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Two Types

o For LCA purposes it useful to think of uncertainty in 2
way:
— *“uncertainty about the value of empirical quantities” and
“uncertainty about model functional form”.

o Parameter Uncertainty
* Model Uncertainty

« Empirical quantities represent properties of the real world,
which, at least in principle, can be measured, now or in the
future.

Morgan et al., 2009 — Carnegie Mellon University



Uncertainty

o “Uncertainty is ubiquitous. Of course, the presence of
uncertainty does not mean that people cannot act.”

Morgan et al., 2009
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1SO 14044

o Defines Uncertainty Analysis

— *“systematic procedure to quantify the uncertainty introduced in the
results of a life cycle inventory analysis due to the cumulative
effects of model imprecision, input uncertainty and data
variability”

e |t commands —

— “An analysis of results for sensitivity and uncertainty shall be
conducted for studies intended to be used in comparative assertions
intended to be disclosed to the public.”
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Well we need to start somewhere!

The results and conclusions of this LCA are reported according to the International
Organization for Standardization (ISO)’s 14040/44 standards.

The Life Cycle Inventory (LCI) results for the foil pouch production compared to the foil-less

pouch show a reduction in primary energy use from 0.219 to 0.210MJ, resulting in a savings

of approximately 4.1%.|Carbon dioxide emissions are also reduced from 10.371 to 9.317g of

CO;, a savings of 10.Z% in favor of the foil-less pouch. However, water inputs show an
increase from 0.279 to 0.741L, which is approximately 2.5 times greater for the proposed foil-

less pouch compared to the current foil pouch. This is largely due to the use of Ethylene Vinyl
Alcohol (EVOH) in the foil-less pouch.
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Point Estimates
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FIGURE 3. Sources of GHG emissions for SACROC Unit and
Weyburn Unit.
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How Likely Will You Achieve Goals?
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are achieved by natural gas use
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DO IT!
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Value of “DOING IT”

 Leads to insights you might not otherwise gain from your
analysis

e (Can guide policy targets

* Gives some idea of the “robustness” of an policy designs
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Some Reasons for Uncertainty

« Parameter uncertainty can arise:
— lack of data;
— Inadequate or incomplete measurement;

— statistical variation arising from measurement instruments and
methods;

— systematic error
— subjective judgments needed to estimate its nature and magnitude;
— and inherent randomness

Carnegie Mellon University
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Some Reasons for Uncertainty

* Model Uncertainty is broader in scope and can arise from
many of the same sources as uncertainty for parameter
uncertainty:

— how to allocate emissions from one process across multiple co-
products;

— how economically-mediated production impacts will evolve over
space and/or time;

— what global warming potentials to use for greenhouse gas
emissions; and,

— what processes to include in the system boundary.
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Variability

e Some authors refer to a from of uncertainty as
“variability.”
— How a quantity can vary across space, time, or other relevant

dimensions

 In practice for LCA analyses, maintaining the distinction
between uncertainty and variability is not especially
Important and simply can be treated as uncertainty in many
Instances

Carnegie Mellon University

Morgan et al., 2009



	LCA and uncertainty – implications for decision making�
	Two Types
	Uncertainty
	ISO 14044
	Well we need to start somewhere!
	Point Estimates
	Ranges
	Slide Number 8
	How Likely Will You Achieve Goals?
	Slide Number 10
	Slide Number 11
	Slide Number 12
	DO IT!
	Value of “DOING IT”
	Acknowledgements
	References
	Slide Number 17
	Some Reasons for Uncertainty
	Some Reasons for Uncertainty
	Variability

