Fuel/Engine Co-Optimization: A Not-so-new Idea for the Future

Kevin Stork
November 1, 2016

CRC 2nd AFEE Workshop
Expanding the use of alternative fuels and fuel-controlled combustion
Early cars took advantage of the fuels that were available

- Model T: 1908 – 1927
- Peak sales of 2M in 1923
- Early models allowed kerosene as well as gasoline – not well-defined difference
- Early fuels had AKI of 50-60

- 2.9 L engine
- 22 bhp @ 1600 rpm
- 83 ft.lbs peak torque
- 4:1 Compression
Market demand in the 20’s brought on Anti-Knock additives

• Charles Kettering, electric starter (Delco)
 – Cars w/ starters happened to knock
 – Refining technology for +ON not deployed
 – Invests efforts in fuel & antiknock additives
• Thomas Midgley investigated over 33,000 compounds in 6 years
 – Several suitable compounds identified
 – Tetraethyllead (TEL) in fuel, 1922
 • U.S. Patent #1,592,955, “A Motor Fuel”, 1926

"the ear-splitting knock of their test engine turned to a smooth purr when only a small amount of the compound (tetraethyllead) was added to the fuel supply ... and all the men danced a non-scientific jig around the laboratory”

Desire to raise compression ratio above 4:1!
The 1920’s-1940: Compression and Octane Increase

AKI = Anti-Knock Index

Compression Ratio (-)

Fuel AKI (-)

Year

12 hp/L

Lead added
Post War – 1970: Compression and Octane Increase

Demand for power and smoother operation increased with consumer preferences.

Post-war refinery octane improvement

WW2: Octane for aircraft only

48 - 60 hp/L

37- 54 hp/L
1970’s-90’s: Compression decreases and Octane declines

Electronic controls allow compression ratio/power density to climb from 1979 low

- Compression decreases
- Octane declines
- Lead removal begins
- CR drops
- 24 hp/L
- 48 hp/L
2000’s - Present: Compression increases and Octane flat

Turbocharging, direct-injection all help increase power density

Fuel price \(\uparrow\) limits demand for octane?

Knock sensor helps CR increase

Timing retard to prevent knock

117 hp/L
Current fuels constrain engine design

- Increase Compression (CR) for higher efficiency
- Move map to higher power
- High octane avoid knock
- Efficiency gain > 4.5%
Likely near-term approach to increasing fuel economy

- Downsizing: reduced engine displacement
- Downspeeding: reduced engine speed
- These are limited by: knock, retaining acceptable power and torque
- Require improving the engine power density
 - Turbochargers, superchargers
- Power density is limited by available fuel octane rating

New reality: Fuel octane rating now influences fuel economy rather than just off-cycle engine power.

Ford Fusion:
- 1.6L Turbo: 24/37 MPG, 178 HP
- 2.5L NA: 22/34 MPG, 175 HP
fuel properties for different combustion regimes?

- Spark Ignition (gasoline)
- Compression Ignition (Diesel)
- LTC (HCCI)
Longer-term opportunities

Kinetically-controlled combustion

- High Reactivlty Fuel
 - High Cetane
- Range of Fuel Properties
 - TBD
Longer-term opportunities

- Co-Optimize fuel properties and combustion strategies
- Many different approaches, each with pros and cons.
- Builds upon previous DOE work on fuels and engines

- Advanced combustion + new fuel technologies: better navigation of combustion to minimize GHG and criteria pollutants.

+ new fuel development of low-G and criteria conditions.
New Fuel Introduction
Lead-Free Gasoline Was Introduced in 1974

- Very important change
- Allowed for exhaust catalysts on 1975 vehicles → cleaner air
- Very informed decision
How did E10 become a legal fuel?

- EPA declared gasohol (E10) not legal per 1977 Clean Air Act
- Waiver filed by Gas Plus in 1978
 - Waiver application contained no E10 data
- EPA did not grant waiver
 - EPA did not deny waiver, either!
- Clean Air Act at the time granted waiver by default in 180 days if no action by EPA

Informed decision?

“If you choose not to decide, you still have made a choice”
 – Rush, “Free Will,” Permanent Waves
EPA cited DECSE and DVECSE Studies in Final Sulfur Rule

• “DOE has funded several test programs... in partnership with industry to investigate NOx adsorber technology. ORNL...[has] shown that a NOx adsorber...can reduce NOx by more than 90 percent...on a diesel-powered Mercedes A-class passenger car.”

• “Beginning June 1, 2006, refiners must begin producing highway diesel fuel that meets a maximum sulfur standard of 15 parts per million (ppm)*...”

*Previous limit 500 ppm
U.S. DRIVE FWG Primary Objective

- Evaluate potential properties of lower carbon fuels* for future, high efficiency engines and combustion regimes meeting U.S. DRIVE ACEC targets.

Focus Areas (Fuel Effects Studies Aligned with ACEC)

1. Premixed, Flame Propagation, Spark Ignition Combustion Mode (SI)
2. Mixing/Diffusion Compression Ignition Combustion Mode (CI)
3. Chemical Kinetics Dominated Low Temperature Combustion Modes (LTC)
4. New Combustion Quality Metrics
 a. Anti Knock for SI
 b. Ignition Delay for LTC

Lower carbon as measured by well-to-wheels greenhouse gas emissions measured in g/mi, compared to a baseline case (reference fuel and vehicle)
FWG fuel set compares octane effects for bio-gasolines

Fuels V1 – V4 are Bioreformate Surrogate blends.

Fuels B2 and B4 Wood Derived Biogasoline

B2 and B4 Wood Derived Biogasoline
Real-World Emissions & In-Use Fuel Economy

In Europe, automakers forced back to bigger engines in new emissions era

PARIS — Tougher European car-emissions tests being introduced in the wake of the Volkswagen Group scandal are about to bring surprising consequences: bigger engines.

Automakers that have spent a decade

Is right-sizing always downsizing?

Turbocharged cars’ gas mileage may be lackluster after all

As the technology makes a comeback, Consumer Reports finds that most turbos don’t deliver on advertised fuel economy or outperform non-turbo rivals with bigger engines. GM and Ford disagree.

February 05, 2013 | By Brian Thevenot, Los Angeles Times

While electric vehicles continue to grab the green-car spotlight, an older technology has quietly emerged as a player in the fuel economy wars: turbocharging.

Once the province of performance cars, turbochargers now power economy cars, family sedans and even full-sized trucks. Turbos now account for an estimated 13% of U.S. auto sales, according to Honeywell International Inc., a leading turbo supplier. That’s double what it was in 2010.

The increase is driven by ever-stricter federal fuel economy standards. Turbochargers, which inject compressed air into engine cylinders, enable automakers to squeeze more oomph out of smaller motors.

Complete results: Turbo vs. non-turbo fuel economy

But not everyone is sold on turbos. Toyota and Honda continue to avoid the technology. And critics including Consumer Reports question its efficiency and performance advantages. In a new report, the product testing organization found that most turbos failed to deliver on advertised fuel economy or to outperform non-turbo rivals with bigger engines.

How will technology be perceived by the consumer?
Thank You!

Kevin Stork
kevin.stork@ee.doe.gov
202-586-8306

Web site:
http://energy.gov/eere/vehicles/vehicle-technologies-office
Government/Industry Program Conducted to Determine Effects of Fuel Sulfur on Advanced Diesel Emissions Controls

- Cost shared program (<$4M)
- Multiple sites/participants
 - DOE
 - ORNL
 - NREL
 - EMA
 - MECA
 - WVU
 - ETS
 - FEV

Diesel Emission Control – Sulfur Effects (DECSE) Program
Phase I Interim Data Report No. 3:
Diesel Fuel Sulfur Effects on Particulate Matter Emissions
November, 1999
More Recently in Mid-level Ethanol Blends....

“Let’s not bicker and argue about who killed who...”

― Monty Python and the Search for the Holy Grail
Highlights of Vehicle Aging Program – E15/E20

- 3 test sites
- 86 vehicles, >6.5 million miles
- >300,000 gallons of fuel
- About 1000 emissions tests
- Routine scheduled maintenance
 - >900 oil changes
 - About once per week per vehicle
 - Tires, brakes, timing belts, etc
- Unscheduled maintenance/downtime
 - Resolving testing issues
 - Transmission repair/replacement, wheel bearings, radiators, electronics, fuel pumps, etc
 - Animal collisions on track
 - Heavy snow/fog
MLB Vehicle Aging Summary

- Aging vehicles on the Standard Road Cycle increased emissions over time, as expected.
- Aging vehicles with ethanol blends did not affect emissions changes over time differently than aging with ethanol-free gasoline.
- Compared to certification gasoline, the addition of 10% to 20% ethanol caused general fleetwide changes in measured tailpipe emissions and fuel economy consistent with prior studies:
 - CO, NMHC, and fuel economy decreased.
 - NOx, ethanol, and aldehyde emissions increased.
 - No fuel-related emissions failures were noted in the DOE catalyst study.
EPA cited DOE Studies in Partial Waiver Rulings in 2010 & 2011

“...E15 will not cause or contribute to [2001 and newer] motor vehicles exceeding their applicable exhaust emission standards”

DOE work also cited in Tier 3 Emissions Rule

ORNL developed a method for calculating NMOG from NMHC during iBlends to more rapidly provide emissions results to EPA staff monitoring the program.

EPA adopted the ORNL method in the Tier 3 rule, allowing manufacturers to compute NMOG rather than requiring speciation of tailpipe emissions measurements (substantial time and cost savings).