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Executive summary 

The Los Angeles/Riverside/South Coast airshed has the highest O3 design value (ODV) in the 

country and is home to approximately 18 million people.   While maximum daily 8-hour average 

(MDA8) O3 concentrations have declined substantially from the extremely high values seen in 

the 1980-2000 period, since 2010 there has been little improvement in the O3 concentrations, 

despite substantial reductions in the emissions of O3 precursors.  The focus of this project was to 

understand possible causes for this lack of improvement.    In this project I considered three 

possible explanations:  

1. Recent O3 concentrations have been enhanced due to changes in the photochemical

environment as a result of changes in the VOC/NOx ratio. (VOC is volatile organic

compounds and NOx is sum of nitric oxide plus nitrogen dioxide).

2. Recent O3 concentrations have been enhanced due to an increase in the occurrence of

wildfire smoke in the region.

3. Recent O3 concentrations have been enhanced due to increased temperatures in the

region, either due to random variations or climate change.

To evaluate these hypotheses, I used a variety of tools including analysis of the observed O3 and 

NOx patterns, development of Generalized Additive Models (GAMs) and analysis of long-term 

meteorological data in the region.   The time period of this analysis focused on 2000-2018.  The 

GAMs were developed using data for 2006-2018.  From this analysis, I found that in the early 

part of this period (2006-2008), the highest number of high O3 days was on weekends, when 

NOx concentrations were lowest, however this has now shifted.   At present, the greatest 

frequency of high O3 days is on weekdays.  Sunday now has the fewest high O3 days and is the 

day with the lowest NOx concentrations.  As NOx concentrations have declined on all days, this 

suggests that Sundays have transitioned to a NOx limited regime and weekdays are now near the 

optimum VOC/NOx ratio for O3 production.   NOx concentrations steadily declined until 2013, 

but have stagnated since then.  This is in contrast to the emission inventory (EI) which shows a 

steady decline thru 2018.  Between 2014 and 2018 the EI shows a 20% reduction whereas 

surface and satellite observations of NO2 show essentially no change.  This suggests that 

emissions have not declined since 2014.  

As part of this project I developed and used GAMs to model and predict the MDA8 O3 

concentrations in the South Coast airshed.   The R2 for the GAM predictions range from 0.67 to 

0.76, depending on site.  The GAM has a lower predictive power for the background Vandenberg 

AFB site (R2 = 0.53), where concentrations are lower and local O3 production is less important.  

Due to the changing photochemical environment, inclusion of interaction terms between 

predictors improves the GAM performance.   I then used the GAMs to examine O3 on smoke 

influenced days.  To identify days with smoke influence, I used a combination of the satellite 

derived NOAA Hazard Mapping System- Fire and Smoke Product, combined with surface PM2.5 
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concentrations.  However relatively high PM2.5 in the airshed makes it difficult to clearly identify 

fire influence at the lower elevation (basin) sites, compared to the elevated Crestline site.  Thus 

impacts on the MDA8 O3 due to smoke can only be confidently detected at the Crestline site.   At 

Crestline, the mean residual or extra O3 due to smoke is 5.6 ppb for the MDA8. In 2016-2018, 

there were 29 detectable smoke days at Crestline.   However even if all 29 days were excluded 

from consideration, the 2016-2018 design value would only change from 111 to 108 ppb.   Thus 

while we can say that smoke has a modest influence on the MDA8 at Crestline, it does not 

appear to be a primary driver for the lack of decline in the ODV for the South Coast airshed. 

Daily max temperature (DMT) is an important driver for the daily variations in the MDA8, and 

due to climate change, the DMT is increasing by about 0.02oC/year.   This increase is consistent 

across the mean, 95th and 98th percentiles of the annual DMT values.  This will increase the 

average MDA8 value by 0.06-0.08 ppb per year or 0.6-0.8 ppb per decade, which will have a 

modest influence on the ODV.  So while climate change is an important long-term consideration 

for future air quality, at present it has had only a minor impact on the region’s ability to meet the 

National Ambient Air Quality Standards (NAAQS).    

The recent reductions in the frequency of high O3 days seen on Sundays, the day with the lowest 

NOx concentrations, demonstrates that continued NOx reductions are needed to reduce the ODV 

in the South Coast airshed.   Weekday NOx levels are now similar to what they were on 

weekends 15 years ago and this is near the optimum VOC/NOx ratio for O3 production.   Given 

the strong decline in VOCs over the past several decades and the fact that biogenic VOCs are 

now a significant fraction of the total emissions, further reductions in the ODV will likely only 

occur when NOx emissions are further reduced.  Future research should focus on understanding 

the cause for the lack of decline in NOx concentrations since 2014.    

 

 

 

 

 



6 

 

 

Table of contents 

1. Introduction Pg. 9 

2. Project goals Pg. 14 

3. Methodology Pg. 14 

3.1  Data sets used Pg. 14 

3.2 Development of Generalized Additive Models (GAMs) for South 

Coast air basin 
Pg. 16 

3.3 Model validation and quality control Pg. 17 

4. Results Pg. 18 

4.1 Results overview Pg. 18 

4.2 Identification of smoke days Pg. 22 

4.3  GAM modeling results Pg. 23 

4.4 Influence of smoke on O3 MDAs Pg. 20 

4.5 Influence of climate change on O3 MDA8s Pg. 31 

5. Conclusions and suggestions for future research Pg. 42 

6. References Pg. 44 

7. Appendix: Output and quality control from GAMs. Pg. 47 

 



7 

 

 

List of figures 

Figure 1. Daily MDA8 and annual 4th highest values for Riverside and San Bernardino monitoring 

sites 

Figure 2.   Daily emissions of NOx and ROGs for summer in the South Coast air basin.    

Figure 3.   Daily emissions (summer) of NOx in the South Coast air basin and annual 4th highest 

MDA8 from the San Bernardino and Crestline monitoring sites. 

Figure 4.  Cumulative number of days by month with MDA8 exceeding the given level (ppb) for 

2006-2018 for San Bernardino site.     

Figure 5.  Cumulative number of days by year with MDA8 exceeding the given level for the San 

Bernardino site.    

Figure 6.  Number of days with an MDA8 greater than 70 ppb for June-August, for San Bernardino 

site.  

Figure 7.  Number of days with an MDA8 greater than 85 ppb for June-August, for San Bernardino 

site. 

Figure 8.  Average of Daily 1-hour maximum NO2 (ppb) values for all Riverside area monitors by 

day of week for June-August. 

Figure 9.  Averaged OMI satellite column NO2 (molecules-cm-2) for South Coast air basin by day 

of week for June-August. 

Figure 10.   Different measures of south coast NOx for summer (June-August).  All values are 

normalized to a 2006 value of 100.      

Figure 11.   3-d plot showing the spline fit to Riverside NO2 by year (11a, top) and Day of week 

(DOW) by Year (11b, bottom), both for the San Bernardino MDA8 values.    

Figure 12.   Observed and GAM predictions for the San Bernardino monitoring site from training 

dataset. 

Figure 13.   Observed and GAM predictions for the Crestline monitoring site from training dataset. 

Figure 14.   Observed and GAM predictions for the San Bernardino monitoring site from CV 

dataset. 

Figure 15.   Observed and GAM predictions for the Crestline monitoring site from CV dataset. 

Figure 16.   GAM residuals vs predicted MDA8 for the San Bernardino monitoring site. 

Figure 17.   GAM residuals vs predicted MDA8 for the Crestline monitoring site.     

Figure 18.  Scatter plot of Riverside daily Tmax vs Merra-2 Tmax for all days, 1980-2018.  

Figure 19.  Scatter plot of Riverside daily Tmax vs Merra-2 Tmax for June-August days, 1980-

2018.  

Figure 20.  Average daily maximum temperature (oC) for June-September for Riverside and Merra-

2.  While both datasets show an increases, only the Riverside trend is statistically significant.  

Figure 21.    Distribution of annual DMT (oC) for the years 2015-2018.   

Figure 22.    Distribution of annual DMT (oC) for the years 1980-1983 from Merra-2.  

Figure 23.  Trend in 95th percentiles of DMT (oC). 

Figure 24.  Trend in 98th percentile of DMT (oC). 

Figure 25. Trend in annual fourth highest DMT value for the Riverside and Merra-2 datasets.   

Figure 26. MDA8 values vs Riverside DMT (oC) fit with both ordinary linear regression (OLR) and 

reduced major axis (RMA) regression lines.   

Figure 27.  MDA8 values plotted by DMT in 2oC bins for 5 sites.    

Figure A1. Change in summer (June-August) surface NO2 observations from selected monitors. 



8 

 

 

 

List of tables 

Table 1.  Air quality, meteorology and satellite datasets used in this analysis. 

Table 2.   PM2.5 data for days with and without overhead HMS smoke using the Riverside PM2.5 

data.   

Table 3.   PM2.5 data for days with and without overhead HMS smoke using the Crestline PM2.5 

data. 

Table 4.  Dataset selection process for GAMs. 

Table 5.  Variables used in GAM equations. 

Table 6.   Summary results for the Generalized Additive Modeling for 6 sites in the South Coast 

air basin.    

Table 7.   Annual fourth highest daily MDA8 for the Crestline with all data and with smoke days 

excluded.    

Table 8.   Annual summer (June-September) average daily max temperature (oC) from the 

Riverside and NASA Merra-2 datasets.   

Table 9.  OLR and RMA regression slopes for the MDA8 values vs the Riverside and Merra-2 

DMT values for May-September 2006-2018. 

Table A1.   

 

 



9 

 

 

1. Introduction 

The Los Angeles-Long Beach-Anaheim and Riverside-San Bernardino-Ontario Metropolitan 

Statistical Areas (MSAs) are home to approximately 18 million people.  While great progress has 

been made on reducing O3 in the region, levels are still well above the National Ambient Air 

Quality Standards (NAAQS) and the region currently has the highest O3 design values (ODV) in 

the country.   However over the past decade there has been little progress in reducing the annual 

4th highest Maximum Daily 8-hour Average (MDA8) O3 concentrations, which is the basis for 

the policy relevant metric the ODV.  Figure 1 shows daily MDA8 and annual 4th highest values 

from two of the highest sites in the region (Riverside and San Bernardino). 

The key ingredients in O3 production are nitrogen oxides (NO+NO2 = NOx) and Volatile Organic 

Compounds (VOCs).  The California Air Resources Board compiles information on NOx and 

VOCs emissions from mobile, stationary and area sources.  For VOCs, these are separated into 

Total Organic Gases (TOGs) and Reactive Organic Gases (ROGs), with the ROGs typically 

more important for local O3 production.    Figure 2 shows a record of the CARB estimated 

anthropogenic NOx and ROG and biogenic/natural ROG emissions for summer since 2000 for 

the South Coast air basin (CARB 2019).  This analysis uses a base year of 2012 and projects 

forward from there.  While the rate of emission decline has slowed, nonetheless, there is no 

suggestion in this inventory that the emissions have started to go back up.   Figure 2 also shows 

weekday and weekend NOx emission for 2010 from a recent analysis for 2010 (Kim et al 2016). 

The emissions reductions in the South Coast basins over the past several decades have clearly 

reduced O3 concentrations but have also changed the photochemical environment.  These 

changes include, for example, changes to the VOC/NOx emission ratios (Pollack et al 2013) and 

reducing the weekend/weekday differences (Baider et al 2015).   At the same time climate 

change and meteorology also play important roles on O3 production both in the short and long 

term (e.g. Pusede et al 2015; Jacob and Winner 2009).   Horne and Dabdub (2017) model the 

impacts of climate change on O3 in the south coast airshed and find a very significant increase in 

O3 due to future temperature changes for the late 21st century.  A recently published study (Cai et 

al 2019) reported on results and modeling from the 2010 CalNex study.  They reported lower 

NOx on weekends, with weekend/weekday emission ratios for NOx of ~0.75.   This results in 

higher OH, HO2 and O3 on weekends, since NO2 quickly reacts with OH to form HNO3 and this 

https://en.wikipedia.org/wiki/Los_Angeles-Long_Beach-Anaheim,_CA_MSA
https://en.wikipedia.org/wiki/Riverside-San_Bernardino-Ontario,_CA_MSA
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will suppress O3 formation.  They also report that while industrial VOCs are reasonably 

modeled, biogenic VOCs appear to be under-estimated. 

In an alternate approach, Qian et al (2019) use an empirical method to derive O3 isopleths and its 

sensitivity to ROG and NOx emissions for the South Coast airshed through 2016.  These results 

indicate that the region is currently near the “ridge line” on the isopleths (the region of optimum 

ROG/NOx ratio for O3 formation) and therefore the design value should be sensitive to both 

ROG and NOx emissions.  However, this analysis is based purely on the anthropogenic 

emissions.   We argue that the under-estimates in all VOCs and the fact that the biogenics are 

mostly emitted during the O3 season and these are essentially, uncontrollable, means that we 

need to focus on NOx as a means to reduce O3 exposure and the design values.  Additionally, 

Qian et al (2019) state “We found high linear correlations between ODV and NOx and VOC 

emissions….”.  Their analysis focused on 1975-2016.  However my analysis (described below) 

indicates that since about 2009, the relationship between the reported NOx emissions and ODV 

has weakened considerably.    

While NOx emissions have declined about 45% since 2009, the O3 design value has not 

significantly declined in that time frame (see Figure 3).  If the trend in emissions is correct, it is 

surprising that O3 is not decreasing more.  In this case, other factors must be responsible.  As the 

anthropogenic ROGs decrease, biogenic ROG emissions are becoming an increasingly important 

share of the total.  Also, other anthropogenic sources of VOCs may be under-estimated 

(McDonald et al 2018).   Using the reported CARB emission data gives ROG/NOx molar ratio of 

about 3.5, 4.1 and 5.5 for 2000, 2010 and 2018 respectively.  Given the uncertainties, and likely 

under-estimates of ROGs, the ROG/NOx ratio is now probably very close to the optimum ratios 

for O3 production e.g. 7-10, especially during the O3 season (Ashok and Barrett 2016). 

A key question for the South coast airsheds is whether NOx emissions are continuing to decline 

and, if so, how is this impacting O3 formation.  Silvern et al (2019) argue that the national 

decline in NOx emissions has continued through 2017, although the trend is slowing as industrial 

emissions are reduced and natural sources become a bigger part of the total.  They also report 

that the relative changes in the tropospheric column of NO2, measured by satellite borne Ozone 

Monitoring Instrument (OMI), shows smaller changes compared to surface observations.  They 
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argue that this indicates an increasing role for non-urban sources (e.g. lightning, soils, etc) in the 

total tropospheric NO2 column.   In this report, I will examine the available evidence for NOx 

emission changes in the South coast using both surface and OMI data. 

 

 
 

Figure 1. Daily MDA8 and annual 4th highest values for Riverside (top) and San 

Bernardino (bottom) monitoring sites (AQS 60658001 and 60719004, respectively) for 

2006-2018.    The 4th highest value each year is shown by the red square.   
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Figure 2.   Daily emissions of NOx and ROGs for summer in the South Coast air basin.  

Data for 2000-2018 are from CARB (2019), with a base year of 2012.  For ROG, these are 

separated according to anthropogenic (industrial plus mobile) and biogenic/natural 

emissions.   Also shown are NOx emission estimates from Kim et al (2016) for both 

weekday and weekend days for the year 2010. 

 

 

Figure 3.   Daily emissions (summer) of NOx in the South Coast air basin and annual 4th 

highest MDA8 from the San Bernardino and Crestline monitoring sites. Emission data for 

2000-2018 are from CARB (2019). 
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One aspect that is particularly difficult to model is O3 production due to fire emissions (Jaffe et 

al 2012; 2018).   This is especially relevant given the recent increase over the last decade in fires 

across the western U.S. (Dennison et al 2014; Westerling et al 2016; Abatzoglou et al 2016 ; 

McClure and Jaffe 2018; Laing and Jaffe 2019).  Baker et al (2016; 2018) have shown that 

Eulerian models have great difficulty in correctly calculating the O3 produced from fires.  This is 

due to multiple factors including inadequate chemical mechanism, uncertainty in emissions, 

inadequate grid resolution and/or other factors. 

We have previously used Generalized Additive Models (GAMs) to predict the MDA8 O3 

concentrations based on daily variations in meteorology (Gong et al 2017; 2018; McClure and 

Jaffe 2018; Jaffe et al 2018).  GAMs are robust and flexible regression models that can 

incorporate linear and non-linear relationships, as well as categorical variables.  Typical GAM 

results demonstrate an ability to predict MDA8 O3 with an R2 of between 0.6-0.85.  This is a type 

of “machine learning” which uses a training dataset to understand the complex and inter-related 

patterns in the data.   The difference between the GAM statistical prediction and the observed 

value is called the residual.    

We have also used GAMs to quantify the additional O3 associated with wildfire smoke influence.  

In these cases, we find that the residual is unbiased on non-smoke days, but has a significant 

positive bias on smoke influenced days.  This bias is due to enhanced O3 production on smoke 

influenced days, and can then be used to give an estimate of the O3 produced from the fire 

emissions (Gong et al 2017; McClure et al 2018; Jaffe et al 2018).  As part of our routine quality 

control measures, we also examine the predictions for non-smoke days that were not part of the 

original training dataset (cross validation).  This same method can be used to identify patterns in 

the MDA8 associated with airmass trajectories, temperature, etc (Gong et 2017; 2018) and thus 

provides important information to understand the meteorological drivers for daily and inter-

annual variations in O3 or long term changes.   

To identify smoke, we use the daily product from the NOAA Hazard Mapping System-Fire and 

Smoke Product (hereafter simply HMS).   This product is based on analysis of multiple satellite 

products, both geostationary and polar orbiting.  The HMS product is useful in our analysis as it 

is the only routine/daily data product to demonstrate overhead smoke at a given location.   
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Nonetheless, the frequency of smoke detection at any site is likely an under-estimate for various 

reasons (Kaulfus et al 2017; Buysse et al 2019).   It is also important to recognize that the HMS 

data provide a view of overhead, not surface smoke.  Thus, it is essential to combine the HMS 

product with surface PM2.5 data to verify whether smoke is at the surface or not (e.g. Gong et al 

2017). 

2. Project goals 

I. Examine relationships between MDA8 O3 and key meteorological predictors, as well as 

satellite and surface observation of NO2 for 2006-2018.  Examine key relationships by 

year and day of week.  

II. Develop a smoke classification for the South Coast airshed based on the HMS satellite 

product and surface PM2.5 concentrations.  

III. Develop GAM statistical models for five high O3 sites plus one background site 

(Vandenberg AFB) in the South Coast airshed using meteorology and satellite 

observations as predictors that can characterize the maximum daily 8-hour average 

(MDA8) O3 for 2006-2018.   The GAMs will be developed using a training dataset 

consisting of 90% of the non-smoke day data, with 10% reserved for cross-validation 

(CV). 

IV. Using the GAMs from the non-smoke training dataset, predict the expected O3 for the 

smoke day dataset.   This assumes that there is no impact from smoke on O3 (null 

hypothesis).  We can then use the GAM results to evaluate this hypothesis for each site. 

V. Examine the long-term temperature changes in the south coast airshed in comparison to 

global patterns of temperature change and use this to examine the O3 sensitivity to 

temperature.  From this, I can estimate the significance of any recent temperature 

increases on O3. 

 

3. Methodology 

3.1. Datasets used 

A variety of datasets were used in this analysis (see Table 1).  I carried out quality control on all 

datasets by removing missing data and obvious outliers, incorrect or unrealistic values.   When 

possible, I compared similar variables from different sources. For example I compared daily 

temperature values from multiple observations and models to ensure that these are reasonably 

consistent.    Note that not all datasets in Table 1 were actually used.   Each dataset was 

examined and used, or not, depending on what was found. 
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Table 1.  Air quality, meteorology and satellite datasets used in this analysis. 

 

Ozone monitoring data (MDA8) 

Site name AQS ID Coordinates, alt. 2016-2018 ODV  Source 

San Bernardino 

(SBO) 
60719004 34.11,-117.27, 316m 110 ppb 

AQS-API 

Riverside (RRO) 060658001 34.00,-117.42, 248m 94 ppb AQS-API 

Pomona POMO 060371701 34.07,-117.75, 279m 91 ppb AQS-API 

Glendora (GLO) 60370016 34.14,-117.85, 278m 103 ppb AQS-API 

Vandenberg AFB 

(VAFB)  

060834003 34.60,-120.63,94 m 60 ppb AQS-API 

Crestline (CRO) 060710005 4.24,-117.27, 1387 m 110 ppb AQS-API 

 

NO2 and PM2.5 monitor data 

Dataset Locations Source 

Average daily max for all valid NO2 data. All monitors in Los Angeles and Riverside 

MSAs 

EPA AIR Data 

Daily mean for all valid PM2.5 data. All monitors in Los Angeles and Riverside 

MSAs 

EPA AIR Data 

 

Meteorological datasets 

Dataset Location Source 

Observed surface meteorology: Tmax, Tmin, 

daily average relative humidity (RH). 

 

Surface observations from LAX and 

Riverside airports. For Riverside missing 

data are filled with mean of Riverside Fire 

Station and Citrus experimental station. 

NOAA Climate 

Data Online 

Radiosonde data products:  850 and 700 

hPa temps, 0-1 km temperature, RH, wind 

speed and direction, WV mixing ratio.  

Parameters calculated from full sounding 

data: mixed layer mixing ratio, convective 

available potential energy (CAPE), lifted 

condensation level, mixed layer theta and 

thickness (1000 to 500 hPa). 

Vandenberg AFB radiosondes. 

San Diego radiosondes. 

 

University of 

Wyoming 

server 

Point to point direction and distance from 

12-hour back-trajectories 

HYSPLIT model with GDAS 1ox1o met 

dataset. 

NOAA-Air 

Resources Lab 

NASA Merra-2 assimilation/model, 2-meter 

min, max, mean temps, 

LA Basin bounding box 

(West, South, East, North) 

118.5o W, 33.5 o N, -117.5 o W, 34.5 o N 

NASA 

Giovanni 

Upper air products from North American 

Regional Reanalysis: surface RH and P, 2-

meter min and max temps, geopotential 

heights at 500 and 700 hPa. 

Grid cell centered at: 34.1oN, 117.75o W 

 

NOAA ESRL 
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Satellite data 

 

3.2. Development of Generalized Additive Models for South Coast air basin 

Generalized Additive Models (GAMs) are powerful regression models that can include linear, 

non-linear and categorical variables.  GAMs are thus excellent tools to examine the complex 

nonlinearities of air pollution (Wood, 2006, Carslaw et al., 2007, Camalier et al. 2007).  For this 

project I modeled the MDA8 O3 for each monitoring site listed in Table 1.  Each site was 

modeled separately using identical meteorological data for the region. The GAMs were 

computed in R software with the “mgcv” package.  

 

The GAM equation can be written as: 

𝒈(𝝁𝒊) =  𝑿𝒊𝜽 + 𝒇𝟏(𝒙𝟏𝒊) + 𝒇𝟐(𝒙𝟐𝒊) + 𝒇𝟑(𝒙𝟑𝒊) + ⋯ + 𝜺𝒊  (1) 

where i indicates the ith day’s meteorological observation. fj(x) are smooth functions of the 

meteorological data. The element g(i) is the “link” function, which specifies the relationship 

between the linear formulation on the right side of equation and the response i. 𝑋𝑖𝜃 represents a 

categorical relationship for predictors not subject to non-linear transformations.  For fj(x) non-

linear cubic regression splines (CRS) are used to represent the relationship between ozone and 

each meteorological parameter. In equation 1 εi is the residual and it should be unbiased with 

respect to each predictor that is included in the model.  The link function can use either a log or 

Gaussian distribution; both have been applied to the ozone analyses (Camalier et al 2007; Gong 

et al 2017; 2018).  The smoothness of each CRS is controlled by the number of knots (k).  

Generally, the number of knots should be sufficiently large so as to adequately fit the observed 

relationship, but not so large as to yield unrealistic relationships.  If the effective degrees of 

Dataset Locations Source 

NASA AIRS/Aqua satellite 

700mb O3 for both 

ascending (A) and 

descending (D) values 

LA Basin bounding box 

(West, South, East, North) 

118.5o W, 33.5 o N, -117.5 o W, 34.5 o N 

 

NASA 

Giovanni 

NASA UV-index/OMI, 

Aura satellite 

As above. NASA 

Giovanni 

NASA NO2 Tropospheric 

column,  30% cloud 

screened/OMI, Aura 

satellite 

As above. NASA 

Giovanni 

Daily NOAA-HMS Fire 

and Smoke Product (HMS-

FSP) over the South coast 

airshed 

Archive of HMS KMZ datafiles (2006-2018) NOAA-

NESDIS 
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freedom (EDF) approaches the number of knots, then the number of knots should be reduced.  

This would most likely occur when including variables with high P values.  In our analysis we 

used k=10, consistent with earlier work (Gong et al 2017; 2018; McClure et al 2018) and none of 

the EDFs approached the number of knots.  In some cases, a predictor variable may exhibit a 

changing relationship with the predictand as a function of a third variable, typically a time 

varying component.  In this case we can use an interaction term that fits a 2-d spline to both 

variables.   

We examined a large number of predictor variables for inclusion in the GAMS (see Table 1).   

Each predictor was evaluated based on the degree to which it had explanatory power for the 

MDA8 and the degree to which it improved the overall model fit, without overfitting.   To 

evaluate this, I used the Akaike information criterion (AIC), as described by Wood (2006).  

Lower values of the AIC represent a superior model.   Individual predictors were also evaluated 

using the approximate p-value as computed by the mgcv program.  Correlation between 

meteorological variables is acceptable and nearly impossible to avoid.   For example the daily 

maximum surface temperature and afternoon radiosonde temperature typically show a strong 

positive correlation.  Inclusion of both variables in a GAM is acceptable and may improve the 

model performance, as each variable could potentially explain different aspects of the O3 

relationship.   On the other hand, inclusion of essentially duplicate variables (e.g. daily max 

temperature from two nearby stations) is not likely to improve model performance.  If two nearly 

identical variables are included, one variable will typically show a high p-value and the AIC will 

increase, compared to inclusion of just one of these.   Ultimately the goal is to find the optimum 

combination of the fewest variables that can explain the greatest amount of variance in the 

predictand.   

 

3.3. Model validation and quality control 

There are several methods to examine the underlying assumptions of homogeneity, 

normality, and independence (Wood, 2006). To examine the quality of the model, we look at a 

number of factors, including: 

1. The residuals (observed value minus fit value) should be normally distributed and not 

exhibit heteroscedasticity.   

2. The residuals should not show bias with respect to any of the model predictors. 

3. The cross-validation predictions should demonstrate similar skill at predictions as the 

training dataset and should have no bias with O3 or any of the predictors. 

We can use the gam.check code in R software to check the QQ plots (sample quantiles against 

theoretical quantiles), scatterplots (residuals against linear predictor), histogram of the residuals 

and scatter plots (response against fitted values).  These results are shown in the appendix. 
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4. Results 

4.1. Results overview  

To address the key goals we start by further exploring the data to develop a better understanding 

of the high O3 days in the South Coast airshed.  Figure 4 shows the monthly distribution of days 

exceeding three MDA8 O3 levels and Figure 5 shows the annual distribution since 2006 for the 

San Bernardino site.  From this, we can see that the primary O3 season is May-September, but 

the greatest likelihood of high O3 in June-August.  The overall number of days has changed 

rather little since 2006.   There was a slight decline in the number of days between 2010-2015, 

but an uptick for 2016-2018. 

Figure 4.  Cumulative number of days by month with MDA8 exceeding the given level (ppb) for 

2006-2018 for San Bernardino site. 

     

Figure 5.  Cumulative number of days by year with MDA8 exceeding the given level for the 

San Bernardino site.    
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Figures 6 and 7 shows the weekly pattern of high O3 days for the early and later periods for two 

O3 levels and for the core O3 season of June-August.  The number of high O3 days decreased on 

Sunday, went up significantly on weekdays and showed little change on Saturday.  In the early 

part of this data record, weekday O3 was clearly suppressed due to the reaction of O3 with NO at 

high NOx concentrations.  This weakening of the weekly cycle has been reported previously by 

Baidar et al (2015) and others.   

 
Figure 6.  Number days with an MDA8 greater than 70 ppb for June-August, for San Bernardino 

site. 

 
Figure 7.  Number days with an MDA8 greater than 85 ppb for June-August, for San Bernardino 

site. 
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Figures 8 and 9 examine changes in NOx concentrations over the same time period, from surface 

monitors (Figure 8) and satellite (OMI) observations (Figure 9). 

 

Figure 8.  Average of Daily 1-hour maximum NO2 (ppb) values for all Riverside area monitors by 

day of week for June-August. 

 

Figure 9.  Averaged OMI satellite column NO2 (molecules-cm-2) for South Coast air basin by day of 

week for June-August. 

 

Both the surface and satellite observations of NO2 show a dramatic reduction in concentrations 

on all days, which is generally supportive of the reductions in emissions (e.g. Figures 2 and 3).  

Looking at Figure 8 in detail, we can see that current weekday NO2 levels are similar to weekend 

levels for the earlier time period.   This indicates that the increase in high O3 days in the recent 
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time period is due to a reduction in NOx suppression of O3.  Its important to note that the 

observations show a reduction in the number of high O3 days on Sunday, which is the day with 

the lowest NOx concentrations, as observed both by the surface monitors and satellite 

observations.    This tells us that for Sunday, we have likely transitioned to a NOx limited 

regime.   As NOx concentrations for all days start to reach the levels seen currently on Sundays, 

we would expect a rapid decrease in the number of high O3 days, assuming VOCs also continue 

to decline slowly.   

Next we examine the temporal trend in the reported NOx emission inventory (EI) vs 

observations.   Figure 10 shows this comparison.   

Figure 10.   Different measures of south coast NOx for summer (June-August).  All values are 

normalized to a 2006 value of 100.      

 

All measures show a consistent reduction in NOx for 2006- 2014.  However starting in 2015, the 

EI and observed NO2 start to diverge.  For the Riverside MSA there is a suggestion of flat or 

increasing NOx in the atmosphere.   The OMI satellite observations show a similar pattern.  

Silvern et al (2019) argue that as U.S. NOx emissions decline, satellite observations of NO2 may 

not follow monotonically, since at lower surface concentrations free tropospheric NO2 starts to 

contribute a greater fraction of the total column.   However this should be seen once the column 

density reaches much lower values, ca 1-2x1015 molecules cm-2.   The South Coast airshed 

remains well above these levels so this is not likely to a be significant confounder at this point.   

Note that Figure 10 shows average summer data from all available monitors in the Los Angeles 

and Riverside CBSAs.   If instead we redo this analysis using only a core set of monitors with 

near continuous records from 2006-2018, we see a very similar result.    This is shown in Figure 



22 

 

 

A1 in the appendix.  I also examined the changes in NO2 since 2014 at each individual monitor 

in the LA and Riverside MSAs.  This is shown in Table A1 in the appendix.  Between 2014-2015 

and 2017-2018 NO2 monitors in the LA MSA dropped an average of 6.6% for summer 

observations.   In contrast, monitors in the Riverside MSA have, on average, changed by an 

insignificant amount (+0.1 %) over the same time period.  Thus, our conclusion here is that the 

NOx concentrations have been essentially flat since 2014, in contrast to a reported reduction of 

~20% in the emission inventory.   

4.2. Identification of smoke days 

 To identify smoke days, we use a combination of the NOAA HMS-FSP (hereafter just 

HMS) and surface PM2.5. I followed a similar procedure as we have used in our previous 

publications (Gong et al 2017; McClure et al 2018).  For a day to be identified as having surface 

smoke it must have evidence for smoke in the HMS product and the daily average PM2.5 must be 

greater than the mean + 1 SD of the non-smoke days.  Tables 2 and 3 show a summary of this 

analysis for the Riverside and Crestline sites.  The higher PM2.5 values in the basin sites (e.g. 

Riverside) make it more difficult to identify smoke days using this criteria.  Thus fewer smoke 

days are identified for the basin, compared to Crestline. 

 

Table 2.   PM2.5 data for days with and without overhead HMS smoke using the Riverside 

PM2.5 data.  This classification will be used for the SBO, RRO, POMO, GLO and VAFB sites.    

 
Average PM2.5-no 

HMS smoke 

(µg/m3) 

SD 

(µg/m3) 
N 

Mean+SD 

(µg/m3) 

N smoke 

days 

Average PM2.5 on 

smoke days 

(µg/m3) 

2006 19.27 12.17 272 31.45    
2007 18.95 12.13 253 31.08    

2008 16.28 9.22 315 25.50 3 29.43 

2009 14.95 8.87 305 23.82 1 29.10 

2010 13.19 7.35 339 20.54   

2011 13.82 7.97 355 21.79   

2012 13.72 7.11 352 20.82 1 21.10 

2013 12.84 7.77 337 20.61 1 32.90 

2014 15.74 7.23 345 22.97   

2015 11.76 7.34 336 19.10   

2016 12.28 6.87 331 19.16 1 23.60 

2017 12.13 6.93 341 19.05 2 20.20 

2018 11.99 6.63 305 18.62 4 18.95 
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Table 3.   PM2.5 data for days with and without overhead HMS smoke using the Crestline 

PM2.5 data, which starts in 2009.  This classification scheme will be used for the Crestline site.  

 
Average PM2.5-no 

HMS smoke 

(µg/m3) 

SD 

(µg/m3) 
N 

Mean+SD 

(µg/m3) 

N smoke 

days 

Average PM2.5 on 

smoke days 

(µg/m3) 

2009 10.98 4.87 137 15.84 7 28.50 

2010 12.31 4.61 325 16.92 1 18.80 

2011 13.08 5.23 236 18.31   

2012 9.10 4.29 352 13.38 3 17.30 

2013 7.89 4.06 331 11.94 1 12.20 

2014 9.40 4.35 349 13.75   

2015 7.91 3.93 313 11.84   

2016 6.38 4.01 320 10.39 13 16.24 

2017 11.22 3.66 267 14.87 3 17.00 

2018 8.94 3.44 302 12.38 13 16.46 

 

4.3. GAM modeling results 

The GAM models were developed for each site using the procedure described in Section 3.2.   

Because our focus is on the primary O3 season, the GAMs were computed on the MDA8 data 

from May-September for 2006-2018.   Each predictor variable used a single value each day and 

each O3 monitoring site listed in Table 1 is treated separately.  The dataset was split as shown in 

Table 4. 

Table 4.  Dataset selection process for GAMs. 

 

I evaluated many different model formulations.  Based on the available data and the criteria 

selection (described in section 3.2), I came up with two different GAM formulations one for the 

Dataset How chosen? How used? 

Training dataset 90% of non-smoke days, 

randomly selected. 

This dataset was the basis for the GAM 

development at each site. 

Cross-validation 

(CV) dataset 

10% of non-smoke days, 

randomly selected. 

This dataset was not part of the model 

development, but was used to independently 

evaluate the GAM predictions. 

Smoke days Selected as described in 

4.2 above. 

This dataset was not part of the model 

development, but was used to evaluate possible 

enhanced O3 due to the presence of smoke. 
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lower elevation sites, including San Bernardino, Riverside, Pomona, Glendale, Vandenberg AFB 

and a second equation for the higher elevation Crestline site, which responded to a slightly 

different set of predictor variables.   The equations for each are given below with an explanation 

of the variables in Table 5 

Final GAM equation for basin sites (San Bernardino, Riverside, Pomona, Glendale, 

Vandenberg AFB): 

Model_1 = 

gam(SBO~s(TrDIST12,by=TrQ12)+s(Y,DOW)+s(Y,RivNO2)+s(UV,bs="cr",k=10)+s(T850M,b

s="cr",k=10)+s(T850A,bs="cr",k=10)+s(RIVTMAX,bs="cr",k=10)+s(DOY,bs="cr",k=10)+s(T

HCKA,bs="cr",k=10)+DOW,data=dat3,na.action=na.exclude) 

 

Final GAM equation for Crestline: 

Model_2 = 

gam(CRO~s(TrDIST12,by=TrQ12)+s(Y,DOW)+s(Y,RivNO2)+s(T700A,bs="cr",k=10)+s(UV,b

s="cr",k=10)+s(T850M,bs="cr",k=10)+s(T850A,bs="cr",k=10)+s(RIVTMAX,bs="cr",k=10)+s(

DOY,bs="cr",k=10)+s(THCKA,bs="cr",k=10)+s(MerTMAX,bs="cr",k=10)+DOW,data=dat3,na

.action=na.exclude) 

Table 5.  Variables used in GAM equations. 

TrDIST12: 12 hour point to point back-trajectory distance (km) 

TrQ12:  12 hour point to point back-trajectory quadrant (e.g. NE, SE, SW, NW) 

DOW: day of week 

Y: year 

RivNO2:  Average of all Riverside surface NO2 monitors  

UV: satellite measured (OMI) UV index 

T850M:  850 hPa temperature from San Diego morning sounding. 

T850A:  850 hPa temperature from San Diego afternoon sounding. 

T700A:  700 hPa temperature from San Diego afternoon sounding. 

RivTMAX:  Observed daily maximum temperature observed at the Riverside airport. 

DOY: day of year. 

THICKA: 1000 to 500 hPa from afternoon San Diego radiosonde. 

MerTMAX:  Two-meter daily maximum temperature from NASA Merra-2 model 

DOW: day of week. 

Terms listed with an s are fit via non-linear splines.  Terms listed with a “+” (e.g. DOW) are 

treated as non-numeric categorical variables.  Interaction terms are shown as “s(Y,DOW)”, 

which indicates the 2-d spline fits mentioned earlier.   Terms listed with “by” indicate the splines 

should be computed independently for each separate category of the variable.  In other words the 

term “s(TrDIST12,by=TrQ12)” indicates that the splines should be computed for each category 

of the trajectory quadrants independently.    
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Figure 11a,b.   3-d plot showing the spline fit to Riverside NO2 by year (11a, top) and Day 

of week (DOW) by Year (11b, bottom), both for the San Bernardino MDA8 values.   The 

“linear predictor”, on the Z-axis, indicates the contribution of each variable to the MDA8 

O3.  The X and Y axis arrows indicate the direction for increasing NO2, DOW (starting 

with Sunday) and Year.   

Because of the changing relationship between O3 and NO2 and day of week, it is difficult to 

capture this effect in a standard GAM spline fit, which only considers one variable at a time.  

Including variable interaction terms lead to significantly improved results.  Figures 11a,b show 

examples of the results of the interaction terms.  Figure 11a shows that at the highest NO2 values, 

O3 is generally suppressed across all years.   Figure 11b shows the O3 suppression is greatest in 

midweek, and this is most pronounced in the early part of the data record.   

Given the optimum equation, we can now move to the full GAM results.  Table 6 shows a 

summary of the GAM results for each O3 monitoring site and split by the three datasets described 

in Table 4. 
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Table 6.   Summary results for the Generalized Additive Modeling for 6 sites in the South 

Coast air basin.   Results for the training dataset are in black, the cross-validation dataset 

is in blue and the smoke dataset is in red.  The last line in each grouping states whether the 

residual is significantly different from zero at a 95% confidence interval.   

  SBO RRO POMO GLO VAFB CRO 

Count of training days 1462 1462 1462 1462 1462 1438 

Mean obs MDA8 training 

(ppb) 70.19 68.18 59.00 63.18 36.13 75.75 

Mean RivTMAX training 

(oF) 89.93 89.93 89.93 89.93 89.93 89.81 

R2 training 0.76 0.70 0.67 0.72 0.53 0.70 

Mean residual 

-4.3E-

12 -2.0E-11 -4.6E-11 9.7E-13 -8.9E-13 -6.4E-13 

SD residual 8.59 8.14 8.52 8.71 5.75 9.72 

95% C.I. 0.44 0.42 0.44 0.45 0.30 0.50 

Resid sig diff from zero? No No No No No No 

Count of cross validation 

days 160 160 160 160 160 157 

Mean obs MDA8 CV (ppb) 71.05 68.76 59.58 64.34 36.25 75.60 

Mean RivTMAX CV (oF) 90.15 90.15 90.15 90.15 90.15 89.99 

R2 Cross validation 0.69 0.66 0.61 0.67 0.47 0.65 

Mean residual   0.21 0.16 0.22 0.31 -0.11 -0.68 

SD residual 9.40 8.45 8.44 9.03 6.77 10.36 

95% C.I. 1.47 1.32 1.32 1.41 1.06 1.63 

Resid sig diff from zero? No No No No No No 

Count of smoke days 12 12 12 12 12 36 

Mean obs MDA8 smoke 

(ppb) 83.15 76.15 70.31 78.92 32.82 90.78 

Mean RivTMAX smoke 

(oF) 95.96 95.96 95.96 95.96 95.96 97.78 

R2 smoke 0.57 0.42 0.63 0.78 0.35 0.45 

Mean residual 1.92 0.27 4.28 3.42 -1.39 5.62 

SD residual 11.44 12.50 15.08 12.53 5.75 10.88 

95% C.I. 7.27 7.94 9.58 7.96 3.65 3.68 

Resid sig diff from zero? No No No No No Yes 
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Figures 12-15 show example scatterplots for the observed vs GAM predicted MDA8s, both for 

the training dataset and CV for two sites (San Bernardino and Crestline).  All of the urban, high 

O3 sites show excellent predictability from the GAMs, with R2 values of 0.67 to 0.76.  The 

VAFB site shows worse performance, compared to the others sites (R2 of 0.53).   This is not a 

surprising result and is consistent with our earlier results (Gong et al 2017).   Generally, the 

meteorological parameters are good predictors for local O3 production but not as good predictors 

for large scale, transported O3.   This, combined with the fact that the range in MDA8 values is 

lower, leads to lower values of the R2
.  

 

 
Figure 12.   Observed and GAM predictions for the San Bernardino monitoring site from training 

dataset. 

 

 
Figure 13.   Observed and GAM predictions for the Crestline monitoring site from training dataset. 
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Figure 14.   Observed and GAM predictions for the San Bernardino monitoring site from CV 

dataset. 

 

 
Figure 15.   Observed and GAM predictions for the Crestline monitoring site from CV dataset. 
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4.4 Influence of smoke on O3 MDA8s 

Turning our attention to the smoke day results, we find that most sites in the SC basin do not 

show a significantly enhanced residual on the smoke days.  This reflects the small number of 

smoke days, the small mean value and the large variability of the residuals.  This is in contrast to 

our previous analyses for sites across the Western U.S. (Gong et al 2017; McClure et al 2018; 

Jaffe et al 2018).  Only Crestline shows a significant enhancement in the residual on smoke days, 

with a mean enhancement of 5.6 ppb.  Figures 16 and 17 shows the residuals for the training 

dataset and smoke days for San Bernardino and Crestline sites. 

 
Figure 16.   GAM residuals vs predicted MDA8 for the San Bernardino monitoring site. Blue points 

show results for the training dataset (n=1462), red points show results for the smoke dataset (n=12).  

The mean residual for the smoke dataset is 1.9 ppb, which is not significantly different from zero at 

a 95% confidence (see Table 6). 

 
Figure 17.   GAM residuals vs predicted MDA8 for the Crestline monitoring site.    Blue points 

show results for the training dataset (n=1438), red points show results for the smoke dataset (n=36).  

The mean residual for the smoke dataset is 5.6 ppb, which is significantly different from zero at a 

95% confidence (see Table 6). 
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Table 6 also shows that the mean O3 at most sites and the Riverside Tmax for the training and 

CV datasets are nearly identical, but that smoke days have more O3 and are significantly warmer.  

Given that the MDA8 goes up about 1 to 2 ppb for every 1oF rise in the daily max temperature, 

as discussed in section 4.5 below and Table 9, the increased MDA8 on the smoke days can 

mostly be accounted for by the increase in temperature, except for Crestline.   Here the increased 

MDA8 on smoke days (ca 15 ppb) is not fully accounted for by the increase in temperature and 

some of this increase must be associated with O3, or O3 precursors, associated with the smoke.   

Because temperature is included as one of the GAM predictors, and in fact one of the strongest 

predictors, the GAM residual should take into account the enhanced temperatures.  Thus, we can 

expect that the enhanced residuals are due to the smoke influence alone.  

 

Given the significant influence of smoke at Crestline, we can explore how important this is for 

the 2016-2018 design value calculation.  Table 3 shows that there were 41 identified smoke days 

at Crestline for 2006-2018, 29 of which were in 2016-2018.    Table 7 shows the impact on the 

annual fourth highest MDA8 for Crestline with and without all identified smoke days.  This 

analysis shows that even if every single smoke day were eliminated from consideration, the 

2016-2018 design value for Crestline would only change from 111 to 108 ppb.   

 

Table 7.   Annual fourth highest daily MDA8 for the Crestline with all data and with smoke 

days excluded.   Note that the ODV is calculated by averaging the fourth highest value 

from the three previous years and truncating the result to 3 figures.  

 Fourth highest observed 

MDA8 (ppb) 

Fourth highest observed MDA8  (if all 

smoke days excluded) 

2006 111 111 

2007 126 126 

2008 120 120 

2009 108 108 

2010 109 109 

2011 106 106 

2012 103 103 

2013 99 99 

2014 102 102 

2015 107 107 

2016 116 110 

2017 114 114 

2018 105 102 

2016-2018 

average 
111.7 108.7 

Estimated 2016-

2018 ODV 
111 108 
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4.5 Influence of climate change on O3 MDA8s 

 

Since smoke is not implicated in explaining recent high MDA8 values in the South coast airshed, 

we now turn our attention to the role of climate change.   This is particularly important given the 

fact that daily max temperature (DMT) is an important driver for high O3 days.   For this 

analysis, I used two primary databases, the observed Riverside daily max temperature and the 

NASA MERRA-2 assimilation (for more information, see Gelaro R., et al., 2017, or 

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/).  In short, MERRA-2 is a state-of-the-art 

weather/climate reanalysis at 0.5o x 0.625o resolution that incorporates a large number of 

observed and modeled products into a physically consistent representation of the atmosphere.  

MERRA-2 is available starting in 1980 and continues thru the present on an hourly timescale.  

For this analysis, I focus on the daily maximum temperature for 1980-2018, as reported by the 

Riverside met station and Merra-2 for a 1o x 1o grid cell centered at 118.0W, 34.0N.   Figures 18 

compares the two datasets for all days, but since much of this agreement is due to the seasonal 

cycle in temperature, a more useful comparison is done by only looking at summer days.   So 

Figure 19 compares the two datasets for June-August.  The comparisons show that the datasets 

have excellent agreement.  There is a tendency for the DMT in MERRA-2 to be slightly cooler 

than the observations.  This mainly reflects the broader coverage for MERRA-2(e.g. a 1o x 1o grid 

cell), compared to the point measurement at Riverside.  This difference is not important for my 

analysis and, as noted previously, both datasets are strong predictors for the MDA8 in the south 

coast airshed.   

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/
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Figure 18.  Scatter plot of Riverside daily Tmax vs Merra-2 Tmax for all days, 1980-2018.  

 

 
Figure 19.  Scatter plot of Riverside daily Tmax vs Merra-2 Tmax for June-August days, 1980-

2018.  



33 

 

 

Next, I look at temperature trends in the two datasets.   Table 8 gives the annual and decadal 

average summer DMT for 1980-2018.   While there is a large degree of year-to-year variations,  

the effect from global warming is evident, with the MERRA-2 analysis increasing by ~0.3oC and 

Riverside values increasing by ~0.7oC, over this time period.  Figure 20 plots the annual average 

DMT for both datasets for June-September.  There is a good correlation in the annual summer 

means between the two datasets (R2 = 0.68).  Both datasets show an increasing temperatures, 

0.026 and .014 oC/year for Riverside and MERRA-2, respectively, but only the Riverside data 

show a statistically significant increase.  For reference, the most widely accepted global 

temperature records have been reported by NASA-Goddard Institute of Space Studies (GISS).   

The NASA-GISS global land-ocean temperature analysis shows an average increase of 0.02oC 

per year since 1980, so the trend values for the south coast airshed are in-line with the increase in 

global mean temperatures.    
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Table 8.   Annual summer (June-September) average daily max temperature (oC) from the 

Riverside and NASA Merra-2 datasets.   

Year Merra2_Tmax Riverside_Tmax  Merra2_Tmax Riverside_Tmax 

1980 29.8 33.1  
  

1981 32.0 34.6  
  

1982 29.1 30.9  
  

1983 29.5 32.7  
  

1984 31.6 34.0  
  

1985 30.7 33.7  
  

1986 29.6 32.8  
  

1987 29.9 31.9  
  

1988 30.3 32.6 10 year mean   
1989 30.3 32.9 1980-1989 30.3 32.9 

1990 30.8 34.0  
  

1991 28.7 32.1  
  

1992 30.2 33.9  
  

1993 29.1 32.4  
  

1994 30.8 34.3  
  

1995 30.1 34.1  
  

1996 30.9 34.4  
  

1997 30.3 33.4  
  

1998 29.0 33.1 10 year mean   
1999 29.2 32.3 1990-1999 29.9 33.4 

2000 30.4 33.9  
  

2001 30.4 33.5  
  

2002 30.4 33.3  
  

2003 30.9 33.7  
  

2004 30.1 32.8  
  

2005 29.4 33.0  
  

2006 31.3 35.2  
  

2007 30.4 34.2  
  

2008 31.3 34.2 10 year mean   
2009 30.4 33.0 2000-2009 30.5 33.7 

2010 29.3 32.3  
  

2011 29.4 32.9  
  

2012 30.9 34.5  
  

2013 30.4 33.4  
  

2014 30.9 33.8  
  

2015 30.8 33.3  
  

2016 31.0 34.4  
  

2017 30.8 34.1 10 year mean   
2018 31.4 34.4 2009-2018 30.5 33.6 
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Figure 20.  Average daily maximum temperature (oC) for June-September for Riverside and 

Merra-2.  While both datasets show an increase, only the Riverside trend is statistically significant.  

 

In addition to looking at change in the mean summer temperature, it is also important to look at 

the distribution of DMT values.  Figures 21 and 22 show the distribution of DMT values for the 

first and last 4 years of this period (1980-2018).   
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Figure 21.    Distribution of annual DMT (oC) for the years 2015-2018.   

 

 

 
Figure 22.    Distribution of annual DMT (oC) for the years 1980-1983 from Merra-2.  

 

The strong increase in the annual mean DMT (~1.5oC in 35 years) compared to the values shown 

earlier likely reflects stronger increases due to global warming in winter, compared to summer.   

Figure 6 and 7 show the trend in DMT for the annual 95th and 98th percentile values.  These are 

probably the most relevant metrics for O3, since these represent the 18 and 7 hottest days each 

year, for the 95th and 98th percentile, respectively.  
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Figure 23.  Trend in 95th percentiles of DMT (oC). 

 

 
Figure 24.  Trend in 98th percentile of DMT (oC). 

  

The slopes of the 95th and 98th percentiles are very similar to slopes for the overall summer 

mean. So over this time period, the rise in the 95th and 98th percentile of DMT values are 

consistent with the steady upward climb due to climate change.  For the 2016-2018 time period, 

there does not appear to be a stronger increase, with the exception of 2017, which saw a 

substantial jump in DMT, especially in the Riverside data. This certainly contributed to the 

increase in MDA8 values seen in 2017 (refer back to Figure 5).   
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Finally, I look at the temperature data from one last perspective, the fourth hottest day of the 

year.  I choose this metric since it mirrors the policy relevant O3 metric.   

 

 
Figure 25. Trend in annual fourth highest DMT value for the Riverside and Merra-2 datasets.  

Linear trend lines are shown, but these are not statistically significant. 

 

The fourth hottest day of each year (shown in Figure 25) is also consistent with the steady rise in 

temperatures due to climate change and the slopes are similar to those at 98th percentiles shown 

in Figure 24.  So this analysis of temperature trends in the South Coast airsheds, indicates that 

the DMT is increasing by ~0.02oC per year and that this increase is consistent across the mean 

and upper ends of the temperature distribution (e.g. 95th and 98th percentiles) as well as the fourth 

hottest day each year.   This increase is also consistent with the pattern of global temperature 

rise, as reported by the NASA GISS analysis.    

Next we want to evaluate how important this temperature trend has been on South Coast O3 over 

the last few decades.   For this, I need to re-examine the O3-temperature sensitivity.   Figure 26 

shows the MDA8 values vs Riverside DMT, fit with both ordinary linear regression (OLR) and 

reduced major axis (RMA) regression lines.   
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Figure 26. MDA8 values vs Riverside DMT (oC) fit with both ordinary linear regression (OLR) and 

reduced major axis (RMA) regression lines.   

 

OLR assumes errors in only the Y variable.   This assumption is rarely correct for environmental 

analyses, but in practice, this only matters when the R2 are modest (e.g. below 0.6).  RMA 

regressions gives a better estimate of the true slope, as it considers errors in both the X and Y 

variables.  For the plot above, the R2 value is 0.35, so RMA regression is used to give a better 

estimate of the slope.   Table 9 shows the OLR and RMA regression slopes for the MDA8 values 

from all sites using both the Riverside and Merra-2 DMT values.   I also evaluated whether these 

slopes have changed significantly over the time span considered here (2006-2018) and there is no 

evidence for this. 

 

Table 9.  OLR and RMA regression slopes for the MDA8 values vs the Riverside and Merra-2 

DMT values for May-September 2006-2018. 

Slopes in ppb/oC SBO RRO POMO GLO VAFB CRO 

OLR Slope: 

MDA8/RivTmax 
2.03 1.71 1.77 2.02 -0.41 1.56 

OLR Slope: 

MDA8/MerraTmax 
2.52 2.02 2.09 2.36 -0.63 2.22 

RMA Slope: 

MDA8/RivTmax 
3.46 2.94 2.92 3.23 1.65 3.52 

RMA Slope: 

MDA8/MerraTmax 
4.30 3.66 3.62 4.02 2.05 4.38 
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Using the RMA regressions, I find that the temperature sensitivity for the MDA8 values is 

between 2.9-4.4 ppb in the MDA8 per oC in daily max temperature (excluding VAFB).   So the 

0.02 oC/year increase in temperature corresponds to an increase in the average MDA8 of around 

0.06-0.08 ppb/year or 0.6-0.8 ppb per decade.  Note that my analysis also indicates that the 

extreme temperature days (95th and 98th percentiles) are going up at about the same rate as the 

overall mean (0.02 oC) so climate change, at present, has only a minor impact on the region’s 

ability to meet the National Ambient Air Quality Standards (NAAQS).    

It is important to note that the most recent Intergovernmental Panel on Climate Change (IPCC 

2014) indicates that the rate of change in temperature may increase significantly, to ~0.04 

oC/year.  This rate of change will have a more significant impact on O3 in the future.  Steiner et 

al (2010) reports suppression of O3 formation on days with very high daily max temperatures 

(above approximately 40 oC) for a number of sites across California.   They claim that this could 

ameliorate, somewhat, the impacts of future climate change on O3.   I examined the data from 

this perspective.  Figure 27 shows MDA8 values binned by the DMT.  From this we can observe 

that at the highest DMT values, there is a flattening in the O3 response and even, at some sites, a 

tendency for lower MDA8 values, similar to the findings reported by Steiner et al (2010).   While 

this effect could be important in the future, at present, the temperature changes due to climate 

change are not yet large enough for this to matter.  In summary, climate change has, so far, been 

a relatively minor contributor to the changes in O3 concentrations seen in the South Coast and 

cannot explain the lack of progress in reaching lower ODVs. 
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Figure 27.  MDA8 values plotted by DMT in 2oC bins for 5 sites.   Error bars show 2 standard 

deviations of the mean for May-September 2006-2018. 
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5. Conclusions and suggestions for future research 

In this project, I sought to understand the pattern and changes in the concentration of O3 in the 

Los Angeles-Riverside/South Coast airshed. This region currently has the highest ODV in the 

country and is home to approximately 18 million people.   While MDA8 O3 concentrations have 

declined substantially from the extremely high values seen in the 1980-2000 period, since 

approximately 2010 there has been very little improvement, despite substantial reductions in 

emissions of O3 precursors.  The focus of this project was to understand possible causes for this 

lack of improvement.    Three hypotheses were considered: 

1. Recent O3 concentrations have been enhanced due to changes in the photochemical 

environment driven by changes in the VOC/NOx ratio. 

2. Recent O3 concentrations have been enhanced due to an increase in the occurrence of 

wildfire smoke in the region. 

3. Recent O3 concentrations have been enhanced due to increased temperatures in the 

region, either due to random variations or climate change. 

To evaluate these hypotheses I used a variety of tools including analysis of the O3 and NOx 

patterns, development of Generalized Additive Models, identification of smoke days using 

satellite data and surface PM2.5 observations and analysis of long-term meteorological data in the 

region.   The time period of this analysis focused on 2000-2018.  The GAMs were developed 

using data for 2006-2018.  From this analysis, I have come to the following conclusions: 

i. In the early part of this period (2006-2008), the highest number of high O3 days was on 

weekends, when NOx concentrations were lowest.   At present, the greatest number of 

high O3 days are on weekdays.  In contrast to the earlier period, Sunday now has the 

fewest high O3 days and is the day with the lowest NOx concentrations.  As NOx 

concentrations have declined on all days, this suggests that Sundays have transitioned to a 

NOx limited regime and weekdays are now at a VOC/NOx ratio that is near the optimum 

for O3 production.   

ii. NOx concentrations steadily declined until 2014, but have stagnated since then.  This is 

in contrast to the CARB EI which shows a steady decline thru 2018.  Between 2014 and 

2018 the EI shows a 20% reduction whereas surface and satellite observations of NO2 

show essentially no change.  This suggests that emissions have not declined since 2014. 

iii. GAMs are effective tool to model and predict MDA8 in the South Coast airshed.   The R2 

for the GAM predictions range from 0.67 to 0.76.   The GAM has a lower predictive 

power for the Vandenberg AFB site (R2 = 0.53), where concentrations are lower and local 

O3 production is less important.  Due to the changing photochemical environment, 

inclusion of interaction terms between predictors improves the GAM performance.   

iv. Relatively high PM2.5 in the airshed makes it difficult to clearly identify fire influence at 

the lower elevation (basin) sites, compared to the Crestline site.  Thus impacts on the 
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MDA8 O3 due to smoke can only be confidently detected at the Crestline site.   At 

Crestline, the mean residual or extra O3 due to smoke is 5.6 ppb for the MDA8. In 2016-

2018, there were 29 detectable smoke days at Crestline.   However even if all 29 days 

were excluded from consideration, the 2016-2018 design value would only change from 

111 to 108 ppb.   Thus while we can say that smoke has a modest influence on the MDA8 

at Crestline, it does not appear to be a primary driver for the lack of decline in the ODV 

for the South Coast airshed. 

v. Daily max temperature is an important driver for the daily variations in the MDA8 and 

due to climate the DMT is increasing by about 0.02oC/year.   This increase is consistent 

across the mean, 95th and 98th percentiles of the DMT values.  This will increase the 

average MDA8 value by 0.06-0.08 ppb per year or 0.6-0.8 ppb per decade and thus has 

only a minor impact on the region’s ability to meet the National Ambient Air Quality 

Standards (NAAQS).    

The recent reductions in O3 seen on Sundays, the day with the lowest NOx concentrations, 

demonstrates that continued NOx reductions are needed to reduce the ODV in the South Coast 

airshed.   Weekday NOx levels are now similar to what they were on weekends 15 years ago and 

this is probably near the optimum VOC/NOx ratio for O3 production.  Given the strong decline 

in VOCs over the past several decades and the fact that biogenic VOCs are now a significant 

fraction of the total emissions (see Figure 2), further reductions in the ODV will likely only 

occur when NOx emissions are further reduced.  Future research should focus on understanding 

the cause for the lack of decline in NOx concentrations since 2014.   Our analysis suggests that 

the EI is presenting an overly optimistic view of the emissions reductions.  This could be due to a 

variety of factors including population growth, changes in commuter patterns, changes in 

industrial emissions, changes in agricultural emissions, changes in  biogenic emissions or other 

unknown causes.  Our analysis suggests that a better understanding of the emission pattern and 

trends is needed to understand the trend in the ODV for the South Coast airshed. 
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7. Appendix 

The following graphs show results and quality control output from the mgcv package in R.   For this, I 

use the San Bernardino training dataset as an example.   The model results are stored in the variable MS. 

> summary(MS) 
 
Family: gaussian  
Link function: identity  
 
Formula: 
SBO ~ s(TrDIST12, by = TrQ12) + s(Y, DOW) + s(Y, RivNO2) + s(UV,  
    bs = "cr", k = 10) + s(T850M, bs = "cr", k = 10) +  
    s(T850A, bs = "cr", k = 10) + s(RIVTMAX, bs = "cr",  
    k = 10) + s(DOY, bs = "cr", k = 10) + s(THCKA, bs = "cr",  
    k = 10) + DOW 
 
Parametric coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  16.9049     0.3473   48.68   <2e-16 *** 
DOW          13.3149     0.1025  129.94   <2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Approximate significance of smooth terms: 
                       edf Ref.df       F  p-value     
s(TrDIST12):TrQ12NE  4.640  5.525   4.167 0.000762 *** 
s(TrDIST12):TrQ12NW  1.894  2.386   4.320 0.012649 *   
s(TrDIST12):TrQ12SE  1.452  1.782   0.785 0.545361     
s(TrDIST12):TrQ12SW  4.359  5.294   3.874 0.001329 **  
s(Y,DOW)            26.337 28.417 292.626  < 2e-16 *** 
s(Y,RivNO2)          8.960 12.565   1.507 0.103617     
s(UV)                8.199  8.751  20.047  < 2e-16 *** 
s(T850M)             1.000  1.000  12.560 0.000407 *** 
s(T850A)             5.556  6.746  34.629  < 2e-16 *** 
s(RIVTMAX)           7.879  8.665  13.362  < 2e-16 *** 
s(DOY)               6.871  7.963  13.531  < 2e-16 *** 
s(THCKA)             2.476  3.253   2.207 0.080407 .   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Rank: 148/149 
R-sq.(adj) =  0.744   Deviance explained = 75.8% 
GCV = 83.062  Scale est. = 78.295    n = 1408 
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> gam.check(MS) 
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> plot(MS, scale=0) 
 
#Individual spline plots. In each case, the y-axis show that variables      
#contribution to the predictand (San Bernardino MDA8 O3).  Marks on   
#the x-axis #indicate the density of points and the dashed lines show 
#the 2 standard error boundary about the spline fit. Note that results 
#can be counter intuitive near the extremes when there are few points. 

 

 



50 

 

 

 

 



51 

 

 

 

 
 



52 

 

 

 

 
Figure A1. Change in summer (June-August) surface NO2 observations (1-hour daily maximum) 

from monitors in the Los Angeles and Riverside CBSAs.  Only sites with near continuous records 

(for the Los Angeles CBSA there are 14 sites and for the Riverside CBSA there are 8 sites).   Values 

are normalized to a 2006 value of 100. 
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Table A1: Recent changes in summer (June-August) average NO2 (ppb) for individual monitors in 

the Riverside and Los Angeles MSAs. 

AQS 

monitor ID 

Avg. summer NO2 

concentration (ppb), 2014-2015 

Avg. summer NO2 

concentration (ppb), 2017-2018 
% Change 

Riverside MSA 

60650009 5.8 5.6 -3.6 

60650012 18.6 20.6 +10.6 

60651016 8.5 9.1 +6.4 

60655001 10.4 10.4 +0.1 

60658001 18.6 18.8 +0.9 

60658005 16.5 16.1 -2.9 

60659001 15.0 15.6 +4.3 

60710001 34.1 36.1 +5.7 

60710026 40.4 36.8 -8.9 

60710027 46.0 40.2 -12.6 

60710306 25.0 28.8 15.0 

60711004 24.5 23.3 -4.6 

60711234 16.8 15.3 -8.9 

60712002 31.6 31.6 -0.1 

60719004 25.5 25.7 0.5 
  Riverside MSA average +0.1% 

Los Angeles MSA 

60370002 25.0 22.9 -8.7 

60370016 20.8 18.1 -13.2 

60370113 14.6 15.0 +2.5 

60371103 27.4 25.7 -6.0 

60371201 17.4 16.5 -5.1 

60371302 17.2 17.0 -1.1 

60371602 21.7 22.0 +1.3 

60371701 27.6 26.9 -2.5 

60372005 19.4 18.2 -6.1 

60374006 22.2 20.8 -6.1 

60374008 32.0 28.4 -11.1 

60375005 13.2 12.9 -2.5 

60376012 21.5 20.4 -4.8 

60590007 12.8 11.8 -8.2 

60590008 28.4 23.7 -16.6 

60591003 8.5 7.1 -16.2 

60595001 15.0 13.8 -7.5 
  

Los Angeles MSA average -6.6% 

 


