is: 

     Vi  =  ci,1 * trn(ParaXC4) + c i,2 * trn(ParaC4) + c i,3 * trn(iPara) + c i,4 * trn(cycloPara) 

           +  c i,5 * trn(Olefins) + c i,6 * trn(Aromatics) + c i,7 * T10 + c i,8 * T50 + c i,9 * T90  (Eq 4-1) 

In this formalism, the coefficients c i,1 through c i,9 are the internal coefficients for the vector as 
given in the table, and the variables defining the vector are used in the calculation in their 
normalized form (standardized to mean 0 and standard deviation 1).  When Eq. 4-1 is applied to 
the values for a specific fuel, the computed values Vi are the vector “scores” for the fuel, which 
measure the extent to which the fuel is similar (or dissimilar) to the characteristic represented by 
the vectors.  The vector scores are the values used in this analysis as alternative descriptions of 
the fuels. 

While the meaning of the vectors is complicated by the mathematics, what is clear, at least 
directionally, is that the vectors represent the following trends: 

• Vector 1 – a trend toward fuels with more n-paraffins and aromatics and less olefins, 
leading to elevated distillation curves compared to the average fuel. In the opposite 
direction along this axis, one would find fuels with more olefins and less n-paraffins 
and aromatics and lower distillation curves. 

• Vector 2 – a trend toward fuels with more n-paraffins (excluding C4), cyclo-paraffins, 
olefins and aromatics, and with less C4 and iso-paraffins, along with varied minor 
effects on the distillation curve compared to the average fuel. 

• Vector 3 – a trend toward fuels with more n-paraffins and cyclo-paraffins, and 
slightly more iso-paraffins and olefins, with less aromatics; the distillation curve is 
made steeper primarily through depression of T10. 

• Vector 4 – a trend toward fuels with less n-paraffins (excluding C4) and iso-paraffins, 
and more of the remaining constituents, resulting in a much steeper distillation curve 
that is depressed at T10 and elevated at T50 and T90. 
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Table 4.3. Definition of Vectors Forming Fuel Model. 

 Vector 1 Vector 2 Vector 3 Vector 4 

Percent of Fuel Variance 47% 36% 13%   3% 
Cumulative Percent 47% 83% 96% 99% 

Internal Coefficients     

trn(ParaXC4)  0.269   0.427  0.265 -0.290 

trn(ParaC4)  0.372  -0.246  0.393  0.030 

trn(iPara)  0.020  -0.552  0.098 -0.143 

trn(cycloPara)  0.034  0.387  0.654  0.115 

trn(Olefins) -0.422  0.253  0.092  0.175 

trn(Aromatics)  0.208  0.376 -0.544  0.189 

T10  0.445  0.059 -0.156 -0.631 

T50  0.448  0.178 -0.083  0.360 

T90  0.410 -0.251  0.042  0.536 
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Because the meaning of the vectors is difficult to intuit from the tabulation of their internal 
coefficients, an interactive tool called the Fuel Panel has been created to display the effects of the 
vectors in a more intuitive manner.  Section 9 describes its use, along with the other simulators 
created in the work. 

As seen above, the vectors represent changes in the chemistry of fuels, with corresponding 
effects on the distillation curve. While generalized by PCA to have desirable mathematical 
properties, the vectors are actually quite similar to the blend stock substitutions that were used to 
create the experimental fuels. Any of the substitutions – for example, a change from A100 to 
A90D10 – induces a change in the chemical composition and in other properties of the fuel, 
including boiling points. The changes are proportional to the volumetric extent of the 
substitution, but occur in fixed ratios among the variables. The same qualitative properties hold 
for the vectors of the fuel model, but the use of variables in normalized form (rather than 
physical units) tends to obscure the similarity. 

Figure 4.1 shows the similarity between vectors and blend stream substitutions by plotting the 
vector scores for the experimental fuels in two-way scatter plots. Vector scores are measures of 
the degree to which the fuels express the characteristics represented by the vectors; they are 
easily calculated from the fuel properties and the internal coefficients of the vectors as 
demonstrated in Appendix A. A score is positive when the fuel deviates from the average fuel in 
one direction along the axis and is negative when the deviation from average is in the opposite 
direction. In the first case (positive scores), one might say that a fuel is much like the 
characteristic represented by the vector, while in the other case (negative scores) one might say 
that the fuel is much unlike the characteristic. While “score” may seem an abstract term, it is 
simply a measure of where a fuel falls along a principal component axis.  It is no different than 
saying that a particular fuel has a score (value) of 89 as measured along the octane axis. 

From the figure, we see that Vector 1 represents a characteristic that is explored by the A vs. D 
and C vs. D blending substitutions (in addition to the single fuel A50C20D30 involving all three 
blend streams). As the quantity of D is increased from zero, the A-series fuels move from right to 
left along the Vector 1 axis at a nearly-constant value for Vector 2. As the quantity of D is 
increased in the C-series, the fuels move from left to right along the Vector 1 axis at a nearly-
constant Vector 2 score. Thus, Vector 1 represents the tradeoff of chemistry and its related effect 
on boiling points that is explored by the A-series and C-series substitutions. Although the two 
series do not explore the characteristic represented by Vector 2, they are distinguished from each 
other by their differing locations on the Vector 3 axis. As seen in the lower portion of the figure, 
the A-series fuels generally score low on the Vector 3 axis, while C-series fuels score higher. 
The fuels designed from B vs. D substitutions mix together the Vector 1 and 2 characteristics and 
follow an upward sloping line from left to right as the amount of D in the blend increases from 
zero. The B-series fuels vary along similar diagonals in the other portions of the figure. 

The fuel model vectors are seen to be generalized representations of the changes in fuel 
chemistry and properties that were created in the experimental fuels through the systematic 
substitutions of blend streams A, B, C and D. The vectors are not precisely aligned with the 
blend stream substitutions, but have been rotated in N-space by the PCA procedure to obtain the 
desirable mathematical properties of being independent variables over the dataset. Each vector 
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represents a particular change in fuel chemistry and boiling points that was explored in the 
design of the fuels. 

The eigenvalues state the proportions of the total variation in fuels associated with the vectors 
and, therefore, give a measure of how much of the experiment is devoted to each of the fuel 
changes. The fact that the first three vectors have a dominant role in explaining the fuel variation 
is a reflection of the use of three substitution strategies (A vs. D, B vs. D, and C vs. D) in 
blending the fuels. The presence of a fourth, smaller vector is a result of the re-sampling of  C in 
Phase 2 of the program. Vectors 1 through 4 do not represent the three blending substitutions and 
the C re-sampling individually. Rather, they are present in these numbers and relative sizes 
because of the degrees of freedom known to be present in the experimental fuels. 
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Figure 4.1:  Distribution of Experimental Fuels in Vector Space. 
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4.3 Statistical Model of Fuel Properties 

One aspect of the fuel model is the ability to predict additional physical properties of fuels, given 
the set of chemistry and boiling point variables used to define a base fuel and the presence, if 
any, of ethanol in the blend. The following sections describe the predictive models of fuel 
properties. 

4.3.1 Base Hydrocarbon Fuel Properties 

A statistical model of the properties of the base hydrocarbon fuels was developed using 
conventional regression analysis in which Vectors 1 through 4 of the fuel model were the 
independent variables and the measured properties of the 15 experimental fuels – including 
RON, MON, RMSens, SpGrav and RVP – were the dependent variables. The boiling points T10, 
T50, and T90 were included as dependent variables for completeness in the base fuel property 
models, although they are not true dependent variables because they are used in the definition of 
the vectors. The forms of the predictive equations and the coefficient values are contained in the 
fuels simulator, which can be exercised to make predictions for user-specified fuels and also 
serve to document the predictive equations. 

As shown in Figure 4.2, the models do a very good job of replicating base fuel properties, with 
the R2 statistic ranging from 0.95 to 0.99, except for RVP. Vectors 1, 2 and 3 are statistically 
significant predictors for RON, MON, RMSen and SpGrav, while Vector 4 is not statistically 
significant in any instance. The tendency for residuals in RON and MON to be consistent in 
direction (see open circles in figure) indicates the presence of a common, but unmeasured, 
influence. Because of the common influence, the model for sensitivity (RMSens) gives better 
predictions than the models for either RON or MON. The models for T10, T50, and T90 
necessarily involve all four vectors because the boiling points are used to define the vectors and 
all of the vectors contain information about the boiling point variation of the fuels.  

Although RVP was controlled to a nominal 7 psi target, the measured RVPs varied from 6.6 to 
7.5 psi. An effort was made to develop a predictive model for the RVP variation within this 
restricted range, but without success. Vectors 1-4 are found to have no predictive power for 
RVP. Because RVP was controlled to its target by the addition of n-butane to a fuel blend, a 
second effort was made to identify the amount of n-butane added to the blend, as distinct from 
the total n-butane present in the final fuel, but this also had no success as a predictor for RVP. 
Conceptually, the measured RVP value should be determined by the chemical composition of the 
fuel, although no variable in the dataset contains the information needed to make such 
predictions. This null result is not fully understood, but it may suggest that random variation in 
laboratory measurement of RVP swamp any systematic effect that fuel specifications have on the 
RVP variation seen in the experimental fuels. 
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Figure 4.2:  Predictive Power of Base Fuel Property Model. 

4.3.2 Statistical Model of Ethanol Effects on Fuel Properties 

Phase 2 of the program splash blended ethanol into selected base fuels, in target amounts varying 
from E10 to E30. The addition of ethanol dilutes the base fuel volumetrically and causes a 
number of fuel properties to change as a function of the quantity of ethanol added. To represent 
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these effects in the fuel model, a paired study was conducted in which the properties of each 
oxygenated fuel were compared to the properties of the base fuel from which it was blended. 
Figure 4.3 gives an example of this pairing. 
  

 

Figure 4.3:  Example of Paired Analysis for Ethanol Effects on Fuel Properties. 

 

In this analysis, ethanol content (volume %, as measured) was the primary independent variable, 
while the variables RON, MON, RMSen, SpGrav, RVP, T10, T50, and T90 were the dependent 
variables. In this instance, the boiling points are true dependent variables because the presence of 
EtOH changes the distillation curve. The model forms allowed for a quadratic term in ethanol 
content, in addition to the linear effect, and interactive terms with base fuel properties. The 
properties of oxygenated fuels are found to vary with ethanol content, showing evidence of non-
linear effects in some instances, but only relatively small interactions with properties of the base 
fuel (MON, density and the boiling points). As for the model of base fuel properties, the forms of 
the predictive equations and the coefficient values are contained in the fuels simulator, which can 
be exercised to make predictions for user-specified fuels (as described in Section 9) and also 
serve to document the predictive equations. 

Figure 4.4 shows the primary effects of ethanol blending as predicted by the fuel model. Octane, 
both RON and MON, are shown to increase with the addition of EtOH, but at rates that show 
diminishing returns at higher oxygenate levels. RON increases more rapidly than MON, so that 
sensitivity increases significantly. Although the fuel model is not able to predict the actual RVP 
of individual base fuels, it does show the expected trend of RVP with the addition of ethanol.  
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Figure 4.4:  Primary Effects of Ethanol Blending for the Average Fuel. 
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The RVP effect peaks at about 10% ethanol content, having increased RVP nearly 1 psi above 
the level of the base fuels, before turning around and beginning to decline back toward 7 psi at 
higher concentrations. This statistical result is consistent with the known chemical behavior of 
the ethanol molecule in hydrocarbon fuels. The addition of ethanol reduces all three boiling 
points below the levels of the base fuel. The effect on T10 levels off at higher concentrations, 
and the effect is greater on T50 than on T90, as expected. 

Figure 4.5 illustrates the predictive ability of the complete fuel model. Base hydrocarbon fuels 
are plotted using blue diamonds, while the oxygenated fuels are plotted using red diamonds. 
With the exception of RVP, the model is generally successful in predicting the properties of the 
experimental fuels. The model has a good ability to predict octane, sensitivity and specific 
gravity. It has a generally good ability to predict boiling point effects, although the T50 and T90 
predictions have substantial errors for some fuels. The model’s ability to predict RVP is poor – it 
is unable to predict the variation in RVP for base hydrocarbon fuels, but it does capture the 
nonlinear increase in RVP with added ethanol content. 
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Figure 4.5:  Predictive Ability of Final Fuel Model for Base and Oxygenated Fuels. 

4.4 Generation of Parametric Fuels 

The studies of engine performance presented in later sections are based on the analysis of engine 
response to a group of fuels generated parametrically to span a wide range. The term parametric 
is used here to mean one or more factors that determine the performance of a system and can be 
varied in an experiment. The factors of interest are the characteristics of fuels as represented by 
the vectors in the fuel model. As shown at the beginning of this section, the experimental fuels 
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outline the boundaries of a region in fuel space (see Figure 4.1). The purpose of generating 
parametric fuels is to fill the interior of the outlined space with a range of intermediate fuels that 
could have been produced by the same blending strategy. The fuels are then used to exercise the 
predictive models for engine response to identify the most important trends in engine 
performance with respect to fuel characteristics. 

In concept, there are a number of different ways that a parametric fuel set could be generated. 
For example, one could construct a fuel model and parametric fuels directly from the measured 
properties of the blend Streams A, B, C, C', and D. Using an assumption of linear volumetric 
blending, for example, it would be possible to generate parametric fuels by selecting values for 
coefficients ai, bi, ci, and ci' in the equation below: 

 Fi  =  ai A  +  bi B  +  ci C  +  ci' C'  +  ( 1 - ai - bi - ci - ci' ) D  (Eq. 4-1) 

 

The coefficient values could be selected in either of two basic ways: 

• Systematically, by setting discrete levels for each coefficient and then enumerating all 
possible combinations of levels of the four coefficients. The number of parametric fuels 
generated by this method is calculated as the product of the number of discrete levels 
assigned to each of the coefficients. 

• Randomly, by making independent and random choices for the values of each of the four 
coefficients within a range of values determined to be suitable for the sampling. This 
method depends upon random chance to create combinations of the blend streams across 
the full extent of the fuel space and is known as random balance. Any number of 
parametric fuels can be generated by this method by repeated sampling. 

Both methods will consider not only the two-way substitutions used to create the experimental 
fuels (i.e., A vs. D, B vs. D, C vs. D.), but also blends involving three, four or five of the blend 
streams. The first method does so systematically using combinations of discrete levels for each 
stream, but will leave gaps unexplored between the selected fuels. The second method does so 
according to the principle of random balance, but in small samples one cannot be confident of 
having evenly and equally explored all parts of the fuel space and all combinations of the blend 
streams.  The analysis in the current work follows an approach for the generation of parametric 
fuels similar to that described above, but based on sampling from Vectors 1, 2, 3, and 4 of the 
fuel model. Both systematic and random sampling techniques have been used, but systematic 
sampling has generally been preferred because it assures even and equal coverage of the possible 
combinations in studies of modest size. 

Most of the analysis on engine performance that is presented in this report is based on a 
parametric fuels dataset having 249 members. This set was generated using the fuels simulator 
described in Section 9 by sampling the values of Vectors 1 through 4 over a range of ± 1 
standard deviation from the average fuel, and using from three to five discrete levels per vector. 
While PCA defines its vectors to be independent of each other, the actual fuel data used to define 
the vectors will not contain all combinations of the vector values that are possible. Thus, 
sampling the vectors can lead to combinations of vector values not seen in the actual data and to 
fuels with chemistries or properties outside the range seen in the data. Such fuels are possible 
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realizations of the blending strategy that produces the experimental fuels, but they lie outside the 
boundaries explored by the experimental fuels. Whether to include or exclude such fuels is a 
decision that must be made by the analyst in each case. For the parametric fuels set, fuels outside 
the range of experimental properties and chemistries were excluded, reducing the number of 
parametrically generated fuels to the 249 that survive. The fuel sets generated for parametric 
studies are discussed more fully in section 8.1. 

5. EXPERIMENTAL ENGINE DATA 

The engine used for  the AVFL-13 and 13b test programs  was a single cylinder research engine, 
loosely modeled after a European Ford passenger car engine, with a custom cylinder head 
equipped with two intake valves, one exhaust valve, and Sturmann hydraulic variable valve 
actuation hardware. Only one intake valve, equipped with a high swirl intake port, was used. The 
engine is also equipped with both port and direct fuel injection. Nominally, the engine was 
controlled slightly lean of stoichiometric air fuel ratio and combustion phasing was set to 5 
degrees after top dead center for all test points. As summarized in Table 5.1, three operating 
points were run, 1000 rpm (1.5 bar IMEP), 2000 rpm (3.0 bar IMEP), and 3000 rpm (5.5 bar/deg 
peak pressure rise).  For Mode 3, the 5.5 bar/deg rate of cylinder pressure rise corresponds to 
about 2.7 bar IMEP. The first point was chosen to represent idle, taking into account that the 
engine would not run well at either lower loads or lower speeds. The second point represents in-
city cruise conditions. The third condition represents higher load, higher speed engine operation, 
but was limited by a maximum allowed rate of cylinder pressure rise for the engine. 

Three engine control modes were run, consisting of port fuel injection with negative valve 
overlap (known as recompression-early injection or RCEI), port fuel injection with a second 
exhaust valve event during the intake stroke (known as re-breathing-early injection or RBEI), 
and direct injection with a second injection during the negative valve overlap period (known as 
recompression-split injection or RCSI). These three control modes were chosen to represent 
different options for achieving HCCI in order to determine if they had different operating 
characteristics or response to fuel changes.  In the engine test program, the RCSI mode was not 
tested in Phases 2a or 2b. 

Experimental variation arose from several defined sources. First, operating conditions such as 
temperatures, IMEP, or MFB50 were not set exactly for all experiments. And secondly, the 
experiments were conducted in three separate series of tests with engine and other changes 
between them.  
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Table 5.1: Definition of Engine Operating Modes. 

Test Condition Mode 1 Mode 2 Mode 3 

Engine RPM 1,000 2,000 3,000 

Combustion Phasing 
(MFB50, degrees ATDC) 

+5 deg +5 deg +5 deg 

IMEP 1.5 bar 3.0 bar  
Engine Output 

dPdCA   5.5 bar/deg 

Intake Air Temperature (°C) +100° +25° +25° 
 

6.  ENGINE SIMULATOR MODELS 

Statistical models for the response of engine performance to fuels and control modes were 
developed independently for each operating mode, and then were used to build engine simulators 
in the form of Excel spreadsheets. Fuels are represented in the response models using the vector 
representation of fuels developed with PCA. Differences in engine response by control mode are 
represented using the RCEI mode as a baseline and introducing dummy variables for the RBEI 
and RCSI modes. The predictive models include statistical controls for imprecision in meeting 
the experimental targets for combustion phasing, engine output, and intake air temperature, and 
additional statistical controls for systematic differences in engine response among Phases 1, 2a, 
and 2b of the testing. 

6.1   Development of Engine Models 

The performance of the test engine in any given test can be thought of as a response to a number 
of variables: 

• Engine speed (rpm), which also includes a corresponding load related target, as set by the 
dynamometer 

• The engine control mode chosen, whether RCEI, RBEI, or RCSI 

• The characteristics of the fuel chosen 

• The combustion phasing achieved, measured by MFB50  

• Engine output (as measured as IMEP or another variable), based on the fueling rate and 
other variables 

• External variables that influence engine performance, such as the intake air temperature 

• Internal variables related to changes in engine condition, such as those leading to 
differences in engine performance across the phases of the AVFL-13 testing. 

In a testing program that measured engine performance with respect to all of the variables, 
including sweeps in combustion phasing and engine output, it should be possible to develop a 
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single predictive model to represent a wide range of engine operating conditions. The AVFL-13 
testing takes a different approach, however, in that it measures engine performance only in three 
distinct operating modes, representing three well-separated regions in the full space of engine 
operations. A pilot study  attempted to develop a single, integrated model spanning all three 
operating modes. While the model resolved the gross differences among the modes, it proved to 
have limited ability to resolve differences within mode related to the effects of fuels and engine 
control modes. Thus, the work performed here takes the approach of estimating independent 
models of fuel and control mode effects for each operating mode. The model structure is 
identical across the modes, but the coefficient estimates and the terms retained in the final 
models will differ across the modes. 

Both Phases 1 and 2 of the engine testing considered the effect of varying characteristics of base 
(non-oxygenated) fuels on engine performance, while the effect of fuel oxygen was considered in 
portions of the Phase 2a and 2b testing. The AVFL Committee expressed an interest in having a 
single fuel and engine model that applied to both base and oxygenated fuels. Regression analysis 
is capable of resolving multiple causal effects that may be present in data, but a necessary 
condition is that the form of the regression models accurately fit the effects present in the data. In 
the context of this study, one must accurately specify how base fuel characteristics and fuel 
oxygen content affect engine performance in order to achieve the correct attribution of fuel 
effects. Any misspecification can lead to incorrect attribution of the effects between base fuels 
and fuel oxygen content. Because the oxygenated fuels were tested only in Phases 2a and 2b, and 
because fuel characteristics were not controlled during the splash blending, the Committee 
accepted the recommendation to separate the analysis of engine response between base and 
oxygenated fuels. 

The analysis of engine response to base fuel characteristics was conducted using conventional 
multivariate linear regression, as described in the following section. The analysis of engine 
response to fuel oxygenation was conducted in a separate analysis that paired engine 
performance on oxygenated fuels to the performance on the corresponding base fuels, as 
described in Section 6.3. 

6.2 Engine Models for Base (Non-Oxygenated) Fuels 

6.2.1 Mathematical Formulation 

The predictive models for engine response take the form of regression equations that relate 
engine performance, as measured by one of 15 dependent variables, to the conditions of the 
engine test, including engine control mode and base fuel characteristics. The engine performance 
metrics Pi are listed in Table 6.1, which gives the variable names, the units of measure, and 
identifies which variables were subject to a logarithmic transform. Dependent variables were 
entered in the statistical analysis as logarithms when their values spanned two or more orders of 
magnitude, when measured values could be close to zero but could not be zero or negative, or 
when the reported values are calculated as ratios of other variables. It is common practice to 
transform dependent variables in these circumstances to better represent what is often a log-
normal distribution of values. Dependent variables were used in the physical units as reported 
when values were sufficiently far from zero to mitigate the need to avoid zero or negative values, 
when the range spanned was less than two orders of magnitude, or when they already were 
measured in log units (noise measured in dB). There are no universal rules for the decision to 
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transform the dependent variable, and different choices could be made in some instances; it is 
unlikely that different choices would lead to substantially different predictions. 

 

Table 6.1. Summary of Engine Performance Metrics 

Performance Metric Variable Units Transform 

Air-fuel ratio lambda number ln 

Exhaust valve closing angle EVCA degrees ATDC none 

Indicated Specific Fuel Consumption ISFC gm/kwh ln 

Indicated Thermal Efficiency ITE number ln 

Indicated Specific Hydrocarbons ISHC gm/kwh ln 

Indicated Specific Carbon Monoxide ISCO gm/kwh ln 

Indicated Specific Nitrogen Oxides ISNOx gm/kwh ln 

Filter Smoke Number Smoke number ln 

Noise Noise dB none 

Indicated Mean Effective Pressure IMEP bar none 

Maximum Rate Cylinder Pressure Rise dPdCA bar/deg ln 

Combustion Duration CombDur millisecond ln 

Peak Cylinder Pressure PCP bar ln 

Coefficient of Variation, IMEP COV percent ln 

Combustion Efficiency CombEff number ln 

Exhaust Temperature ExhT ° C none 

 

 

 

Using the notation Pi,j to denote the i-th performance metric Pi (transformed or not) as measured 
on the j-th engine test, the mathematical form of the engine response model for any operating 
mode can be written as follows: 

Pi,j  =  ai  +  bi  ∗  (MFB50j – MFB50target) 

               +  ci ∗  (EngOutputj – EngOutputtarget)   

               +  di ∗  (IntakeTj – IntakeTtarget)  
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               +  ei ∗  dPhase2  +  fi ∗  dPhase2b 

               +  gi ∗  dRBEI  +  hi ∗  dRCSI   

               +   ii  ∗  V1  +   ji  ∗  V2  +   ki  ∗  V3  +   li  ∗  V4   

               + dRBEI ∗ ( mi ∗ V1 + ni ∗ V2 + oi ∗ V3 + pi ∗ V4 )  

               + dRCSI ∗ (  qi ∗ V1 +  ri ∗ V2 +  si ∗ V3 + ti ∗ V4 )              (Eq. 6-1) 

While Eq. 6-1 is complex, containing 19 individual terms, not all terms are retained in the final 
models for the operating modes and the terms can be organized into easily understood groups: 

• Coefficients bi, ci, and di are the statistical controls for the deviation of experimental 
conditions for test j from the nominal targets by operating mode given in Table 6.1. 

• Coefficients ei and fi are the statistical controls for the systematic variation in engine 
response among the phases. The control variable dPhase2 takes the value 0 for tests 
conducted in Phase 1 and the value 1 for tests conducted in Phase 2. The control variable 
dPhase2b takes the value 0 for tests conducted during Phase 2a (before the engine 
rebuild) and the value 1 for tests conducted during Phase 2b (after the rebuild). 

• Coefficients gi and hi measure the difference in the engine response in the RBEI and 
RCSI control modes, as additive corrections to the baseline engine response in the RCEI 
mode. 

• Coefficients {ii, ji, ki, li} measure the engine response to the fuel characteristics 
represented by Vectors 1 through 4 of the fuel model. The coefficients {ii, ji, ki, li} 
represent the baseline engine response to fuels applicable in all modes 

• Coefficients {mi, ni, oi, pi} and {qi, ri, si, ti} allow the engine response to fuel 
characteristics to vary in the RBEI and RCSI control modes, as additive corrections to the 
baseline fuel response. 

The model form given in Eq. 6-1 is the form used to begin the process of finding the best-fit 
models for each operating mode; in that process, many of the terms are rejected for lack of 
statistical significance. For example, no statistically significant interactions were found between 
the engine control modes and the fourth fuel vector, so that coefficients pi and ti do not appear in 
any of the final models. More generally, the choice of terms for any dependent variable will vary 
across for the three operating modes, and the terms will differ among the dependent variables. 
There are 15 dependent variables measured in each three operating modes, so that the 45 
different predictive models feed into the engine response models and simulators1. 

The predictive models were estimated using the Ordinary Least Squares (OLS) method as 
implemented by the SAS Proc REG and Proc GLM procedures. A stepwise selection process 
was used to search for the best-fit model for each dependent variable and operating mode. The 
selection process began with consideration of the full model form (Eq. 6-1) and used a backward 

                                                      
1 Note that one of the 15 dependent variables is an engine output measure (either IMEP or dPdCA, depending on 
operating mode) that is used as an experiment target and is not free to vary across tests. It is not truly a dependent 
variable in the statistical sense. 
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elimination process to reduce the model to only the statistically significant terms. The terms 
representing statistical controls for combustion phasing, engine output, and intake air 
temperature were required to be included in the model to assure that variation caused by 
experimental imprecision was fully controlled. Candidate terms were dropped from the model 
when they failed to reach at least the p=0.05 level of significance (95 percent confidence). Terms 
dropped in earlier stages could re-enter and remain in the model if they achieved the p=0.05 level 
of significance at a later stage. The resulting best-fit models achieve the highest R2 using those 
terms from Eq. 6-1 that achieve the p=0.05 level of significance or better. The presence of a term 
in the model means that one can be 95 percent confident that the observed effect does not arise 
merely by random chance. The absence of a term means that the effect cannot be detected with 
the desired confidence; an effect of some size may be present, but too small to detect in this data, 
or the term may have no effect on the dependent variable. 

The experimental testing obtained repeated tests (normally five) for each fuel and control mode. 
The repeat tests have been reduced to an average test result for each fuel and control mode, and it 
is the averaged values that are used in estimating the predictive models. At the start of the 
analysis, consideration was given to the possibility that individual tests covered sufficient range 
in combustion timing and engine output that some information could be obtained on the variation 
of engine response similar to “sweeps” in the two variables. However, the engine testing was 
sufficiently well-controlled to target values that the deviations offer no more than localized noise 
in the observed values, and not information on performance across a useful range of combustion 
timings and engine outputs. 

A subset of the entire engine test database was used to estimate the models. As previously 
described in Section 3, the test data associated with fuel B50D50 was struck from the analysis 
based on the evidence that the fuel characterizations were inconsistent or incomplete due errors 
in blending, measurement, or reporting. Further, the engine test data for indolene fuels were not 
used in estimating the predictive models, which are based solely on the experimental fuels. 
Further, an approach was adopted that controlled for the effects of experimental imprecision and 
engine drift over time that incorporates the statistical controls directly in the predictive models. 

6.2.2 Predictive Ability of Base Engine Models 

The quality of statistical models is perhaps most easily understood in the form of scatter plots of 
the observed and predicted values. Figure 6.1 presents such plots for the predictive models 
developed for Mode 2 (2000 rpm). Observed values are plotted on the horizontal axis, while the 
corresponding values predicted by the statistical models are plotted on the vertical axis. The solid 
black line marks the diagonal where the observed and predicted values are equal. In general, the 
predictive models do an acceptable job of representing the overall trend in engine performance 
observed in Mode 2, with a varying degree of scatter (unexplained variation) about the diagonal 
line depending on the variable. The plot for IMEP shows no scatter, because it was an 
experimental target in the Mode 2 testing and is not truly a dependent variable for the mode, 
while the plot for PCP shows the greatest scatter. One also sees that the models for CombEff and 
ExhT are backed by very little data, since the variables were measured only in Phase 2b (after 
engine rebuild). These models are not likely to be reliable no matter how good the fit to the data. 
In general, the predictive ability of the models is comparable to that obtained in many other 
successful studies in the area of motor vehicle performance. 
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Figure 6.1:  Comparison of Predicted vs. Observed Values for Mode 2 Engine Simulator Models. 
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Figure 6.1 (continued) 
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Figure 6.1 (continued) 

 

The scatter plots display the total predictive power of the models with respect to the data, but do 
not indicate how the predictive power is distributed among the many terms of  Eq. 6-1. In 
general, the predictive power of a model will be mixed among the statistical control variables 
and the variables representing the fuel and engine control effects that were the subject of the 
testing. A dependent variable may be strongly affected by the experimental imprecision in hitting 
the engine operation targets, it may be strongly affected by fuel characteristics and engine 
control modes, or both groups of variables may have strong effects. 

Tables 6.2 through 6.4 summarize the predictive ability of the best-fit models in each operating 
mode in terms of the overall R2 statistic and a qualitative classification of model quality based on 
the R2:  Strong for models having R2 ≥ 0.70; Good for models having R2 ≥ 0.50; and Weak/Poor 
for models having R2 < 0.50. The tables also offer insight on the question of the relative 
contributions from the statistical control (or adjustment variables) related to deviations from 
engine operating targets and the representations of test phase effects and fuel/engine control 
variables.  

Using Mode 1 (Table 6.2) as an example, the best-fit model for lambda achieves an overall R2 of 
0.724, which is classified as Strong. However, the predictive ability is almost entirely the result 
of the contributions from the statistical control variables (R2 = 0.701), while the fuel and engine 



 40

control variables add only 0.023 to the overall R2. In Mode 1, the variance in lambda is primarily 
determined by changes in the engine operating conditions of the tests and by changes in engine 
condition across the phases. Fuel characteristics and the engine control mode explain only a very 
small part of the observed variance. 

Looking across the tables, one can see that engine performance in Mode 1 (1000 rpm) is 
dominated the factors represented by statistical controls, while the effects of fuels and engine 
control mode are generally modest. Only EVCA and Smoke depend significantly on fuels and 
engine control (R2 contribution ≥ 0.50), while ISCO shows a modest dependence (R2 
contribution ≥ 0.30). A majority of the predictive models are classified as Strong or Good 
overall; however, ISFC and ITE are poorly predicted in Mode 1, as is ISHC. 

In Mode 2 (2000 rpm), engine performance continues to be strongly affected by the factors 
represented by the statistical controls, but it is now more strongly affected by fuels and engine 
control mode effects (Table 6.3). EVCA and Smoke are, again, significantly affected by fuels 
and engine controls (R2 contribution ≥ 0.50), but six variables (ISHC, ISCO, ISNOx, CombDur, 
PCP, and COV) now show a modest dependence on those variables (R2 contribution ≥ 0.30). All 
of the predictive models except for COV are classified as Strong or Good overall. 

In Mode 3 (3000 rpm), engine performance is as strongly affected by fuels and engine control 
mode as it is by the factors represented by the statistical controls (Table 6.5). ISCO, ISNOx and 
COV are the variables most strongly affected by fuels and engine controls (R2 contribution ≥ 
0.50), while seven variables (lambda, EVCA, ISFC, ITE, ISHC, Smoke, and IMEP) show a 
modest dependence (R2 contribution ≥ 0.30). All predictive models are classified as Strong, 
except for IMEP (Good) and CombDur (Weak/Poor). 

In general, the quality of the engine response models increases when one moves from Mode 1 to 
Modes 2 and 3 with higher engine speeds and engine output. The role of fuels and the engine 
control mode also becomes more important, particularly in Mode 3 at high speed (3000 rpm) and 
with the test condition targeting a maximum rate of rise in cylinder pressure. 
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Table 6.2: Summary of R2 Statistic for Mode 1 (1000 RPM) Engine 

Simulator Model. 

Best Fit Model R2 Contributions From Dependent 
Variable 

R2 Classification 
Statistical 
Controls 

Fuel and 
Engine Control 

Effects 

Lambda 0.724 Strong 0.701 0.023 

EVCA 0.697 Good 0.166 0.531 

ISFC 0.269 Weak/Poor 0.136 0.133 

ITE 0.309 Weak/Poor 0.170 0.138 

ISHC 0.454 Weak/Poor 0.290 0.164 

ISCO 0.833 Strong 0.504 0.329 

ISNOx Emissions barely above detection threshold 

Smoke 0.668 Good 0.114 0.554 

Noise 0.553 Good 0.470 0.083 

IMEP Not a dependent variable 

dPdCA 0.782 Strong 0.608 0.174 

CombDur 0.703 Strong 0.476 0.227 

PCP 0.910 Good 0.838 0.072 

COV 0.688 Strong 0.570 0.118 

CombEff 0.992 Strong 0.969 0.023 

ExhT 0.979 Strong 0.879 0.099 
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Table 6.3: Summary of R2 Statistic for Mode 2 (2000 RPM) Engine Simulator 

Model. 

Best Fit Model R2 Contributions From Dependent 
Variable 

R2 Classification Statistical 
Controls 

Fuel and 
Engine Control 

Effects 

Lambda 0.725 Strong 0.439 0.286 

EVCA 0.571 Good 0.025 0.546 

ISFC 0.565 Good 0.335 0.230 

ITE 0.632 Good 0.390 0.242 

ISHC 0.844 Strong 0.383 0.462 

ISCO 0.793 Strong 0.424 0.369 

ISNOx 0.855 Strong 0.355 0.499 

Smoke 0.694 Good 0.093 0.601 

Noise 0.720 Strong 0.495 0.225 

IMEP Not a dependent variable 

dPdCA 0.802 Strong 0.636 0.166 

CombDur 0.694 Good 0.349 0.345 

PCP 0.834 Good 0.509 0.326 

COV 0.469 Weak/Poor 0.044 0.425 

CombEff 0.978 Strong 0.685 0.293 

ExhT 0.996 Strong 0.928 0.069 
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Table 6.4: Summary of R2 Statistic for Mode 3 (3000 RPM) Engine Simulator 

Model. 

Best Fit Model R2 Contributions From 

Dependent 
Variable 

R2 Classification
Statistical 
Controls 

Fuel and 
Engine 
Control 
Effects 

Lambda 0.847 Strong 0.388 0.459 

EVCA 0.865 Strong 0.488 0.377 

ISFC 0.810 Strong 0.476 0.334 

ITE 0.842 Strong 0.530 0.312 

ISHC 0.890 Strong 0.394 0.496 

ISCO 0.888 Strong 0.265 0.622 

ISNOx 0.860 Strong 0.223 0.638 

Smoke 0.826 Strong 0.420 0.406 

Noise 0.705 Strong 0.537 0.167 

IMEP 0.524 Good 0.116 0.408 

dPdCA Not a dependent variable 

CombDur 0.474 Weak/Poor 0.335 0.139 

PCP 0.913 Strong 0.782 0.131 

COV 0.825 Strong 0.166 0.660 

CombEff 0.989 Strong 0.825 0.164 

ExhT 0.996 Strong 0.981 0.015 
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6.3 Engine Models for Oxygenated Fuels 

In Phase 2, oxygenated fuels were created by splash blending ethanol in varying amounts with 
five selected base fuels to create five series of oxygenated fuels (Table 6.5). Two fuel series were 
blended and tested in Phase 2a. Fuel A79D21 was blended at three ethanol levels (nominally 
E10, E20 and E30), with the measured ethanol content actually reaching 35% by volume for the 
E30 fuel. The C100 base fuel was blended to a single E20 level, but as described in Section 3.3, 
the C100E20 fuel was excluded from the analysis because its reported distillation curve was 
inconsistent with a 20 percent blend of ethanol with C100. Three fuel series were blended and 
tested in Phase 2b, using the base fuels B100, B77D23 and C50D50 blended with ethanol at two 
levels (nominally E15 and E30).  

With exclusion of the C100E20 fuel, the dataset contains nine different oxygenated fuels, with 
measured ethanol contents ranging from 11% to 35% and created from four different base fuels. 
As will later be seen, the fact that only one fuel series was tested in Phase 2a introduces 
confounding between possible effects related to the characteristics of the single base fuel and 
known differences in the engine condition between Phases 2a and 2b due to the engine rebuild. 
In general, this is a relatively small dataset, and the analysis has been intentionally cautious to 
avoid over-interpreting the data. 

 

Table 6.5: Summary of Oxygenated Fuel Design. 

Base Fuel Test 
Phase 

Nominal Blending 
Levels 
(vol %) 

Measured 
Ethanol Contents 

(vol %) 

Number of 
Fuels 

A79D21 2a E10, E20, E30 11%, 22%, 35% 3 total 

C100 2a E20 21% excluded 

B100 2b E15, E30 16% 2 total 

B77D23 2b E15, E30 16%, 29% 2 total 

C50D50 2b E15, E30 16%, 30% 2 total 

 

6.3.1 Mathematical Formulation 

The testing of oxygenated fuels during Phase 2 can be viewed as a sub-experiment that is distinct 
from the Phase 1 experiment designed to test engine response to base fuel characteristics. The 
key points of distinction are that the oxygenated fuels were splash blended with no effort to 
control RVP to the 7 psi level of the base fuels (or to control other fuel property changes) and 
that the testing was conducted late in the program (entirely in Phase 2 and predominantly in 
Phase 2b after the engine rebuild). After consideration of these distinctions, the decision was 
made to conduct the analysis of engine response to oxygenated fuels as a separate analysis using 
a paired variable technique, rather than as part of the analysis of engine response to base fuels. 
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For any given test, the paired variables are the engine response on the oxygenated fuel and the 
engine response on the base fuel. 

To include the oxygenated fuels with the base fuels in a composite analysis of engine response 
would require specifying a regression model that accurately captures all terms that are germane 
to modeling how the engine responds to the base characteristics of fuels, to the oxygen content of 
the fuels, and to potential interactions among base and oxygenated fuels. In a properly specified 
model – meaning one that contains all necessary terms – and with suitable data, a conventional 
regression analysis should be able to separate the effects of each term and provide unbiased 
estimates of the response coefficients. However, the process depends critically on the proper 
specification of the regression model. In cases where (as is true here) the data do not constitute 
an orthogonal experiment, the regression fit can lead to unsatisfactory results due to aliasing – 
including the mixing of effects between base fuel characteristics and oxygen content – whenever 
needed terms are omitted or given mathematical forms that depart from the physical reality. Such 
concerns are always present to some degree in the analysis of non-orthogonal data, but were 
judged to be of greater concern here because of the relatively small number of oxygenated tests. 

In a paired analysis, the engine performance on the ith oxygenated fuel is compared to the engine 
performance on the corresponding base fuel from which the ith fuel was blended. The difference 
in performance between the oxygenated and base fuels defines the engine response to fuel 
oxygenation; statistical models are then built to explain the response as a function of ethanol 
content, engine control mode, and possibly base fuel characteristics and other variables. The 
primary advantages of this approach are: 

• Calculation of the differential engine response gives a direct and unambiguous measure 
of how fuel oxygenation affects engine performance. In a combined analysis involving 
both base and oxygenated fuels, the engine response to fuel oxygenation would be 
inferred (rather than calculated) by segregating the terms involving oxygen content from 
those involving other effects. 

• Estimation of the oxygen effect is not dependent on the quality of the statistical model for 
the base fuel effects, because the base fuel effect is present in both of the paired tests (the 
oxygenated fuel and its corresponding base fuel). 

The primary drawback to the paired analysis is that it is performed separately from the analysis 
of base fuels and its results must be grafted onto the results of the latter in order to make 
predictions for all fuels. This has been done in a seamless way in the engine simulators created 
for this study and should not be apparent to users. 

The dependent variables in the paired analysis are the calculated differences in engine response, 
taking into the account the use of a logarithmic transform for some variables (as documented in 
Table 6.1). When the engine response variable is transformed to a logarithm in the analysis of 
base fuel effects, the dependent variable in the paired analysis is computed as the difference in 
logarithms between the oxygenated and base fuel tests; this is equivalent to the logarithm of the 
ratio of the measured values between the oxygenated and base fuel tests. In other cases, the 
dependent variable is computed as the difference in measured values between the oxygenated 
and base fuel tests. 
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Using the notation Pi,j to denote the ith performance metric Pi (transformed or not) for the j-th 
engine test, the mathematical form of the engine response model for any operating mode can be 
written as follows: 

 Δ Pi,j  =  Pi,j  -  Pi,Base        (Eq. 6-2)  

where Pi,Base refers to the corresponding engine performance metric for the base fuel. Then, the 
regression models in the paired analysis take the form: 

ΔPi,j  =   ai  +  bi * EtOH  +  ci  * EtOH2 

         +  di ∗  dRCEI * EtOH 

                     +  ei  ∗ [ (MFB50j–MFB50target)  –  (MFB50j,Base–MFB50target)  ] 

                     +  fi ∗  [ (EngOutputj–EngOutputtarget)  –  (EngOutputj,Base–EngOutputtarget)  ] 

                     +  gi ∗  [ (IntakeTj–IntakeTtarget)  –  (IntakeTj,Base–IntakeTtarget) ]            (Eq. 6-3) 

 

The coefficients bi and ci measure the engine response to ethanol content (measured in vol %), 
with the presence of a quadratic coefficient allowing for a change in the response at higher 
ethanol levels (i.e., accelerating or diminishing returns). The coefficient di represents a 
potentially different engine response to ethanol in the RCEI mode. Phase 2 did not conduct tests 
in the RCSI mode. The dummy variable RBEI is multiplied by the EtOH content of the fuel to 
account mathematically for the requirement that the differential engine response to an 
oxygenated fuel must go to zero as the ethanol content goes to zero. The coefficients { ei, fi, and 
gi } represent the statistical controls for the deviation of experimental conditions from the 
nominal values of the targets for each operating mode. These terms allow for the fact that the 
tests on the oxygenated fuel and on the base fuel will deviate in different ways from the targets. 

The data used in the analysis are the repeat-test weighted averages for the nine oxygenated fuels 
and the corresponding four base fuels, giving 13 data points in each engine control model (RCEI 
and RBEI) and 26 data points across all fuels. The test data for base fuels are introduced with 
computed values of zero for the values of the dependent variables, but an intercept is fit by the 
regression to recognize that the observed values for base fuels do not necessarily lie on the 
response line due to random variation. The response lines for the paired variables are not forced 
to pass through the origin (zero response at zero oxygen content), but all of the lines do so within 
the standard errors of estimate. 

Because of the small number of data points, it is unlikely that all of the terms in Eq. 6-3 can be 
reliably estimated as a starting point for stepwise regression. Therefore, a forward selection 
technique was employed in which the starting model consisted of the three statistical control 
terms and the linear term in EtOH. The statistical control terms were required to be included in 
the models to assure that experimental imprecision was fully controlled, but the EtOH and other 
terms given in Eq. 6-3 were included only when they achieved the p=0.05 level of significance or 
better. 
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6.3.2 Predictive Ability of Oxygenated Fuels Models 

Tables 6.6 through 6.8 summarize the statistical models for engine response to oxygenated fuels 
by operating mode. Each table gives the R2 statistics for the dependent variables measured in the 
mode, along with characterization of the EtOH effect as linear or quadratic and the estimated size 
of the EtOH effect computed at 15% by volume. The instances where the effect differs by engine 
control mode are also given, as are the percentage difference compared to the baseline RCEI 
control mode.  For example, the analysis indicates that ISFC is 15% higher under the RBEI 
control mode when the engine is operated at 1000 rpm.   

In most instances, the best-fit statistical models indicate that no statistically significant effect of 
fuel oxygenation can be detected, given the number of data points and the variance unavoidably 
introduced by experimental imprecision. Where an effect of fuel oxygenation is detected, the 
effect of fuel oxygenation is generally linear with respect to the blending volume; in the two 
instances where pure quadratic effects were found, these show only small degrees of curvature 
and would be well-approximated by linear slopes. In only six instances overall is the effect of 
fuel oxygenation found to depend upon engine control mode, and in each case the result is to say 
that the effect is present in one mode but not the other. 

A substantial degree of caution must be exercised in considering these results because of the 
small number of tests. For example, detecting a fuel oxygen effect in one control mode, but not 
the other, is fully consistent with the hypothesis that an effect is present and of the same size in 
both control modes, but can be detected in only one mode because of the small sample size. 
Further, the detection of an effect for a particular dependent variable in one operating mode, but 
not in others, is difficult to interpret conclusively. It is certainly reasonable to find that the 
oxygen effect appears in different metrics in different modes because of the substantially 
different engine speed, fueling rates and cylinder temperature/pressure profiles by mode. On the 
other hand, there are 45 different models (dependent variables times operating modes) and 
multiple statistical tests of significance at the p=0.05 level in each case. Given the large number 
of tests, it is likely that some of the findings, at least, occur because of random chance. Across 
operating modes, the data indicate that fuel oxygenation has generally small effects on a small 
number of performance metrics and that there is little evidence that the effects are of 
substantially different size between the RBEI and RCEI control modes. A later section showing 
the results of the parametric studies will indicate that the primary effects of fuel oxygenation 
appear to be related to dilution of the energy density of the bulk fuel and effects, both adverse 
and beneficial, related to reduction in cylinder temperatures. 
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Table 6.6:  Summary of Engine Response Model for 
Oxygenated Fuels: Mode 1 (1000 rpm). 

 R2 
Type of 
EtOH 
Effect 

Size of 
Effect at 

15% EtOH 

Dependence on 
Control Mode 
(versus RCEI) 

Lambda 0.68 – – – 

EVCA 0.01 – – – 

ISFC 0.57 – – +15% for RBEI 

ITE 0.38 – – – 

ISHC 0.24 – – – 

ISCO 0.87 Linear +14% – 

ISNOx n/a – – – 

Smoke 0.40 – – – 

Noise 0.42 – – – 

IMEP Not a dependent variable 

dPdCA 0.93 – – – 

CombDur 0.74 Linear +7% – 

PCP 0.85 – – -7% for RBEI 

COV 0.71 – – – 

CombEff 0.78 Linear -1% – 

ExhT 0.46 Linear -5°C – 
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Table 6.7:  Summary of Engine Response Model for Oxygenated 
Fuels: Mode 2 (2000 rpm). 

Dependent 
Variable R2 

Type of 
EtOH Effect

Size of 
Effect at 

15% EtOH 

Dependence on 
Control Mode 
(versus RCEI) 

Lambda 0.30 Linear +5% – 

EVCA 0.30 – – – 

ISFC 0.80 – – +15% for RBEI 

ITE 0.38 – – – 

ISHC 0.44 Linear +9% – 

ISCO 0.29 – – +50% for RBEI 

ISNOx 0.37 – – – 

Smoke 0.43 – – – 

Noise 0.71 – – – 

IMEP Not a dependent variable 

dPdCA 0.67 – – – 

CombDur 0.59 – – – 

PCP 0.69 Linear -2% – 

COV 0.28 – – +91% for RBEI 

CombEff 0.09 – – – 

ExhT 0.34 – – – 
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Table 6.8:  Summary of Engine Response Model for 
Oxygenated Fuels: Mode 3 (3000 rpm). 

Dependent 
Variable R2 

Type of 
EtOH 
Effect 

Size of 
Effect at 

15% EtOH 

Dependence on 
Control Mode 
(versus RCEI) 

Lambda 0.40 – – – 

EVCA 0.37 – – – 

ISFC 0.75 Quadratic +3% – 

ITE 0.06 – – – 

ISHC 0.42 – – – 

ISCO 0.40 – – – 

ISNOx 0.59 Linear  -27% – 

Smoke 0.19 Linear 126% – 

Noise 0.82 Linear -0.2 – 

IMEP 0.39 – – – 

dPdCA Not a dependent variable 

CombDur 0.35 – – – 

PCP 0.61 Quadratic -2% 0% for RBEI 

COV 0.36 – – – 

CombEff 0.66 – – – 

ExhT 0.88 Linear -18°C – 
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Figure 6.2 emphasizes the need for caution in interpreting these results through the divergent 
trends and scatter seen in the individual graphs making up the figure. This figure displays the 
Mode 2 (2000 rpm) test data for five important metrics of engine performance as a function of 
fuel ethanol content. Only the RCEI control mode results are shown for clarity. While there is 
scatter among the tests and some apparent differences among the base fuel series, the graphs 
suggest overall that increasing oxygen content does not affect the EVCA needed to achieve 
combustion phasing and engine output targets.  ISFC is increased, ISNOx may or may not be 
affected, while Smoke is unaffected, as is dP/dCA. 

In particular, note how the graphs indicate that the A79D21 fuel series (the only fuel series run in 
Phase 2a) often shows a different trend than the three fuel series run in Phase 2b (following the 
engine rebuild), which are generally more consistent with each other. Base fuel A79D21 has the 
highest score for the Vector 1 characteristic among the four base fuels that were oxygenated, 
while the fuels tested in Phase 2b were either moderate or low in that characteristic. It is also 
known that the engine rebuild affected performance, particularly in making the engine less 
susceptible to producing Smoke. The dilemma is how to interpret the divergent results for the 
A79D21 fuel series, since for some plots like ISFC, ISNOx, and Smoke, the data for 
A79D21E30 diverge from the trends for the other base fuels (see Figure 6.2). Unfortunately, we 
do not have enough date to determine if this is a base fuel effect, from the engine rebuild 
between Phases 2a and 2b, or from some experimental measurement problem.  

It is not possible to answer these questions conclusively given the available data on oxygenated 
fuels. The statistical analysis is not equipped to distinguish between effects related to base fuel 
characteristics versus differences between the test phases induced by the engine rebuild. Only 
one fuel series was tested in Phase 2a, and its base fuel is the one most different from the other 
fuels. This confounding of base fuel and test Phase effects can be resolved only with further 
testing. 
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Figure 6.2: Ethanol Effects on Engine Performance: Experimental Data, Mode 2 (2000 rpm). 
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7. USE OF MODELS 

Once the models have been developed and verified, they can be used to conduct various 
parametric studies to show trends uncovered in the data. These studies can encompass engine 
control mode, engine operating mode, or fuel variable effects. For these types of studies, the 
variable or variables of interest would be set up in a parametric manner to span the range of the 
variables of interest, within the range that the experiments encompassed. Each variable is 
normally set to incremental levels, and the number of members in a parametric run is the 
multiplicand of the number of levels for each variable. The other variables in the problem can be 
set to a nominal value, an optimum value, or allowed to vary over their range in the experimental 
data. When the models are exercised in this manner, a given output variable may or may not 
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show a correlation to a given input variable and this correlation is used to study and demonstrate 
the effects being studied. Examples of questions which will be studied in this manner are: 

• What engine control mode provides the best overall engine performance when evaluated 
using a mid-point fuel? 

• Are there systematic variations in engine response for the different test phases? 

• What engine variables show correlation to fuel changes? 

• What is response of engine to changes in sensitivity or chemistry at constant (R+M)/2? 

Using the models to perform parametric studies in this manner provides several advantages. 
First, it allows all the data to participate in studying the trends, since all the data were used to 
construct the models. Second, since these models are easy to use and will be delivered to CRC as 
part of this project, other studies can be conducted by members, rather than being limited to 
studies and conclusions included in this report. This means that this report can be considered a 
launch point and instruction manual for the use of these models by others to continue the study 
of fuel and engine effects. In these parametric studies, the fuels are represented by principal 
components and the resulting vector values for each parametric fuel. Using a vector 
representation of the fuels provides the ability for all the fuel variables to participate in the 
model, while retaining the correlations between fuel variables that exist in the original fuels. The 
use of principal components does not eliminate correlation between fuel variables; rather it 
moves the need to choose between correlated variables to a point after the construction of the 
models and the parametric studies. The authors believe that the shift of the decision point to the 
final stage of the analysis provides the user with the most options for studying engine and fuel 
responses. 

8. PARAMETRIC STUDIES 

This section describes a number of parametric studies which were performed using the fuels and 
engine models. The studies were selected to demonstrate the use and capabilities of the modeling 
tools and also to point out interesting trends found in the data. There are obviously a very large 
number of other studies which could be performed using the fuels and engine simulators supplied 
with this report. In all cases, one must define inputs to fall within the range of experimental data 
and interpret the results for likelihood and ability to be explained. 

8.1 Fuel Selection for Parametric Studies 

The following studies were done with either a single fuel of ‘average’ properties and chemistry, 
with a general parametric fuel set of 249 members which was constructed for this purpose, or 
with a set of parametric fuels screened to have a fixed (R+M)/2 and as wide a range of chemistry 
and sensitivity as possible. The single fuel of average properties was constructed by setting all 
PCA vector values to zero, in order to determine the midpoint or average fuel for the 
experimental fuels. This can be done with the fuel panel simulator by using the “Vectors” tab 
(described in Section 9.1.3) and setting the values of all of the vectors to zero.  This results in a 
fuel with properties and chemistry as shown in Table 8.1. 
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Table 8.1:  Average Fuel (Vector Scores = 0.0). 
PROPERTIES, 
CHEMISTRIES UNITS VALUE 

n-paraffins except C4 % 9 

n-paraffins, C4 % 4 

iso-paraffins % 43 

cyclo-paraffins % 10 

olefins % 9 

aromatics % 25 

RVP psi 7.1 

RON number 82.6 

MON number 77.5 

sensitivity number 5.1 

specific gravity number 0.740 

T10 deg.F 161 

T50 deg.F 234 

T90 deg.F 321 

 

A second, more general, parametric set of fuels was constructed by sampling the vector values 
systematically using three to five discrete steps over a range from minus one standard deviation 
to plus one standard deviation in a nested manner that itemizes all combinations of vector values.  
Fuel chemistry and properties were then estimated from the vector representation, and fuels that 
fell outside of the experimental range for chemistry and properties were eliminated. This created 
a cluster of 249 fuels which covered the central range of the experimental fuels. The coverage of 
these fuels in vector space, compared to the experimental fuels, is shown in Figure 8.1. The 
parametric fuels form a cluster which falls within the vector ranges of the experimental fuels and 
also cover the range of experimental properties and chemistry exhibited in the experimental 
fuels. Refer to Figure 4.1 for a larger version of these plots with only the experimental data 
points shown. 
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Figure 8.1:  Coverage of Experimental and Parametric Fuels in V1, V2, and V3 Vector Space. 

Finally, a set of 31 fuels with constant (R+M)/2 were constructed by first creating a set of 5000 
fuels which randomly and evenly covered the range of vector values for the experimental fuels. 
The 5000 fuels were pared down to fit within the boundaries of the experimental vector pairs 
(leaving 1290 fuels). Then RON, MON, and (R+M)/2 were calculated using formulas extracted 
from the simulators, and 32 fuels were selected which fell between 86.9 and 87.1 (R+M)/2. 
These fuels were then passed through the fuel panel to calculate properties and chemistry for 
input to the engine simulators. The multiple math steps of this process resulted in a slightly 
larger deviation for (R+M)/2 than desired, but final fuels still fell within a band of ±0.5. This set 
of fuels is shown in Table 8.2. For these fuels, octane is developed by a combination of iso-
paraffins, olefins, and aromatics. Fuels with large percentages of iso-paraffins have low 
sensitivity, and fuels with large percentages of aromatics or olefins have high sensitivity. At mid-
sensitivity (≈5), aromatics and olefins can be traded against each other for constant sensitivity 
and varying chemistry.  

 
Table 8.2:  Parametric Fuels Selected for Constant (R+M)/2. 

V1 value V2 value V3 value nPxc4 nPc4 iP cP olefin aromatic RVP RON MON sensitivity (R+M)/2 SG T10 T50 T90
-2.12 0.95 -1.01 0.06 0.00 0.29 0.07 0.29 0.28 7.1 93.0 82.0 10.9 87.5 0.747 148 213 283
-1.49 1.03 -1.25 0.07 0.01 0.29 0.06 0.23 0.33 7.1 93.0 82.2 10.8 87.6 0.754 153 222 291
-0.27 1.20 -1.67 0.09 0.01 0.28 0.06 0.14 0.43 7.1 92.9 82.1 10.8 87.5 0.772 165 241 305
-1.25 1.07 -1.31 0.08 0.01 0.29 0.07 0.22 0.34 7.1 92.5 81.7 10.8 87.1 0.757 155 225 293
-0.69 1.16 -1.50 0.09 0.01 0.28 0.06 0.17 0.39 7.1 92.4 81.6 10.8 87.0 0.766 161 235 300
-1.55 1.02 -1.22 0.07 0.01 0.29 0.07 0.24 0.32 7.1 92.6 81.9 10.7 87.3 0.752 152 220 290
-1.52 1.04 -1.21 0.07 0.01 0.30 0.07 0.23 0.32 7.1 92.4 81.8 10.6 87.1 0.753 153 222 291
-0.11 1.24 -1.70 0.09 0.01 0.28 0.06 0.12 0.44 7.1 92.5 81.8 10.6 87.2 0.774 166 244 307
-1.07 -1.03 -0.60 0.04 0.03 0.57 0.05 0.12 0.20 7.1 89.9 85.5 5.4 87.7 0.724 153 215 314
-0.31 -0.92 -0.86 0.05 0.03 0.55 0.04 0.06 0.27 7.1 90.1 84.7 5.4 87.4 0.736 160 227 323
-1.89 -1.14 -0.31 0.03 0.02 0.59 0.05 0.18 0.13 7.1 89.8 84.4 5.4 87.1 0.712 145 202 304
1.43 -0.67 -1.47 0.07 0.04 0.51 0.03 0.00 0.36 7.1 90.2 84.8 5.4 87.5 0.761 176 254 343
-0.33 -0.92 -0.85 0.05 0.03 0.55 0.04 0.06 0.27 7.1 90.1 84.7 5.4 87.4 0.736 160 227 323
-1.07 -1.02 -0.59 0.04 0.03 0.57 0.05 0.12 0.20 7.1 89.9 84.5 5.4 87.2 0.724 153 215 314
1.22 -0.70 -1.39 0.07 0.04 0.51 0.03 0.00 0.35 7.1 90.0 84.6 5.4 87.3 0.758 174 250 341
0.04 -0.87 -0.99 0.05 0.03 0.55 0.04 0.05 0.29 7.1 90.1 84.8 5.3 87.5 0.740 163 232 327
1.46 -0.66 -1.47 0.07 0.04 0.51 0.03 0.00 0.36 7.1 90.0 84.7 5.3 87.4 0.762 177 255 344
-0.23 -0.90 -0.88 0.05 0.03 0.55 0.04 0.06 0.27 7.1 89.9 84.6 5.3 87.3 0.737 161 229 324
1.45 -0.66 -1.47 0.07 0.04 0.51 0.03 0.00 0.36 7.1 90.0 84.7 5.3 87.4 0.762 177 255 344
-0.75 -0.97 -0.69 0.04 0.03 0.57 0.04 0.09 0.23 7.1 90.0 84.6 5.3 87.3 0.728 155 219 317
-2.01 -1.15 -0.25 0.02 0.02 0.60 0.05 0.18 0.11 7.1 90.1 84.8 5.3 87.5 0.710 144 200 304
0.01 -0.86 -0.96 0.05 0.03 0.55 0.04 0.05 0.29 7.1 90.1 84.8 5.3 87.5 0.740 163 232 327
1.26 -0.69 -1.40 0.07 0.04 0.51 0.03 0.00 0.35 7.1 89.8 84.5 5.3 87.2 0.759 175 252 342
-1.39 -1.06 -0.46 0.03 0.03 0.59 0.05 0.14 0.17 7.1 90.0 84.7 5.3 87.4 0.719 150 210 311
1.08 -0.71 -1.32 0.07 0.04 0.51 0.04 0.01 0.34 7.1 89.5 84.3 5.3 86.9 0.756 173 249 339
-1.49 -1.08 -0.44 0.03 0.03 0.59 0.05 0.14 0.16 7.1 89.6 84.4 5.2 87.0 0.717 149 208 309
-2.11 -1.17 -0.22 0.02 0.02 0.61 0.06 0.19 0.10 7.1 89.6 84.5 5.2 87.1 0.708 143 199 303
-0.05 -0.87 -0.94 0.05 0.03 0.55 0.04 0.05 0.27 7.1 89.7 84.4 5.2 87.1 0.738 162 230 326
-0.12 -0.88 -0.91 0.05 0.03 0.55 0.04 0.05 0.27 7.1 89.7 84.4 5.2 87.1 0.738 162 230 326
-0.14 -0.88 -0.90 0.05 0.03 0.55 0.04 0.05 0.27 7.1 89.7 84.4 5.2 87.1 0.738 162 230 326
-0.87 -0.98 -0.64 0.04 0.03 0.57 0.05 0.10 0.21 7.1 89.5 84.3 5.2 86.9 0.726 154 217 316
0.08 -2.98 -0.20 0.02 0.06 0.85 0.03 0.00 0.05 7.1 87.1 87.3 -0.1 87.2 0.705 159 219 346
-0.38 -3.03 -0.02 0.01 0.05 0.85 0.03 0.02 0.03 7.1 86.9 86.9 -0.1 86.9 0.698 154 212 340
0.20 -2.96 -0.24 0.02 0.06 0.85 0.03 0.00 0.05 7.1 86.9 87.1 -0.2 87.0 0.706 160 221 348  

 

When plotted in a similar manner to Figure 8.1, as vector pairs, the graphs in Figure 8.2 show 
how the fuels were reduced to clusters which fall within the total range of experimental fuels. 
Interestingly, areas of fuels are also carved out inside of the outer boundaries. This is because all 
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but one of the experimental fuels were two component blends with D100 used to adjust octane 
values. Any fuel within the outer vector boundaries could have been blended with the provided 
components, but three and four component blends were not included as part of the experimental 
design. To the extent that one believes these fuels would blend linearly with the actual test fuels, 
the models can be used to predict their behavior. However, in the extreme, this logic could be 
extended to only testing the four blend components and calculating everything else, and this 
would not discover any non-linear blending or engine performance effects. These vector pair 
graphs in Figure 8.2 show the actual test fuels in red, the 1290 fuels selected from the 5000 fuels 
to fall within the vector, property, and chemistry boundaries in blue, and the 31 fuels which were 
selected for constant (R+M)/2 of 87 ± 0.1 in yellow and which are listed in table 8.2 above.  
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Figure 8.2:  Vector Ranges for Fuels Selected to Fall Within Boundaries of Experimental Vectors and Further 

Selected for 87 (R+M)/2. 
 

The three fuels or fuel sets discussed above will be used in the parametric studies which follow 
this section. It should be obvious that any number of parametric fuel sets can be constructed by 
systematic or random vector sampling or other means. Some fuel sets can be constructed fairly 
easily, and others, like the constant (R+M)/2 fuels, take a lot of hand work with the current, 
general modeling tools. No further automation has been applied to the process, because this 
would only be worthwhile if a given type of study were repeated multiple times. Any new fuel 
set developed should also be checked to determine that it falls within the range of experimental 
fuels for vector values, properties, and chemistry and then it can be used as inputs for the engine 
simulators. By using vector values and the fuel panel to originate any parametric study fuels, all 
available fuel variables are defined, are available for subsequent analysis, and out of range values 
are also flagged. 
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8.2 Control Mode Effects 

During this research, the engine was operated at three operating points using three control 
modes. These modes are described elsewhere, and are named recompression early injection 
(RCEI), rebreathing early injection (RBEI), and recompression split injection (RCSI). These 
control modes were chosen because all were possible using the AVL engine and CRC wished to 
determine if any of the modes responded differently to fuel changes. In the parametric study 
described here, the fuel was set to the single mid-point fuel and test phase effects were zeroed 
out by setting the test phase input to an average value. Table 8.3 indicates the directional change 
in engine performance between the various control modes for each operating point. Plus means 
that performance improved, zero means that there was no change, and minus means that there 
was a negative change in performance for the given variable. Generally RCEI produced the most 
consistent performance with no negatives. This quick study indicates that RCEI is a good control 
mode to focus on for other parametric studies. It also indicates that a given control mode might 
be selected to improve one engine response at the expense of another.  

 

Table 8.3:  Directional Changes in Engine Performance Resulting from Control Mode 
Changes. 

variable RCEI RBEI RCSI RCEI RBEI RCSI RCEI RBEI RCSI
ISFC zero zero minus zero zero zero zero zero zero
ISHC zero zero zero zero minus zero zero minus zero
ISCO zero zero zero zero zero zero zero minus zero
ISNOx zero zero zero zero zero minus zero plus zero
smoke zero zero zero zero plus zero zero minus zero
noise zero zero zero zero plus zero zero minus zero
dP/dCA zero zero minus zero plus zero zero zero zero
PCP zero zero zero zero plus zero zero minus zero
COV zero plus zero zero minus zero plus zero zero

plus = BETTER, zero = SAME, minus = WORSE

3000 rpm2000 rpm1000 rpm

 

8.3 Test Phase Effects 

This test program took place over a three year period and included many changes during the 
three phases of the experiments (Phase 1, 2a, and 2b). These changes included a major engine 
rebuild, minor changes in intake and exhaust plumbing, a change in type of cylinder pressure 
transducer, engine wear, seasonal weather variations, ability to hit control targets, and a change 
in the project test engineer. Since fuels are being compared across the various test phases, it is 
important to know if there were any systematic offsets between the phases. In the engine 
simulator models, variations were compensated for by including dummy variables for the test 
phases (00 = Phase 1, 01 = Phase 2a, and 11 = Phase 2b), and including the variables for 
deviation from load or pressure rise rate set point, deviation from MFB50, and deviation from 
intake temperature set point. These variables were selected from the experimental data by 
correlating residuals of the engine simulator models without these adjustments and picking 
variables which correlated to the residuals and therefore could be assigned variation in more 
complex models. Figure 8.3 shows engine simulator outputs by phase and control mode for 
selected engine output variables. These outputs were calculated using the average fuel and are 
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shown only for the 2000 rpm model, with similar behavior exhibited for the other speeds. It is 
readily apparent from these graphs that engine performance is very different for phase 2b. 
Lambda is higher and EVCA is later, indicating easier ignition. This may be due to an 
inadvertent compression ratio change or due to better (new) piston rings and less compression 
losses. ISFC is worse, NOx is higher, and HC, CO, and smoke are lower. Combustion duration is 
longer, which may be due to the higher lambda, lower exhaust residual operation or may be due 
to the change of cylinder pressure transducer from Kistler to AVL. The other observation from 
these graphs is that the differences in engine performance between control modes are similar 
across all the test phases. This is because of the study’s focus on modeling the entire dataset, 
rather than concentrating on small regions of the data in order to identify large, more universal 
data trends. Studies like this can also identify desirable features of the control modes: for 
example RBEI exhibits lower smoke, noise, dP/dCA, and PCP and higher HC, CO, and COV. 
This indicates that control modes might be selected to optimize a particular operating condition 
or solve a particular operating problem. Note that RCSI was not run in Phase 2a or 2b, but that 
the model allows prediction of results by applying the same response measured in Phase 1. 
Further studies could be done using the supplied models, and additional experiments could be 
run to study control modes or operating modes in more depth. In general, RCSI control mode 
produced very similar results to RCEI when interpreted through the model. 
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Figure 8.3:  Test Phase and Control Mode Effects for Average Fuel at 2000 rpm Condition. 

 

8.4 Fuel Variables That Affect Engine Performance 

The main goal of the AVFL-13 and 13b projects was to study the effects of fuel chemistry and 
properties on HCCI combustion. A broad correlation study was conducted over all the speeds 
and control modes and using the 249 parametric fuels described above. Table 8.4 indicated 
which engine responses show correlation to fuel variables, with yes indicating an r value ≥ 0.7. 
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Table 8.4:  Engine Performance Variables that are Affected by Fuel Characteristics 
1000 rpm 2000 rpm 3000 rpm

lambda yes yes yes
EVCA yes yes yes
ISFC no yes yes
ITE no yes yes

ISHC no no yes
ISCO yes yes no
NOx no yes yes

Smoke yes yes yes
Noise no yes yes

dPdCA yes yes yes
CombDur no yes no

PCP yes yes no
COV yes yes yes

CombEff no yes no
ExhT no no no  

 

The number of combinations for which correlation graphs can be made is enormous, since there 
are 16 fuel variables (seven in the models and seven more predicted from the nine), 15 engine 
response variables, three operating modes (speeds), three control modes, and effects of ethanol 
splash blending. If one also considers four levels for ethanol blending (0, 10, 20, and 30%), this 
multiplies out to a total of 8640 engine response / fuel parameter correlations. In this report, the 
task has been simplified by focusing on only a subset of these relationships. The following 
discussion focuses mainly on RCEI control mode (previously identified as best overall mode), 
looks for similar responses in two of three operating modes (speed), and focuses mainly on 
EVCA, ISFC, NOx, Smoke, and dP/dCA as the main variables of interest and as variables which 
can be used to indicate response of other variables. This study also found that vector value V1 
correlates mainly with ISFC and PCP, V2 correlates mainly with EVCA, NOx, dP/dCA, and 
COV, and Smoke correlates mainly with V3. These relationships can be further decoded to 
individual fuel chemistry or properties using the equations embedded in the fuel panel simulator. 

As an example of this decoding, it was found that ISFC correlated to vector value 1; the results 
are shown in Figure 8.4. This graph indicates an increase in ISFC as vector 1 value increases for 
2000 and 3000 rpm, but not for 1000 rpm. The graph also shows that 2000 rpm is a more 
efficient speed than 3000 rpm. 



 61

ISFC vs. vector 1, control RCEI
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Figure 8.4:  Relationship of ISFC to Score for Fuel Vector 1. 

This change in fuel economy with vector 1 may be due to an energy content change, to a change 
in how the engine runs or is controlled, or to other fuel related factors. There is not a simple 
relationship between ITE and ISFC (see Figure 8.5), indicating that the effect is more than can be 
explained by energy content. Further investigation indicates that ISFC is hurt by things that 
decrease gravimetric basis energy density (i.e., BTU/lb), such as higher aromatics, high boiling 
points, and/or high specific gravity, and that ISFC is also worse with high MON, low sensitivity 
fuels. These fuels are harder to ignite and require an earlier exhaust valve closing angle and a 
correspondingly lower lambda. 
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Figure 8.5:  Comparison of ITE and ISFC for Fuel Variations, Indicating that Changes are 

Not Simply Due to Energy Content Changes. 

 

Fuel vector 2 shows a strong influence on ignition, as indicated by the relationship between 
EVCA and V2. A higher value or later EVCA indicates easier ignition and this corresponds to 
higher values for V2. This relationship is shown in Figure 8.6. 
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Figure 8.6:  Dependence of EVCA on Fuel Vector 2 Score 

 

 

EVCA actually correlates best to MON and sensitivity, as shown in Figure 8.7, both of which 
would be expected to influence ease of ignition, with lower MON, higher sensitivity fuels 
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showing later EVCA. MON always shows better correlation to EVCA than RON, and sensitivity 
shows stronger correlation than MON at 1000 RPM. This type of engine is generally considered 
to be MON driven or ‘beyond MON’, meaning that combustion is primarily driven by heat rather 
than pressure. ‘Beyond MON’ means that the effective octane of the fuel at ignition is lower than 
the MON rating of the fuel due to the higher temperatures at ignition compared to the octane 
rating engine. The 1000 rpm condition is farther ‘beyond MON’, because of earlier EVCA and 
heated intake, and therefore sensitivity plays a larger role. 
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Figure 8.7:  Dependence of EVCA on RON, MON, and Sensitivity for Parametric Fuel Set. 

 

NOx correlates well to vector 2 value for 2000 and 3000 rpm, as shown in Figure 8.8. There is 
no correlation indicated for 1000 rpm, but NOx for that operating condition is 0.01 gm/kg fuel or 



 64

0.1 ppm, so it is essentially at the noise level of the instrument. NOx also shows some correlation 
to vector 3, which is a reason for the width of these relationships. 
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Figure 8.8:  NOx Dependence on Vector 2 Value for Parametric Fuel Set. 

 

NOx is often found to be correlated to peak combustion temperatures, which are not available in 
the experimental data. However, peak temperature can also correlate to dP/dCA, the maximum 
rate of cylinder pressure rise. Figure 8.9 indicates that dP/dCA also correlates with vector 2 value 
for 2000 rpm. There is no correlation at 1000 rpm, perhaps because peak pressure occurs after 
TDC and is lower than compression pressure. There is no correlation for 3000 rpm because 
dP/dCA was controlled to a constant value of 5.5 bar/degree. 
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Figure 8.9:  dP/dCA Dependence on Vector 2 Value for Parametric Fuel Set. 

 

NOx also correlates to fuel MON. Higher MON fuels produce more NOx because they are harder 
to ignite, require early EVCA, and this results in higher dP/dCA. These relationships are shown 
in Figure 8.10. 
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Figure 8.10:  NOx Dependence on MON, EVCA, and dP/dCA. 
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Smoke relates most strongly to vector 3, with some trends to vector 1. The relationship between 
smoke and vector 3 is shown in Figure 8.11, for each operating mode. In all cases, smoke 
increases as vector 3 decreases, with the trends being stronger for 2000 and 3000 rpm. 
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Figure 8.11:  Smoke Dependence on Vector 3 Value for Parametric Fuel Set. 

 

Smoke can also be compared to actual fuel properties and chemistry. Smoke is found to relate to 
aromatic content, specific gravity, and distillation temperatures and an increase in any of these is 
found to increase smoke. 3000 rpm is most sensitive for smoke and 1000 rpm is least sensitive. 
Smoke values for all conditions are low, but the trends towards higher smoke for heavier, higher 
boiling, more aromatic fuels are consistent. These relationships are shown in Figure 8.12. 
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Figure 8.12:  Smoke Dependence on % Aromatics, Specific Gravity, and Distillation Temperatures. 
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8.5 Desirable Fuel Variables for Overall Engine Performance 

If criteria are devised to sort engine data by fuel characteristic, then fuels can be identified that 
provide improved performance for this engine and the selected operating and control conditions. 
Inspection of the previous figures suggests that fuels with a low value for vector 1 and high 
values for vector 2 and 3 would provide improved ISFC, lower smoke and NOx, lower dP/dCA, 
and easier ignition. However, this ‘optimization’ applies only to this engine, operating 
conditions, and fuel set and should not be considered a universal best choice for advanced 
combustion engines and all operating conditions. The 249 fuel parametric fuel set described 
previously was sorted by vector values and fuels were selected at the desired ranges of vector 
values. The desired vector value ranges were set to provide some fuels which met all three 
criteria. This process yielded three fuels which averaged: 12% n-paraffins (excluding C4);  2% n-
C4;  35% iso-paraffins;  15% cyclo-paraffins;  25% olefins;  11% aromatics;  152°C T10;  219°C 
T50;  294°C T90;  78 RON;  71 MON;  and 7 sensitivity. 

This describes a fuel with low octane, high sensitivity, low aromatics, and in the lower range of 
distillation temperatures and density. These fuels would ignite more easily, with a higher lambda 
and later (higher) EVCA and produce lower smoke. They are best represented by a blend of 
C100 (olefins) for high sensitivity with low aromatics and D100 (straight run) for low octane. 
The desired ranges of vector values are shown in Figure 8.13, as the boxes formed by the 
intersection of the ranges of vector values desired. Also shown on this plot are fuel C100, 
C85D15, and C50D50. It appears that a fuel blend between C85D15 and C50D50 falls into the 
desired range. 
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Figure 8.13:  Vector Ranges and Fuels which Provide Desirable Operating Characteristics. 

 

8.6 Desirable Fuels for Constant (R+M)/2 

The selection of desirable fuels for HCCI engine operation above assumes that it would be 
possible to change octane values significantly, which would essentially produce a new gasoline 
fuel of low octane (78 RON and 71 MON). This section examines the possibility of selecting 
chemistry or properties to produce improved HCCI operation if choice is restricted to octanes 
meeting today’s criteria. This parametric study uses fuels of (R+M)/2 equal to 87, which is the 
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current requirement for unleaded regular. This octane was selected because it is closer to the 
midpoint of the fuel set octane and will provide more options for varying chemistry. This octane 
can be met with a tradeoff of the chemistries of aromatic, olefin, and iso-paraffin to build octane 
and n-paraffin to trim octane value. This fuel set was described above, as the last fuel set in 
section 8.1. Olefins and aromatics can be adjusted to provide high sensitivity fuels and iso-
paraffins can be used to provide low sensitivity fuels. N-paraffins are relatively constant across 
all the fuels (see Table 8.2) because of the constant octane target. The 32 fuels in Table 8.2 cover 
sensitivities of 0 to 11, olefins from 0 to 29%, aromatics from 3 to 44%, and iso-paraffins from 
28 to 85%. These fuels are used as inputs to the engine simulator models, which are otherwise 
set to nominal test mode conditions, 0% ethanol, and RCEI control mode. For these fuels, the 
total combined amount of olefins and aromatics determine sensitivity level, but the ratio between 
olefins and aromatics can be varied at a given sensitivity level. This relationship is shown in 
Figure 8.14, which shows the olefin and aromatic fraction for the three sensitivities in the 
parametric fuel set. The fuels with essentially no sensitivity have all iso-paraffins and almost no 
olefins and aromatics. The mid-sensitivity fuels allow the most option for trading between 
olefins and aromatics, and the high-sensitivity fuels begin to run out of options because of 
chemistry limits in the blending components. 
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Figure 8.14:  Tradeoffs of Olefins and Aromatics for 87 Octane (R+M)/2 Fuels of Different Sensitivity Levels. 

 

The 31 fuels were used as inputs to the three engine simulators, which were otherwise set for 
RCEI control and a mid-point test phase. For each speed, correlation tables were prepared for 
engine response and fuel parameters, and Table 8.5 is one such table, shown for 2000 rpm. There 
are a large number of correlations, highlighted when r≥0.7. All three correlation tables were 
examined, and visualization of selected engine responses will be made, selecting those which 
were highlighted previously for fuels covering the entire range of fuels in the experiments.  
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Table 8.5:  Correlations of Engine Response to Fuel Parameters for (R+M)/2 = 87 at 2000 rpm. 

 
lamda EVCA ISFC ITE ISHC ISCO NOx Smoke Noise dPdCA CombDur PCP COV

ParaXC4 0.53 0.84 0.64 0.55 0.00 0.84 0.69 0.74 0.84 0.84 -0.84 -0.63 0.84
ParaC4 -0.97 -0.86 0.31 -0.98 0.00 -0.86 0.19 0.13 -0.86 -0.86 0.86 -0.32 -0.86
iPara -0.87 -1.00 -0.21 -0.88 0.00 -1.00 -0.31 -0.38 -1.00 -1.00 1.00 0.20 -1.00

cycloPara 0.94 0.71 -0.55 0.92 0.00 0.72 -0.48 -0.41 0.71 0.71 -0.71 0.56 0.72
Olefins 0.87 0.56 -0.71 0.85 0.00 0.57 -0.64 -0.57 0.56 0.56 -0.56 0.72 0.57

Aromatics 0.47 0.82 0.69 0.51 0.00 0.81 0.76 0.80 0.82 0.82 -0.82 -0.69 0.81
T10 -0.33 0.12 0.99 -0.30 0.00 0.11 0.97 0.96 0.12 0.12 -0.12 -0.99 0.11
T50 -0.14 0.32 0.98 -0.11 0.00 0.31 0.98 0.98 0.32 0.31 -0.32 -0.98 0.31
T90 -0.92 -0.65 0.65 -0.90 0.00 -0.65 0.56 0.50 -0.65 -0.65 0.64 -0.66 -0.65
V1 -0.55 -0.13 0.95 -0.53 0.00 -0.13 0.91 0.88 -0.13 -0.13 0.13 -0.96 -0.13
V2 0.89 1.00 0.16 0.90 0.00 1.00 0.26 0.33 1.00 1.00 -1.00 -0.15 1.00
V3 -0.40 -0.77 -0.75 -0.43 0.00 -0.76 -0.80 -0.84 -0.77 -0.76 0.77 0.74 -0.76

RON 0.92 0.99 0.07 0.93 0.00 0.99 0.17 0.25 0.99 0.99 -0.99 -0.06 0.99
MON -0.93 -0.97 -0.02 -0.94 0.00 -0.98 -0.11 -0.19 -0.97 -0.97 0.97 0.01 -0.98
sens 0.94 0.99 0.04 0.95 0.00 0.99 0.14 0.21 0.99 0.99 -0.99 -0.03 0.99
RM2 0.03 0.13 0.19 0.06 0.00 0.12 0.24 0.24 0.13 0.13 -0.14 -0.19 0.12  

 

The first relationship, shown in Figure 8.15, is between EVCA and sensitivity and indicates that 
higher sensitivity fuels ignite more easily, even at constant (R+M)/2. Fuels which ignite more 
easily have a later (larger) value for EVCA and also will have a higher lambda value. Engine 
conditions with higher lambda generally have improved ISFC, but the effects under the 
conditions of this particular study, at constant (R+M)/2, are very small. 
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Figure 8.15:  EVCA vs. Sensitivity for (R+M)/2 = 87. 

Figure 8.14 showed the linear relationship between olefins and aromatics in these fuels and the 
ability to trade olefins and aromatics at constant sensitivity. The Figures below, Figure 8.16, 
indicate that higher aromatic fuels exhibit both higher NOx and smoke than those with lower 
aromatics (i.e., higher olefins). The actual NOx and smoke values are also small, but trends might 
be useful in helping to chose fuel blend formulas.  
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NOx vs. aromatics at RM2 = 87
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NOx vs. T50 at RM2 = 87
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Figure 8.16:  Relationship of Smoke and NOx to Aromatics for (R+M)/2 = 87. 

Overall, fuels with high sensitivity, low aromatics, and low T50 improved engine performance in 
terms of ISFC, NOx, and smoke, even when (R+M)/2 is held constant. 

8.7 Effects of Ethanol Blending 

Ethanol was splash blended into selected base fuels without consideration of RVP or other fuel 
property controls. As described in the fuel model section of this report (section 4), statistical 
modeling of the data was difficult because of the limited number of fuels, because the ethanol 
fuels were run in two phases (2a and 2b) with a major engine rebuild between, and because the 
addition of the ethanol fuels resulted in a major departure from the initial experimental plan. In 
the study described in this section, ethanol content was blended to the 249 fuel parametric fuel 
set, by adding an input line in the engine simulators varying from 0 to 30% ethanol blend level, 
on a random basis. The simulators were otherwise set for RCEI operation and an average test 
phase. This manner of constructing the fuel inputs to the simulator would be expected to answer 
the question, “over the entire range of fuel properties and chemistry of the base fuels, what 
additional engine operation effects are predicted due to ethanol blending”. This study could also 
be done with a specified base fuel chemistry, but it is felt that the model is not robust enough to 
provide answers to this level of detail. This is because of the entanglement of ethanol results with 
the engine rebuild between test phases 2a and 2b. The engine simulator outputs were collected 
and results correlated to % ethanol content. Some engine response variables showed good 
correlations at some operating conditions, and others did not. These correlations are shown in 
Table 8.6. No trends extend across all three operating conditions (speeds) and few extend across 
even two conditions. 
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Table 8.6:  Correlation of Engine Response Variables to % Ethanol in Fuel Blends. 

1000 rpm 2000 rpm 3000 rpm
lambda 0.06 0.62 0.06
EVCA 0.06 0.03 0.03
ISFC 0.00 -0.04 0.94
ITE 0.00 0.08 0.03

ISHC 0.00 1.00 0.01
ISCO 0.47 0.03 0.00
NOx -0.03 -0.57

Smoke 0.01 0.01 0.54
Noise -0.09 -0.03 -0.32
IMEP 0.00

dPdCA 0.03 -0.04 -0.03
CombDur 1.00 0.03 0.00

PCP 0.08 -0.91 -0.97
COV 0.09 0.03 0.02

CombEff -1.00 -0.08 0.00
ExhT -1.00 0.00 -1.00  

Interpreting these results is difficult because of the lack of overall trends. The discussions which 
follow include both an interpretation of Table 8.6 and engineering judgment and logic applied to 
expected results. The interpretations are offered in attempt to gain something general from the 
data and to help guide future studies. First, ethanol blending appears to hurt ISFC, but not ITE. 
This appears to be an energy content issue, as shown by the parallel trends of loss in ISFC and 
loss in energy content with ethanol blending, shown in Figure 8.17 for 3000 rpm. In this figure, 
the ISFC response also shows a non-linear effect, but since this is introduced by results from 
only one data point, it is hard to put too much confidence in this trend. Figure 8.17 does show 
that the overall losses in ISFC and energy content and are of similar magnitude. 
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Figure 8.17:  Fractional Loss of ISFC and Energy Content with Ethanol Blending at 3000 RPM. 

Other observations which can be made are as follows. Ethanol blending does not appear to affect 
HCCI ignition as indicated by EVCA and lambda, perhaps because the increasing octane effect 
is counteracted by an increased fuel sensitivity and oxygen content. Ethanol blending appears to 
increase HC, CO, and/or smoke while lowering NOx, exhaust temperature, noise and peak 
cylinder temperature. This may be due to cooler cylinder conditions resulting from ethanol 
evaporation, but data are not available to support this observation. Overall, the trends from 
ethanol blending appear logical and it appears that ethanol blended fuels are acceptable for this 
type of HCCI engine up to the 30% blend levels tested. 

9.  DESCRIPTION OF FUEL AND ENGINE SIMULATORS 

The fuel and engine simulators developed in this work have been supplied in the form of Excel 
spreadsheets (2003 version) that can be exercised by the user to perform fuel and engine 
performance studies like those described in prior sections. Because the simulators contain all of 
the predictive models developed in the work, including required data and mathematical formulas, 
they also serve as the primary documentation of those models. The following sections describe 
the simulators and give instructions for their use. The user is cautioned to save models to a 
different name before inputting data, since it is fairly easy to disrupt the active cells by edit 
commands until one is completely familiar with the models. 

The user is responsible for selection of input data and for their appropriateness for use with the 
simulators. The structure of the simulators is that they will mechanically translate input as 
specified into outputs, with minimal range checks, limitations or warnings to the user. In the 
studies conducted for this report, considerable attention was given to keeping the inputs within 
the range of the experiments that were conducted and to discount predictions of performance 
metrics that approached or exceed their experimental limits. If the user inputs implausible or out-
of-range data, the simulators should be expected to produce implausible or out-of-range 
predictions for performance. 
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9.1  Fuel Simulator 

Excel spreadsheet FuelPanel v20091231.xls implements the complete fuels model developed in 
this work. It was termed the FuelPanel because the first tab provides an interactive tool that 
allows the user to create fuels based on assumed vector characteristics, much like adjusting 
knobs on a control panel, and by doing so, to begin to understand how the vectors are related to 
the chemical and physical properties of fuels. The second and third tabs of the spreadsheet 
provide means for operating the fuel model in both forward and reverse directions – i.e., to 
specify a fuel in terms of chemistry, boiling points, and ethanol content and have its vectors 
calculated (the forward direction), or to specify a fuel in vector terms and have its chemistry, 
boiling points, and other properties computed (the reverse direction). 

9.1.1 Fuel Panel Tab 

The Fuel Panel tab is intended as an educational tool. Five slider controls are present that may be 
used to set the Vector 1-4 scores to define a base fuel and the ethanol content that is optionally 
blended into the base fuel. These five values fully define a finished fuel for the purposes of the 
analysis of fuel properties in the fuel model. When the sliders are clicked once on the right or left 
arrows, the vector score will increment by 0.1 units and the ethanol content will increment by 
1%. A larger move is made by clicking the open space between the central bar and the right and 
left arrows; the vector score will increment by 0.5 units and the ethanol content will increment 
by 5%. The user may also click on and hold the central bar and move it to any point within the 
range. By using the slider controls in these ways, the vector scores and fuel ethanol content can 
be varied between the minimum and maximum values encountered in the experimental fuels.  

As the input values are changed, the graphs of fuel properties will change automatically to 
correspond, although the rate at which the graphs update may depend on the speed of the 
computer. Figure 9.1 shows an example of the graphical output. This particular example shows 
the properties of the average base hydrocarbon fuel with no ethanol content. This fuel would be 
specified as scores of zero for Vectors 1-4 and as having 0% ethanol content. Ten of the 
properties displayed are used in the specification of the base fuel vectors (the six values for 
chemistry and the three boiling points) or of the splash blending done to create an oxygenated 
fuel (ethanol content). The displayed properties are predictions made from the specification of a 
fuel using the procedures described in Section 4 – RON, MON, sensitivity (RMSens), specific 
gravity, and RVP. The RVP of base hydrocarbon fuels cannot be predicted with information 
contained in the dataset and is set equal to the average 7.1 psi value (unless modified for 
oxygenated fuels by the added ethanol content). 

Cautions:  only the five sliders should be used to set the vector score and ethanol content values. 
Typing a value directly into the box cells holding those values will disconnect the slider from the 
formulas. 
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Figure 9.1:  Graphical Output of the Fuel Panel (example for average fuel) 

 

9.1.2  fromFuelSpec Tab 

The fromFuelSpec tab operates the PCA process in the forward direction, taking the input 
specification of a fuel in terms of six chemistry variables, three boiling points, and the presence 
(if any) of ethanol and producing, as outputs, the full slate of fuel chemistry and properties for 
the finished fuel and the scores for Vectors 1 through 4. The input area is structured to allow up 
to 100 fuels to be input and evaluated. The spreadsheet comes with the 24 experimental fuels 
used in the analysis. 

From the specification of the base fuel and ethanol content (if any), the spreadsheet computes 
these characteristics of the finished fuel: 

• The six chemistry variables and ethanol content. For oxygenated fuels, the chemistry 
values have been diluted volumetrically to account for the splash blending of the 
specified volume of ethanol. For non-oxygenated fuels, the chemistry values are those 
input by the user to specify the base fuel. 

• Eight physical properties: T10, T50, T90, RON, MON, RMSen, SpGrav and RVP. For 
non-oxygenated fuels, the boiling points are the values input by the user to specify the 
base fuel. 

• The scores for Vector 1, 2, 3, and 4. These are the vectors that are used in the predictive 
models for base fuel properties and as independent fuel variables in the predictive models 
of engine performance. However, they are only four of the 9 vectors in the full vector 
expression for fuels; all nine vectors would be required to exactly replicate the input fuel. 

The fuel input area is structured in the way that fuels are input to the engine simulators. If fuel 
specifications are available from another source, perhaps a fuels survey or other experiments, the 
data that is input to this tab to evaluate fuel properties can also be transferred directly to the 
engine simulators using a copy/paste operation. 

Cautions:  only the cells displaying in red font (B5:J104) should be changed by the user. Data 
may be entered in this area by typing values or by using a copy/paste special/values operation. 
The paste special/values choice is recommended so that only the data content of cells is 
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modified, leaving cell formatting unchanged. The user should avoid inserting or deleting rows or 
sorting the data area, because doing so has the potential to disrupt active formulas in the sheet. It 
is best to perform data manipulations in an inactive sheet elsewhere. 

9.1.3 fromVectors Tab 

The fromVectors tab operates the PCA process in the reverse direction, beginning with the input 
specification of a fuel in terms of its base fuel scores for Vectors 1-4 and the volume of ethanol 
(if any) that is blended. From these five variables, the spreadsheet estimates the six chemistry 
variables, three boiling points, and the five additional properties RON, MON, RMSens, SpGrav 
and RVP. The input area is structured to allow up to 100 fuels to be evaluated. The spreadsheet 
comes loaded with the 5-variable representation of the experimental fuels. 

The term “estimate” was used for a purpose in stating that this tab estimates chemical and 
physical properties of fuels. Vector 1 through 4 of the fuel model are an adequate representation 
of fuels for the analytical purposes of this study. However, all 9 vectors defined by PCA would 
need to be carried in the calculations if one were to exactly replicate the fuels. Thus, a 
representation in terms of four vectors and ethanol content is an approximation of the fuel, 
although a very close one. One can see the degree of difference by comparing the output of this 
tab to the input fuel specifications in the fromFuelSpec tab, from which the vectors where taken. 
In most cases, chemistries differ by only a few percentage points and boiling points by only a 
few degrees Fahrenheit. 

This tab can be used to evaluate any matrix of vector and ethanol choices created by any means, 
but it is provided mainly to support parametric fuel studies. Parametric studies are ones in which 
fuels are identified by sampling the vector fuels space either systematically (using discrete 
levels) or through a random balance process. By sampling according to vectors, one maintains 
the correlations among individual fuel properties that were present in the experimental fuels. The 
methods of parametric study were discussed in Section 4. To perform a study using systematic 
sampling, one would create the nested itemization of all possible levels in another location and 
transfer the resulting matrix of vector and ethanol choices into the data entry area. 

The user faces two analytical decisions in using this tab. The first decision is whether, in 
specifying vector values and ethanol content, the choices should be constrained to lie within the 
range of the experimental fuels, or not. Staying within the experimental range maintains the 
greatest fidelity with the experiment, but there may be circumstances where it is useful to explore 
outside the range. The second decision is whether the resulting parametric fuels should be further 
screened before use in an engine simulator. While the vector fuel space is based on the 
characteristics of the experimental fuels, it is not the case that the experimental fuels necessarily 
explore all of that space. Fuels created by vector sampling are ones that could be created through 
the blending process used to create the experimental fuels. There is no guarantee, however, that 
all of the fuels would meet gasoline-range fuel specifications or fall within the specific range 
explored by the experimental fuels. Again, staying within the experimental range maintains the 
greatest fidelity with the experiment, but there may be circumstances where it is useful to explore 
outside the range. The user is responsible for the consequences of these choices. The data given 
in Table 9.1 on the experimental range of the variables involved may be helpful in formulating 
parametric studies. 
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Cautions:  only the cells displaying in red font (B5:F104) should be changed by the user. Data 
may be entered in this area by typing values or by using a copy/paste special/values operation. 
The paste special/values choice is recommended so that only the data content of cells is 
modified, leaving cell formatting unchanged. The user should avoid inserting or deleting rows or 
sorting the data area, because doing so has the potential to disrupt active formulas in the sheet. It 
is best to perform data manipulations in an inactive sheet elsewhere. 

9.1.4  Other Spreadsheet Tabs 

Two other tabs are present in the fuel simulator. Tab PCA summarizes the parameters of the 
PCA analysis of base fuels. These values are used in computing the vector representation of fuels 
in both the forward and backward directions. Tab Predictive Models summarizes the coefficients 
and mathematical forms of the two-stage predictive model for other fuel properties, which was 
described in Section 4.3. 

9.2 Engine Simulators 

The three Excel™ spreadsheets: 

• AVFL13(AB)_Simulator_1000 v2009.12.31.xls 

• AVFL13(AB)_Simulator_2000 v2009.12.31.xls 

• AVFL13(AB)_Simulator_3000 v2009.12.31.xls  
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Table 9.1: Experimental Fuel Range Covered by AVFL-13 

Program. 

 Minimum Value Maximum Value 

Vector and EtOH Inputs 
Vector 1 -4.2 2.8 
Vector 2 -3.5 1.8 
Vector 3 -2.5 1.5 
Vector 4 -1.1 0.8 

EtOH 0% 35% 

Fuel Property Values 
ParaXC4 0.00423 0.1962 
ParaC4 0.0004 0.0670 
iPara 0.2722 0.8865 

cycloPara 0.0110 0.1693 
Olefins 0.0033 0.4470 

Aromatics 0.0280 0.5495 
T10 133.7 191.1 
T50 174.6 271.8 
T90 239.7 354.0 

EtOH 0% 35% 

 

are the engine simulators for operating Modes 1 (1000 rpm), 2 (2000 rpm), and 3 (3000 rpm), 
respectively. The simulators come with the complete experimental datasets in two series, one for 
base fuels and another for oxygenated fuels. 

Using the Inputs tab, the user specifies the conditions of up to 150 engine tests by the values 
given to these variables in the input area (red font) in Columns S through AI: 

• EV2 = 1 to indicate the presence of a secondary exhaust value opening (RBEI control 
mode), or the value zero otherwise (other modes) 

• Inj2 = 1 to indicate the presence of a secondary injection invent (RCSI control mode), or 
the value zero otherwise (other modes) 

• Nine values to specify the fuel, using the six chemistry values and three boiling points. 
These inputs are defined for the base hydrocarbon fuel involved, even when the test 
pertains to an oxygenated fuel. 

• The ethanol content value for testing use an oxygenated fuel. 
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• Three dummy variables representing departures from the experimental targets for engine 
output, combustion timing, and intake air temperature. As provided, these columns 
contain non-zero values to represent that actual test conditions in the experiment. 
Normally, these values will be set to zero in studies in order to remove the effects of 
experimental imprecision from the predictions of engine performance. 

• Two dummy variables representing the program Phase in which the test was conducted. 
As provided these columns contain one or zero values to represent the actual 
experimental data. The variable Phase2 takes on the value 0 for all Phase 1 tests, and the 
value 1 for all Phase 2 tests. The variable Phase 2b takes on the value 0 for all Phase2a 
tests, and the value 1 for all Phase 2b tests. . Except where engine performance in a 
specific phase is of interest, these variables should be set to the values Phase2=0.31 and 
Phase2b=0.15 to control the predictions to represent an average across phases for the 
program. 

The Inputs tab indicates the units to be used in specifying the inputs and also gives the range of 
values for these variables encountered in the experimental data. 

Note that the input area specified fuels in terms of the familiar chemical and physical variables 
that make up the fuel vectors, rather than the vector scores themselves. This structure was 
adopted so that fuels data from any appropriate source could be used in the simulators without 
the need for the intervening step of computing fuel vectors. However, the models have only been 
verified for fuels covering the range and characteristics of the experimental fuels. 

The model predictions for engine performance are presented in Columns B through Q of the 
Inputs tab. Sixteen different performance metrics are predicted: 

• Lambda and EVCA – the air fuel ratio (lambda form) and exhaust value closing angle 
required to achieve the experimental targets of engine output and combustion phasing 

• ISFC and ITE – indicated specific fuel consumption and indicated thermal efficiency 

• ISHC, ISCO, and NOx – emissions of hydrocarbons and carbon monoxide (gm/kg Fuel) 
and NOx (ppm) 

• Smoke and Noise 

• IMEP and dPdCA – indicated mean effective pressure (bar) and peak rise in cylinder 
pressure (bar/degree) 

• CombDur – combustion duration 

• PCP – peak cylinder pressure 

• COV – coefficient of variation for IMEP 

• CombEff – combustion duration 

• ExhT – exhaust gas temperature 

The Inputs tab indicates the units in which the metrics are stated and also gives the range of 
values for these variables encountered in the experimental data. 
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As in the fuel simulator, the user is responsible for selection of input data and for their 
appropriateness for use with the simulator. The structure of the simulator is that it will 
mechanically translate input as specified into outputs, without range checks, limitations or 
warnings to the user. In the studies conducted for this report, considerable attention was given to 
keeping the inputs within the range of the experiment that was conducted and to discount 
predictions of performance metrics that approached or exceed their experimental limits. If the 
user inputs implausible or out-of-range data for engine tests, the simulator should be expected to 
produce implausible or out-of-range predictions for performance. 

Cautions:  only the cells displaying in red font (S13:AI162) should be changed by the user. Data 
may be entered in this area by typing values or by using a copy/paste special/values operation. 
The paste special/values choice is recommended so that only the data content of cells is 
modified, leaving cell formatting unchanged. The user should avoid inserting or deleting rows or 
sorting the data area, because doing so has the potential to disrupt active formulas in the sheet. It 
is best to perform data manipulations in an inactive sheet elsewhere. 

There are five additional tabs in the engine simulators that support the calculations in various 
ways. Tab Fuel Model evaluates the input test fuels in vector terms. The process is identical to 
that seen in the fuel simulator above. Tab Base Model evaluates the predictive models for engine 
performance on the base hydrocarbon fuel involved. This tab combines the vector representation 
of fuels with the engine and dummy variables and then evaluates the predictive models of engine 
performance on base hydrocarbon fuels. The coefficient values and mathematical form is 
documented at the top of the tab. Tab EtOH model evaluates the effect of ethanol content of the 
fuel in changing engine performance from that estimated for the base fuel. The coefficient values 
and mathematical form is documented at the top of the tab. Finally, tab Vectors contains inputs 
for the vector representation of fuels, and tab O-P contains graphs giving comparisons between 
observed and predicted values for the experimental data points as an illustration of the predictive 
power of the models.  
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10. CONCLUSIONS 

Fuels can be described by various combinations of chemistry, boiling points, or physical 
properties. Using principal components as the basis for describing a set of experimental fuels 
provides the highest fidelity to the original data with the fewest number of variables. Vector 
representation does not eliminate correlations between fuel properties and chemistries, but rather 
carries those correlations through subsequent analysis, after which they can be resolved into the 
original fuel property and chemistry values. The advantage to this approach lies in not having to 
make difficult and sometimes artificial decisions at the start of analysis in order to eliminate 
correlated variables. 

Some fuel variables affect HCCI engine operation by affecting how the engine needs to be 
controlled. The engine control, in turn, determines how the engine performs. The best example of 
this is that changes in EVCA are required to control combustion phasing across a range of octane 
levels and sensitivity. This, in turn, changes lambda for the engine and can have an indirect 
effect on ISFC. Other fuel variables directly affect engine operation without affecting control 
settings. The best example of this is that smoke, HC, CO, and NOx are increased with fuels of 
higher aromatic content and higher boiling points. 

Overall, this HCCI engine generally responded well to fuels of lower octane, higher sensitivity, 
lower aromatics and higher olefins, with boiling points in the lower range of those evaluated. 
Fuels of this type produced improved ISFC, lower NOx, and lower smoke. This engine depends 
on heat from a high retained exhaust fraction for ignition and therefore emphasizes MON and 
sensitivity aspects of octane. Other HCCI engine concepts, where ignition might be controlled by 
boost or high compression ratio, might benefit from different fuel properties and chemistry. 

Ethanol containing fuels, up to the 30% evaluated, appear to be satisfactory for HCCI engines of 
this type, and control requirements are relatively unchanged. A reduction in NOx was noted 
along with an increase in HC, CO, and smoke. Loss of ISFC appears mainly related to the energy 
content change in the fuel. It was not possible to completely resolve ethanol effects because of 
the small number of fuels run and because of an engine rebuild between the two phases of the 
program when the ethanol blends were run. The higher octane from ethanol blending does not 
appear to affect HCCI ignition, perhaps due to the effects of the oxygen or the resulting higher 
sensitivity. Since sensitivity is involved, this conclusion may also be specific to this engine type. 

The engine and fuel modeling tools have been provided along with instructions for use to allow 
others to conduct parametric studies of fuel and engine control effects. The models are easy to 
use and can be used to study fuel and engine control effects. With the use of these models comes 
the responsibility to ensure that any studies performed fall within the range of experimental data, 
where the models were developed and verified.  
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11.  RECOMMENDATIONS FOR FUTURE WORK 

The results of this study should be used to plan further research in areas of interest. The current 
study provided a broad overview of fuel effects for one type of HCCI engine, but was not able to 
fully resolve fuel effects due to the limited number of fuels and experimental limitations which 
have been described more fully in this report. One area of possible future study would be to 
further resolve chemistry and boiling point differences by using blend streams from a number of 
refineries. The current fuels were blended using only a single example of each blending stream 
which differed in both chemistry and boiling points. For example, of the octane building streams 
(A, B, and C), the olefin stream (C) had the lowest boiling points and the aromatic stream (A) 
had the highest. With the current fuels, one cannot resolve how much of the benefit of a high 
olefin fuel was due to the lower boiling points and how much to the octane chemistry. Further 
studies could also be done relative to the effects of chemistry at constant (R+M)/2 in order to 
determine how fuels might evolve for HCCI engines without changing the current octane grades. 
Further studies of ethanol blending should also be done, with consideration of distillation 
temperature and RVP control, in order to understand how commercial ethanol fuels, blended 
with reformulated gasoline blending stocks, might affect HCCI. Finally, the conclusions of this 
report should be evaluated on a second style of HCCI engine that uses boost or high compression 
ratio to trigger ignition to determine if these engines respond differently to octane values and 
chemistry. 

In all these studies, statistics should continue to be used for experimental design, analysis of data 
quality, and for the building models which can be used to further the study the fuel and engine 
effects. PCA is particularly suited for modeling the fuels in these types of studies. 
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APPENDIX A.  EVALUATING VECTOR CHARACTERISTICS OF FUELS 

A.1 Introduction 

As a reference for users of the analysis presented in this report, this appendix explains the 
mathematical calculations required to evaluate the vector characteristics of the gasoline-range 
fuels examined in the CRC AFVL test program.  PCA is a well known, multivariate statistical 
technique that is not often used in engineering studies, but is better known in the physical 
sciences.  For a dataset consisting of observations on N variables, PCA performs a singular value 
decomposition of the X matrix of independent variables to produce a slate of N eigenvectors and 
N eigenvalues. 

The most common form of PCA involves decomposition of the correlation matrix; the resulting 
eigenvectors are normalized to a vector length of unity and the eigenvalues sum to N.  In this 
decomposition, each eigenvector expresses one way in which the N variables are related to each 
other, and the eigenvalues measure how much of the variation in the dataset is associated with 
each eigenvector.  Essentially, the correlations among the N variables are broken down into N 
differing patterns of variation that make up the overall relationship of variables in the dataset.  
PCA works on the basis of variables standardized to a mean of zero and standard deviation of 
one.  If there are N variables, then the standardized variance in the dataset is also N. 

When PCA is applied to an orthogonal dataset, the resulting eigenvectors reveal the experimental 
design.  When PCA is applied to a non-orthogonal dataset, the eigenvectors reveal information 
on how the data were generated (or sampled).  The eigenvectors additionally provide a set of 
vector variables in which the data are orthogonal.  PCA has been applied extensively to the 
analysis of diesel engine emissions by the authors and has proved to offer reliable insight into the 
underlying structures of fuel datasets. 

A.2 Application to AVFL Fuels 

The use of PCA begins with the selection of variables that make up the fuels vector.  As 
described in Section 4.2.3 of the report and documented in Table 4-4, a total of nine variables are 
required to specify a base hydrocarbon fuel: 

• Six variables giving the chemical composition of the fuel according to aggregate classes: 
n-paraffins (excluding C4), n-C4, iso-paraffins, cyclo-paraffins, olefins, and aromatics. 

• Three variables giving the height and shape of the distillation curve: T10, T50, and T90. 

 

The six composition variables define the complete fuel chemistry and necessarily sum to 100%.  
There are only five degrees of freedom (five independent variables) among them. 
 

The first step in computing fuel vectors begins with the transformation of the six chemistry 
variables to implement the physical constraint that they are bounded to values between zero and 
one (inclusive).  Section 4.2.2 described the PCA process as forming a new coordinate system 
based on the characteristics seen in the data.  An analogy was drawn between the cloud of data 
points and a football shape to explain how the coordinate system could be visualized.  PCA treats 
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the variables making up the vectors as being normally distributed on the interval from -infinity to 
+infinity.  The fact that the six chemistry variables sum to 100% is not a problem, because PCA 
can eliminate the linear dependence of the sixth variable on the other five, but the existence of 
physical constraints is a problem.  Whenever the data cloud approaches a plane in N-space where 
a chemistry variable reaches a value of 0 or 1, the football shape will be truncated (has a flat 
spot).  PCA will not recognize the constraint to the distribution of values, but rather will assume 
continuity of the variable across the constraining planes into non-physical territory. 
 

To solve this problem, a mathematical transformation based on the logistic function is applied to 
the chemistry variables before they are entered into the PCA analysis; this process is illustrated 
in Figure A-1.  The logistic curve – the s-shaped curve seen in the rightmost panel – is 
commonly used to represent processes that transition from one level to another over a finite 
interval.  As seen in the rightmost panel, its x values are defined over the range –infinity to 
+infinity, but its y values are constrained to the range 0.00 to 1.00.  This is very much the 
behavior that is wanted for the treatment of chemistry variables by PCA; in fact, it is the inverse 
logistic transform that is needed. 
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Figure A-1:  Logistic Transformation of Chemistry Variables. 
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The transformation process for any chemistry variable is: 

• Linearly scale the variable from its observed range of values to the interval 0.10 to 0.90.  
The smallest value occurring in the dataset is mapped to 0.10 and the largest value is 
mapped to 0.90.  On the logistic curve, the y-axis values of 0.10 and 0.90 bound the 
portion of the curve that is highly linear.  The scaled values of the chemistry variables 
become y-axis values on the logistic curve. 

• Compute an x-axis value for the logistic function that is consistent with the scaled y 
values for each fuel. 

Table A-1 gives the formulas and coefficients values needed to scale and transform the six 
chemistry variables used here.  Table A-2 gives a worked example using Fuel A100. 

Table A-1:  Formulas and Coefficients Used to Compute Scaled and 
Transformed Values for Chemistry Variables Used in the Fuel Model. 

 

scaled(Var)  =  0.10 + 0.80· ( Measured – minValue ) / (maxValue – minValue) 
trn(Var) = ln( scaled(Var) / ( 1-scaled(Var)  ) 
 Measured minValue maxValue 
nParaXC4 0.0043 0.1960 
nParaC4 0.0004 0.0670 
iPara 0.2722 0.8865 
cycloPara 0.0110 0.1693 
Olefins 0.0033 0.4470 
Aromatics 

As Reported 
(volume %) 

0.0280 0.5495 
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Table A-2:  Worked Example for Fuel A100. 

 
Reported 
Values 

Scaled 
Chemistry 
Values 

Transformed 
Chemistry 
Values 

Variable Value 

nParaXC4          0.1016 0.506 0.024        0.024 

nParaC4          0.0229 0.370 -0.531       -0.531 

iPara          0.2722 0.100 -2.197       -2.197 

cycloPara          0.0329 0.211 -1.321       -1.321 

Olefins          0.0210 0.132 -1.884       -1.884 

Aromatics          0.5495 0.900 2.197        2.197 

T10 174.6 — — 174.6 

T50 266.2 — — 266.2 

T90 327.2 — — 327.2 

 

The next step in the calculation process is to normalize the PCA variable set to a mean value of 0 
and standard deviation of 1 (also variance of 1).  The mean and standard deviation values are 
those computed from the 15 experimental fuels on which the vector fuel model is based.  The 
values required for this normalization are given in Table A-3, along with a worked example for 
fuel A100. 
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Table A-3:  Normalization to Mean 0 and Standard Deviation 1, with 
Worked Example for Fuel A100. 

 Mean Value Standard 
Deviation 

 Variable 
Value 

Normalized 
Value 

trn(nParaXC4) 0.096 0.057 0.024   -1.256 

trn(nParaC4) 0.038 0.022 -0.531 -25.974 

trn(iPara) 0.455 0.235 -2.197 -11.264 

trn(cycloPara) 0.095 0.049 -1.321 -28.623 

trn(Olefins) 0.114 0.155 -1.884 -12.872 

trn(Aromatics) 0.201 0.160 2.197  12.447 

T10 174.6 18.1 158.9   0.734 

T50 266.2 31.2 224.1   1.035 

T90 327.2 32.4 337.1   0.213 

 

The last step in the process is to compute the fuel’s score for each of the vectors.  In general, any 
fuel may be represented as a weighted sum of the eigenvectors: 

 Fi  =  si,1·V1 + si,2·V2 + si,3·V3 + si,4·V4 + … + si,n·Vn   (Eq. A-1) 

where the coefficients si,j are the vector scores that define the extent to which fuel i expresses the 
characteristics (or pattern) represented by vector j.  If there are N variables and N vectors in the 
complete fuel space, then a fuel i is completely defined by the set of N scores { si,j }.  The mean 
fuel in the dataset is (by definition) the fuel whose scores are identically zero.  All N vectors 
must be used if one is to replicate the original data exactly, but for the AVFL fuels dataset only 
four vectors (out of 9) are required to describe the systematic variation among fuels. 

The score si,j for any vector j is computed simply by multiplying the fuel’s description in terms 
of the normalized variables by the internal coefficients of the vector.  The products are summed 
within each vector to give the final score.  Tables A-4, A-5, A-6, and A-7 show worked 
examples for the calculation of scores for fuel A100. 
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Table A-4:  Computation of Vector 1 Score for Fuel A100. 

 Normalized 
Value  Vector 1 

Coefficients  Vector 1 
Score 

trn(nParaXC4)   -1.256 *   0.269  = 0.031 
trn(nParaC4) -25.974 *   0.372 = -0.214 
trn(iPara) -11.264 *   0.020 = -0.018 
trn(cycloPara) -28.623 *   0.034 = -0.039 
trn(Olefins) -12.872 * -0.422 = 0.241 
trn(Aromatics)  12.447 *   0.208 = 0.476 
T10   0.734 *   0.445 = 0.327 
T50   1.035 *   0.448 = 0.464 
T90   0.213 *   0.410 = 0.087 
Vector 1 Score  =  1.356 

 

Table A-5:  Computation of Vector 2 Score for Fuel A100. 

 Normalized 
Value  Vector 2 

Coefficients  Vector 2 
Score 

trn(nParaXC4)   -1.256 * 0.427 =  0.049 
trn(nParaC4) -25.974 * -0.246 =  0.141 
trn(iPara) -11.264 * -0.552 =  0.486 
trn(cycloPara) -28.623 * 0.387 = -0.449 
trn(Olefins) -12.872 * 0.253 = -0.145 
trn(Aromatics)  12.447 * 0.376 =  0.861 
T10   0.734 * 0.059 =  0.043 
T50   1.035 * 0.178 =  0.184 
T90   0.213 * -0.251 = -0.054 
Vector 2 Score  =  1.118 
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Table A-6:  Computation of Vector 3 Score for Fuel A100. 

 Normalized 
Value  Vector 3 

Coefficients  Vector 3 
Score 

trn(nParaXC4)   -1.256 * 0.265 =  0.031 
trn(nParaC4) -25.974 * 0.393 = -0.226 
trn(iPara) -11.264 * 0.098 = -0.086 
trn(cycloPara) -28.623 * 0.654 = -0.758 
trn(Olefins) -12.872 * 0.092 = -0.053 
trn(Aromatics)  12.447 * -0.544 = -1.246 
T10   0.734 * -0.156 = -0.115 
T50   1.035 * -0.083 = -0.086 
T90   0.213 * 0.042 =  0.009 
Vector 3 Score  =  2.529 

 

Table A-7:  Computation of Vector 4 Score for Fuel A100. 

 Normalized 
Value  Vector 4 

Coefficients  Vector 4 
Score 

trn(nParaXC4)   -1.256 * -0.290 = -0.033 
trn(nParaC4) -25.974 * 0.030 = -0.017 
trn(iPara) -11.264 * -0.143 =  0.126 
trn(cycloPara) -28.623 * 0.115 = -0.133 
trn(Olefins) -12.872 * 0.175 = -0.100 
trn(Aromatics)  12.447 * 0.189 =  0.433 
T10   0.734 * -0.631 = -0.463 
T50   1.035 * 0.360 =  0.373 
T90   0.213 * 0.536 =  0.114 
Vector 4 Score  =   0.298 

 

 

 


