Particle Measurement Methodology: E-43
Overview and Postmortem

D.B. Kittelson, W. Watts, and Jason Johnson
University of Minnesota

CRC Real-World Group Meeting
Phoenix, Arizona
3 December 2002
This work is part of the CRC E-43 Project, “Diesel Aerosol Sampling Methodology”

- Prime Contractor: University of Minnesota
- Subcontractors: West Virginia University, Paul Scherrer Institute, Carnegie Mellon University, Tampere University, University of California, Riverside, Dessert Research Institute, University of California, Davis
- Sponsors: Coordinating Research Council and the U.S. Office of Heavy Vehicle Technologies through NREL with co-sponsorship from the Engine Manufacturers Association, the Southcoast Air Quality Management District, the California Air Resources Board, Cummins, Caterpillar, and Volvo.
Typical Diesel Particle Size Distributions, Number, Surface Area, and Mass Weightings Are Shown

- **Nuclei Mode** - Usually consists of particles formed from volatile precursors as exhaust mixes with air during dilution.

- **Ultrafine Particles** - Usually consists of particles formed from volatile precursors as exhaust mixes with air during dilution.

- **Fine Particles** - $D_P < 2.5 \mu m$

- **PM10** - $D_P < 10 \mu m$

- **Accumulation Mode** - Usually consists mainly of carbonaceous agglomerates that have survived the combustion process.

- **Coarse Mode** - Usually consists of re-entrained particles, crankcase fumes.

- **Nanoparticles** - $D_P < 50 \text{ nm}$

In some cases this mode may consist of very small particles below the range of conventional instruments, $D_P < 10 \text{ nm}$.
E-43 Questions

• Do modern Diesel engines produce nanoparticles (more appropriately, nuclei mode particles) under real world dilution conditions?

• Can we make laboratory measurements that mimic real world measurements?

• Do new low carbon emitters produce more nanoparticles than older designs?

• What is the composition of the nanoparticles?

• How long do they persist in the atmosphere?
E-43 Experiments – current and older technology engines without aftertreatment

• Cummins engines
 – Chase experiments
 • ISM engine CA and EPA fuels
 • L10 engine EPA fuel
 – Wind tunnel – ISM engine CA fuel
 – Chassis dyno
 • ISM engine CA and EPA fuels
 • L10 engine EPA fuel
 – Engine dyno
 • ISM engine CA and EPA fuels
 • L10 engine EPA fuel
 – Tests of ISM engine at U of M
 • TDPBMS
 • Tandem DMA

• Caterpillar engines
 – Chase experiments
 • 3406E (C15) engine CA and EPA fuels
 • 3406C engine EPA fuel
 – Chassis dyno
 • 3406E (C15) engine CA and EPA fuels
 • 3406C engine EPA fuel
 – Engine dyno Caterpillar
 • 3406E (C15) in CVS cell
 • 2 additional 3406E in performance cell
 – Tests of C12 engine at U of M
 • Dilution system development
 • TDPBMS
University of Minnesota, E-43, Mobile Aerosol Laboratory during a Roadway Chase Experiment
E-43 Questions

• Do modern Diesel engines produce nanoparticles (more appropriately, nuclei mode particles) under real world dilution conditions?

• Can we make laboratory measurements that mimic real world measurements?

• Do new low carbon emitters produce more nanoparticles than older designs?

• What is the composition of the nanoparticles?

• How long do they persist in the atmosphere?
Nuclei modes were observed for most on road conditions, especially in colder weather.

ISM Truck, Loaded 55 MPH Cruise, EPA Fuel

Blue traces are for September 29, 1999, T = 13 C, RH = 44%

Red, brown, rose traces are for September 22, 1999, T = 22 C, RH = 41%

Not corrected for dilution ratio, background, or particle losses
Summer 2000 tests gave consistent nuclei mode formation, less temperature influence.

3406E Truck, Loaded, 60 MPH Cruise, EPA Fuel

Samples collected on 7/17 N = 9, 7/19 N = 5, 8/2/2000 N = 6

Consistent nuclei mode formation
A clear pattern showing a significant on-road nuclei mode emerged for overall averages.
Recent experiments in which we sample our own plume show consistent nuclei mode formation and reveal more detail.
E-43 Questions

• Do modern Diesel engines produce nanoparticles (more appropriately, nuclei mode particles) under real world dilution conditions?

• Can we make laboratory measurements that mimic real world measurements?

• Do new low carbon emitters produce more nanoparticles than older designs?

• What is the composition of the nanoparticles?

• How long do they persist in the atmosphere?
Comparison of lab and chase measurements –
Typical composite results, EPA fuel

Composite Graphs: Cat CD, 3406E, EPA, BG1 Vs. Chase

- Cat Chassis Dyno 3406E, EPA Fuel
- Cat Chase 3406E, EPA Fuel

Two stage dilution, BG1
primary, ejector secondary

Corrected for DR
Not corrected for particle losses

Dp (nm)

\[dN/d\log Dp, \text{part/cm}^3 \]

\[1.00 \times 10^4 \quad 1.00 \times 10^5 \quad 1.00 \times 10^6 \quad 1.00 \times 10^7 \quad 1.00 \times 10^8 \quad 1.00 \times 10^9 \]
Comparison of lab and chase measurements – CA fuel - larger nuclei mode in lab

Composite Graphs: Cat CD, 3406E, CA, BG1 Vs. Chase

- Cat Chassis Dyno 3406E, CA Fuel
- Cat Chase 3406E, CA Fuel

Two stage dilution, BG1
primary, ejector secondary

Corrected for DR
Not corrected for particle losses
Nuclei mode formation is very sensitive to dilution conditions for most, but not all engine conditions. At idle and light load the mode likely forms in the tailpipe.

Reduced nuclei mode due to transfer line losses

Corrected for DR
No correction for particle losses
The nuclei mode is quite unstable and may vary in size during steady engine operation.

ISM Engine, 1800 RPM, 100% Load, EPA Fuel

Corrected for dilution ratio, not corrected for particle losses
E-43 Questions

- Do modern Diesel engines produce nanoparticles (more appropriately, nuclei mode particles) under real world dilution conditions?
- Can we make laboratory measurements that mimic real world measurements?
- **Do new low carbon emitters produce more nanoparticles than older designs?**
- What is the composition of the nanoparticles?
- How long do they persist in the atmosphere?
Composite on-road chase results show much less scatter. Character of size distribution from current and older technology similar.

Composite Graphs: Cat Chase

Results shown for 3406E (state of the art engine) running on EPA and CA fuels, and 3406C (previous generation engine) running on EPA fuel.

Corrected for DR
Not corrected for particle losses
Comparison with previous studies: Nuclei mode particles from newer engines are at lower concentrations and somewhat smaller in diameter.

Corrected for dilution ratio
Not corrected for particle losses

All data except HEI are for standard on-highway EPA/Federal fuels.
HEI fuel lower S ~ 100 ppm
E-43 Questions

• Do modern Diesel engines produce nanoparticles (more appropriately, nuclei mode particles) under real world dilution conditions?
• Can we make laboratory measurements that mimic real world measurements?
• Do new low carbon emitters produce more nanoparticles than older designs?
• What is the composition of the nanoparticles?
• How long do they persist in the atmosphere?
The nuclei mode is nearly entirely volatile under most, but not all conditions.

A thermal denuder (TD) operating at 300 C was used to remove volatile particles as indicated. EPA certification fuel, 330 ppm S, was used in all tests shown above. The ISM was a 390 HP current technology engine, the L10 a 275 HP older technology engine.
Recent U of M experiments for Caterpillar Show Systematic Influence of Thermal Denuder and Existence of a Non-Volatile Nuclei Mode at Light Load

U of M Caterpillar C12, EPA Fuel, Idle

\[\frac{dN}{d\log Dp} (\text{part./cm}^3) \]

Increasing Thermal Denuder Temperature from Ambient to 300°C

Nuclei Mode

Accumulation Mode

Non-Volatile Nuclei Mode Residue

U of M Caterpillar C12, EPA Fuel
1530 RPM, 704 N-m (Highway Cruise)

\[\frac{dN}{d\log Dp} (\text{part./cm}^3) \]

Increasing Thermal Denuder Temperature from Ambient to 300°C

Nuclei Mode

Accumulation Mode

Nuclei Mode Nearly All Volatile, A More Typical Situation
The nuclei mode is usually sensitive to fuel sulfur content, but a significant nuclei mode may form even with very low sulfur fuel and lube oil.
Applying Advanced Particle Characterization Methods to Physical and Chemical Characterization of Diesel aerosols
TDPBMS Measures the Volatility and Mass Spectra of the Volatile Fraction of All the Particles in Selected Size Ranges Between 15 and 300 Nm - Summary Results

- Engines
 - Deere 4045T medium-duty
 - Caterpillar C12 heavy-duty
 - Cummins ISM

- Fuels
 - Federal pump fuel, 360 ppm S
 - California pump fuels, 50 and 96 ppm S
 - Fischer-Tropsch, < 1 ppm S

- Test conditions
 - Light and medium load

- Composition of volatile fraction
 - Organic component of total diesel particles and nanoparticles appears to be mainly unburned lubricating oil
 - Major organic compound classes are alkanes, cycloalkanes, and aromatics
 - Low-volatility oxidation products and PAHs have been found in previous GC-MS analyses, but are only a minor component of the organic mass
 - Nanoparticles formed with higher S Federal pump fuel contain small amounts of sulfuric acid but those formed with the lower S fuels show no evidence for sulfuric acid
Draft Report on Chemistry of nano-MOUDI Samples, Gives OC/EC Results Generally Consistent with TDPBMS
Data Shown Are for ISM engine, 1400 rpm, 366 N-m (medium load cruise)
Thermal desorption total ion profile – C12 engine, light load, EPA fuel, 32 nm stage

Large unresolved peak contains most of the organic mass

C20

~C29
Applying advanced physical characterization methods to Diesel aerosols – types of measurements

• Volatility measurements
 – Select single particle size with DMA
 – Heat
 – Observe diameter change and relate to volatility

• Hygroscopicity measurements
 – Select single particle size with DMA
 – Humidify
 – Observe diameter change and relate to content of hygroscopic material
Volatility of Diesel nanoparticles – 30 nm size selected particles are heated size changes observed
Cummins ISM, pump fuel (350 ppm S), 1400 rpm, medium load

- Two particle types of different volatilities present.
- Volatile particles more abundant
- Significant shrinkage occurred when temperature was in the range of 50-110 °C

Particle Technology Laboratory
Volutility of diesel nanoparticles – plot of peak diameter shifts during heating. All but the smallest sizes consist of two particle types.
Evaporative shrinkage of n-alkanes and Diesel nanoparticles. Diesel nanoparticles behave like C28-C32 – lube oil?

Components more volatile than C20 evaporate very quickly under ambient conditions.
Hygroscopicity of diesel nanoparticles – ISM engine pump fuel (350 ppm S) medium load

- Similar water uptake was observed light engine load with pump fuel
- With CA fuel (96 ppm S), no water uptake was observed either at medium or light engine load.

溶解度的柴油纳米颗粒 – ISM发动机泵油（350 ppm S）中等负荷

- 在轻负荷条件下观察到相似的水吸收
- 使用CA燃料（96 ppm S），在中等或轻负荷条件下未观察到水吸收

图示:

Diameter Growth Factor = 1.051

对应约20%的质量H$_2$SO$_4$

GF = 1.020

对应约5%的质量H$_2$SO$_4$
E-43 Questions

- Do modern Diesel engines produce nanoparticles (more appropriately, nuclei mode particles) under real world dilution conditions?
- Can we make laboratory measurements that mimic real world measurements?
- Do new low carbon emitters produce more nanoparticles than older designs?
- What is the composition of the nanoparticles?
- How long do they persist in the atmosphere?
Neighborhood Aerosol Measurements
Downwind/Upwind Comparison

Peak concentrations about 25 times lower than previous slide.

Avg 4 continuous and 3 bags each location
Nuclei Mode Decays Rapidly Downwind of Roadways

- Modeling (Capaldo and Pandis, 2002) indicates
 - For typical urban conditions, characteristic times and transit distances for 90% reduction of ultrafine concentrations are on the order of a few minutes and 100-1000 m, respectively.
 - For a given wind speed, ultrafine particles are expected to survive and travel a factor of ten greater distances in a rural flat area as compared to an urban downtown location.
- Mobile particle sources will influence the aerosol particle number concentrations mainly near roadways.
E-43 Questions and answers

• Do modern Diesel engines produce nanoparticles (nuclei mode) under real world dilution conditions?
 – Yes and so do mixed on-road fleets, even in the absence of significant Diesel traffic.
 – Nuclei mode formation strongly dependent on ambient temperature and traffic conditions.

• Can we make laboratory size distribution measurements that mimic real world measurements?
 – On-road results are very dependent upon dilution conditions like ambient temperature and previous operating history – what condition are we trying to mimic?
 – However, we found that although laboratory results are also extremely sensitive to sampling and dilution conditions, we could design systems that give results similar to on-road composite highway cruise and acceleration conditions measured under moderate summer conditions (20-30°C).

• Do new low carbon emitters produce more nanoparticles (nuclei mode) than older designs?
 – No substantial difference has been observed for engines tested in E-43.
 – Nuclei mode concentrations are markedly lower than reported in previous studies
 – Nuclei mode formation linked to volatile precursor (hydrocarbon and sulfuric acid) concentrations, especially under on-road conditions
E-43 Questions and answers

• What the chemical and physical characteristics of the nanoparticles?
 – TDPBMS measurements (Ziemann, et al., 2002) showed that they consist mainly volatile materials like heavy hydrocarbons, sulfuric acid, and …
 – This is supported by tandem DMA and and DRI/UC Davis analysis (preliminary results) of nano-MOUDI samples
 – No evidence of solid fraction except at very light load

• How long do they persist in the atmosphere?
 – Modeling (Capaldo and Pandis, 2002) indicates that for typical urban conditions characteristic times and transit distances for 90% reduction of total number (mainly ultrafine) concentrations are on the order of a few minutes and 100-1000 m, respectively.
 – Thus high ultrafine and nanoparticle concentrations from engines are expected to be found mainly on and near roadways – a hotspot problem.

• Issues
 – More work needed to determine appropriate on-road dilution conditions to mimic, speed, congestions, temperature, etc.
 – Optimization of dilution systems
 – Currently there is no calibration standard for particle number
 – Condensation particle counter measurements show that there are significant number concentrations below the SMPS sizing range
 – Are nuclei mode particles of environmental significance?
Postmortem

• Instruments
 – SMPS - Generally worked well. Flow balancing tedious and adds uncertainty, should have new TSI platform with flow recirculation. Poor match between long column SMPS and 3025A CPC, better pairing long SMPS/3010, nano-SMPS/3025A
 – CPC - Generally worked well. Need to check flows and periodically remove water from sampling lines
 – ELPI – Many problems. Consistently gave bigger particles in accumulation mode. Interference by large nuclei mode. Needed frequently cleaned greased substrates
 – EPI – Very slow response but worked well in first part of program. Proved to be too sensitive and overloaded. Might hold promise for surface area measurements with very clean future engines
 – DC – Intermittent, especially during first part of program. When working gave fast response to particle surface. Sensitivity marginal with very clean engines or highly diluted samples
 – PAS – Reliable and fairly sensitive but response depends upon both composition and size
 – Bag sampler – Worked well, less than 10% losses
 – CPC dilutor, filter bypass and leaky filter, gave inconsistent results leading to uncertainty in sub 10 nm range
Postmortem

• Experiments
 – On-road chase
 • Fall 1999 Cummins Chase
 – First attempts at chase experiments - developing procedures
 – Difficulties finding plume with bobtail tractor
 – Variable fall temperatures - peculiar results with CA fuel and ISM engine
 – Deceleration plume very hard to find
 • Summer 2000 Caterpillar Chase
 – Lots of good data
 – Higher productivity due to experience
 – Moderate summer conditions did not seem to influence results
 • General
 – Difficult to catch high plume
 – A well sheltered test track would have led to much higher productivity
 – Should have paid more attention to vehicle conditioning
 – Should have taken more background scans
 – Problems with time synchronization, need GPS on all vehicles
Postmortem

• Experiments
 – Wind Tunnel
 – Recirculating tunnel led to very high background, probably suppressing nuclei mode formation
 – CA fuel had low tendency to form nuclei mode under tunnel conditions - EPA fuel might have been better for these tests
 – Possible tunnel stratification made background corrections difficult
 – Should have made regular CO2 and NOx background measurements
 – Provided stable Diesel aerosol for instrument comparison and bag sampler tests
 – General Problems with Engine and Chassis Dyno
 – Difficult to match unsteady on-road conditions
 – Storage and release, preconditioning issues
 – Not enough time for debugging
 – Cummins Chassis Dyno
 – Realistic exhaust system
 – Only backup dilution system available
Postmortem

- Experiments
 - Cummins Engine Dyno
 - Generally Successful
 - Additional Cummins sponsored tests added value
 » Transient tests
 » Reduced sulfur fuel and oil tests
 » Catalyzed filter tests
 - Dilution ratio uncertainty on MOUDI samples
 - Problems with 2-stage dilutor, could not use short transfer lines
 - Tight test schedule
 - Caterpillar Engine Dyno
 - Generally Successful
 - Problems with 2-stage dilutor, could not use short transfer lines
 - BG1 dilution system worked well
 - Tight test schedule
Postmortem

• Experiments
 – Caterpillar Chassis Dyno
 – Generally successful
 – BG1 dilutor worked well
 – Tight test schedule
 – U of M / UC Riverside Experiments
 – Dilution system tests verified ambient temperature effects, transfer line losses, storage and release problems
 – TDPBMS and tandem DMA experiments gave important new information on composition
 » These tests were limited to light and medium loads - should be repeated at heavier loads
 » These test should be done on engine with aftertreatment
 – Need additional dilution system development
Particle Losses in Typical Instruments and Sampling Lines Are Significant and May Cause the Nuclei Mode to Be Underestimated by a Factor of 2 to 3 or More

<table>
<thead>
<tr>
<th>Condition</th>
<th>N/V (part./µm³)</th>
<th>N30/N</th>
<th>V30/V</th>
<th>DGN (nm)</th>
<th>DGV (nm)</th>
<th>DGN nuc (nm)</th>
<th>σₙₜ nuc (nm)</th>
<th>DGN acc (nm)</th>
<th>σₙₜ acc (nm)</th>
<th>N fract nuc</th>
<th>V fract nuc</th>
<th>Nfit/N</th>
</tr>
</thead>
<tbody>
<tr>
<td>3406E EPA</td>
<td>8.81E+03</td>
<td>0.771</td>
<td>0.0073</td>
<td>16.4</td>
<td>142</td>
<td>9.9</td>
<td>1.23</td>
<td>50.4</td>
<td>1.98</td>
<td>0.730</td>
<td>0.0031</td>
<td>1.40</td>
</tr>
<tr>
<td>3406E CA</td>
<td>3.68E+03</td>
<td>0.392</td>
<td>0.0039</td>
<td>34.3</td>
<td>138</td>
<td>9.4</td>
<td>1.15</td>
<td>48.6</td>
<td>1.97</td>
<td>0.218</td>
<td>0.0003</td>
<td>1.37</td>
</tr>
<tr>
<td>ISM CA</td>
<td>3.85E+03</td>
<td>0.265</td>
<td>0.0060</td>
<td>44.6</td>
<td>130</td>
<td>25.3</td>
<td>1.23</td>
<td>45.1</td>
<td>1.90</td>
<td>0.023</td>
<td>0.0008</td>
<td>1.18</td>
</tr>
<tr>
<td>3406E EPA</td>
<td>2.31E+04</td>
<td>0.907</td>
<td>0.0159</td>
<td>12.0</td>
<td>137</td>
<td>9.0</td>
<td>1.25</td>
<td>45.2</td>
<td>2.04</td>
<td>0.898</td>
<td>0.0087</td>
<td>1.46</td>
</tr>
<tr>
<td>3406E CA</td>
<td>6.42E+03</td>
<td>0.625</td>
<td>0.0063</td>
<td>21.0</td>
<td>135</td>
<td>8.8</td>
<td>1.17</td>
<td>42.9</td>
<td>2.04</td>
<td>0.509</td>
<td>0.0010</td>
<td>1.43</td>
</tr>
<tr>
<td>ISM CA</td>
<td>4.69E+03</td>
<td>0.348</td>
<td>0.0083</td>
<td>38.9</td>
<td>127</td>
<td>10.7</td>
<td>1.13</td>
<td>39.3</td>
<td>1.98</td>
<td>0.011</td>
<td>0.0000</td>
<td>1.20</td>
</tr>
</tbody>
</table>